

FINAL EXAMINATION

MARCH 2023

COURSE TITLE STATISTICS FOR SOCIAL SCIENCE

COURSE CODE	RMAT2233	
DATE/DAY	21 JUNE 2023 / WEDNESDAY	
TIME/DURATION	01:00 PM - 03:00 PM / 02 Hour(s) 00 Minute(s)	

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instruction under each section carefully.
- 2. Candidates are reminded not to bring into examination hall/room any form of written materials or electronic gadget except for stationery that is permitted by the Invigilator.

3. Students who are caught breaching the Examination Rules and Regulation will be charged with an academic dishonesty and if found guilty of the offence, the maximum penalty is expulsion from the University.

(This Question Paper consists of 8 Printed Pages including front page)

DO NOT OPEN THE QUESTION PAPER UNTIL YOU ARE TOLD TO DO SO

There are SEVEN (7) questions in this section. Answer ALL questions in the answer booklet provided. [85 MARKS]

1. A store carried out a sales promotion on a newly arrived T-shirt for 60 days and the number of T-shirts sold as follows:

Number of days of sales promotion	Frequency	Cumulative Frequency
$0 < n \leq 10$	210	210
$10 < n \leq 20$	134	344
$20 < n \leq 30$	78	q
$30 < n \leq 40$	р	494
$40 < n \le 60$	46	540

a) Find the value of p and q.

Years of Experience	Number of Employees
1 - 4	16
5 - 8	20
9 -12	28
13 - 16	24
17 - 20	16
21 - 24	11
25 - 28	5

b) Find the median.

(10 marks)

2. The time taken to the nearest minute to wash 8 cars are recorded as follows: 11 12 12 12 16 19 10 13 Calculate

	U.
a) mean.	(4 marks)
b) standard deviation.	(5 marks
c) Pearson coefficient skewness.	(6 marks)

(5 marks)

- 3. For the followings:
 - a) Let X be the number of "6" obtained when three dices) are rolled. Construct a probability distribution table for X. (6 marks)
 - b) The table below shows the probability distribution of a random variable X. Find the value of p. (6 marks)

X = x	1	2	3	4	5
P(X = x)	0.2	0.2	0.3	p	2p

- 4. The masses of guavas in a farm are normally distributed with a mean μ and a standard deviation, σ . The mass of percentages of guava that less than 400 g is 15.87% and more than 500 g is 6.68%. Determine the values of μ and σ . (10 marks)
- 5. A fruit stall sells tomatoes, apricots and plums. The weights of plums are normally distributed with a mean of 80 grams and standard deviation 4 grams. Five plums are chosen at random, find the probability exactly three of them weigh more than 82 grams. (10 marks)
- 6. A random sample of size 40 is taken from the binomial B(50,0.4). Find the probability that the sample mean is

UN ABDU

- a) more than 19.
- b) lies between 18.5 and 20.

(4 marks)

(5 marks)

- ^{ng, or reprinting, is not} 7. A certain type of tennis ball is known to have a bounce height which is normally is normally distributed with a standard deviation of 2 cm. A random sample of 60 tennis ball is tested and the mean bounce height of the sample is 140 cm. Find
 - a) a symmetrical 95% confidence interval for mean bounce height. (7 marks)
 - b) a symmetrical 99% confidence interval for mean bounce height. (7 marks)

END OF QUESTION PAPER

List of Formulas

- 1. Sample Mean: $\bar{X} = \frac{\sum x}{n}$
- 2. Population Mean: $\mu = \frac{\sum X}{N}$

3. Grouped Data
Mean:
$$\overline{X} = \frac{\sum fx}{\sum f}$$

Median $= L_m + \left[\frac{\frac{n}{2} - F}{f_m}\right]c$
Mode $= L + \left[\frac{f_0 - f_1}{(f_0 - f_1) + (f_0 - f_2)}\right] \times c$

4. Population (Ungrouped Data)

Mean :
$$\mu = \frac{\sum x}{N}$$

Variance: $\sigma^2 = \frac{\sum x^2}{N} - (\bar{X})^2 @ \frac{1}{N} \sum (X - \mu)^2$
Standard deviation: $\sigma = \sqrt{\frac{\sum x^2}{N} - (\bar{X})^2} @ \sqrt{\frac{1}{N} \sum (X - \mu)^2}$

5.Sample (Ungrouped Data)
Variance:
$$s^{2} = \frac{1}{n-1} \left[\sum x^{2} - \frac{(\sum x)^{2}}{n} \right]$$

Standard deviation : $s = \sqrt{\frac{1}{n-1} \left[\sum x^{2} - \frac{(\sum x)^{2}}{n} \right]}$
6. Population (Grouped Data)
Mean : $\mu = \frac{\sum fx}{\sum f(N)}$

6. Population (Grouped Data) Mean : $\mu = \frac{\sum fx}{\sum f(N)}$ Variance: $\sigma^2 = \frac{\sum fx^2}{\sum f(N)} - (\bar{X})^2$ Standard deviation: $\sigma = \sqrt{\frac{\sum fx^2}{\sum f(N)} - (\bar{X})^2}$.

7. Sample (Grouped Data)
Variance:
$$s^2 = \frac{1}{n-1} \left[\sum fx^2 - \frac{(\sum fx)^2}{n} \right]$$

Standard deviation : $s = \sqrt{\frac{1}{n-1} \left[\sum fx^2 - \frac{(\sum fx)^2}{n} \right]}$

8. Pearson's coefficient of skewness

$$Skewness = \frac{Mean - Mode}{Standard \ deviation} @ \frac{3(Mean - Median)}{Standard \ deviation}$$

9.Binomial $P(X=r) = C_r p^r q^{n-r}$ Mean = npVariance = npqStandard deviation $=\sqrt{npq}$

10. Poisson Distribution

$$P(X = r) = e^{-\mu} \frac{\mu^{r}}{r!}$$

11.Normal Distribution $z = \frac{X - \mu}{\sigma}$

12. $E(\bar{X}) = \mu$ $Var\left(\bar{X}\right) = \frac{\sigma^2}{n}$

13.Confidence Interval for Population Mean (with known variance & sample size > 30) ABDI $P(\bar{X}-E \leq \mu \leq \bar{X}+E),$ reprinting, is not permitted. $E = \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, E = marginal of error$

Confidence interval will

$$(\overline{X} - E, \overline{X} + E)$$

14.Confidence Interval for Population Mean (with unknown variance & sample size < 30)

$$(\overline{X} - E \leq \overline{X} \leq \overline{X} + E)$$
$$E = \pm t_{\frac{\alpha}{2}} \frac{\widehat{\sigma}}{\sqrt{n}}$$

Confidence interval will

$$(\bar{X}-t_{\frac{\alpha}{2}}\frac{\hat{\sigma}}{\sqrt{n}},\,\bar{X}+t_{\frac{\alpha}{2}}\frac{\hat{\sigma}}{\sqrt{n}})$$

CONFIDENTIAL

15.

Significance test

Population mean (Normal) with known variance

Test Statistics $z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$

Population mean (Normal) with unknown variance

Test Statistics $z = \frac{x-\mu}{\frac{s}{\sqrt{n}}}$

16.Anova

Test Statistics : $\frac{{s_1}^2}{{s_2}^2}$ $F = \frac{estimated \ population \ variance \ between \ the \ sample}{estimated \ population \ variance \ within \ the \ sample}$

17.

$$r = \frac{n(\sum XY) - (\sum X)(\sum Y)}{\sqrt{[n \sum X^2 - (\sum X)^2][n \sum Y^2 - (\sum Y)^2]}}$$

Test statistics: $t = \frac{r \sqrt{n-2}}{\sqrt{1-r^2}}$
 $b = \frac{n \sum XY - (\sum X) (\sum Y)}{n(\sum X^2) - (\sum X)^2}$ $a = \frac{\sum Y}{n} - b \frac{\sum X}{n}$
 $s_{y,x} = \sqrt{\frac{\sum (Y - Y')^2}{n-2}}$
Test statistics, $t = \frac{b}{SE(b)}$

18.

Confidence Interval of an Estimate

$$Y' \pm t_{\frac{\alpha}{2}} s_{y,x} \sqrt{\frac{1}{n} + \frac{(X-\bar{X})^2}{\sum X^2 - \left[\frac{(\sum X)^2}{n}\right]}}$$

Prediction Interval of an Estimate

$$Y' \pm t_{\frac{\alpha}{2}} s_{y,x} \sqrt{1 + \frac{1}{n} + \frac{(X - \bar{X})^2}{\sum X^2 - \left[\frac{(\sum X)^2}{n}\right]}}$$

SULIT

THE UPPER TAIL PROBABILITY Q(z) FOR THE NORMAL DISTRIBUTION N(0,1) KEBARANGKALIAN HUJUNG ATAS Q(z) BAGI TABURAN NORMAL N(0, 1)

3	Ŭ	1	2	3	4	5	õ	7	8	4	1	2	3	4	5	6	7	8	
a.o	0.5000	0.4960	0.4930	0.4820	0.4840	0.480 1	0,4761	0.47.21	0.4681	0.4641	4	s	12	16	20	24	28		
a.1	0.4602	0.4562	0.45 22	0.4483	0.4443	0.4404	0 4364	0.4325	0.4286	0.4247	4	Š	12	16	20	24	23	32 32	1
02	0.4207	0.4168	04129	0.4090	0.4052	0.4013	0.3974	11.39.36	0.3897	0_3359	4	5	12	15	19	23	27	31	
6.1	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483	4	7	11	15	19	22	26	30	100 CO.
0.4	0.3446	0.3409	0.1372	0.3336	0.3300	0.3264	0.3278	0.3192	0.3156	0.3121	4	7	11	15	18	22	25	29	-
0.5	0.3(65	0.3050	0.3015	0.2951	0.2946	0.2912	0.2877	612843	0.2610	0.2776	3	7	íù	14	17	20	24	27	
Q.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2453	0.2451	3	7	10	13	16	19	23	26	
0.7	0.2430	0.2359	0.2358	0.2327	0.22%	0.2266	0.2236	0.2205	0.2177	0.2145	3	ò	9	12	15	18	21	24	
<u>as</u>	0.2119	0.2090	0.2061	0.3033	0.2005	0.1977	0,1949	0,1922	0.1894	0.1867	3	5	8	11	14	16	19	22	
0.9	0.1841	0.1814	0.1788	0.1762	0.1736	UI711	0.1685	0.1660	0.1635	0.1611	3	5	8	10	13	15	ix	30	
0.1	0.1587	0.1562	0.1539	0.1515	0,1492	0.1469	0.1446	0.1423	0.1401	0.1379	2	5	7	9	12	14	16	19	
1.1	0.1357	0.1335	0.1314	0.1292	0.1271	@1251	0.1230	0.1210	0.1190	0.1170	2	4	6	8	10	12	14	16	
12	a.1151	0.1131	0.1112	0.1693	0.1075	0.1056	0.1038	0.1020	0.1003	0.0555	2	4	6	7	ÿ	11	13	15	
13	0.0965	0.0951	0.0934	0.0918	0.0901	0.0685	0.0859	0.08.53	0.0838	0.0523	2	3	5	6	8	10	11	13	
1.4	202000	0.0793	00778	0.0764	0.0749	0.0735	0.0721	0.0705	0.0294	0.0681	1	3	4	6	7	8	10	13	
15	0.0668	0.0655	0.0643	0.0630	0.0518	0.0606	0.0594	0.0532	0.0571	0.0559	1	2	4	5	6	3	8	10	1
1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0455	0.0475	0.0465	0.0455	i	2	3	4	5	à	7	8	
1.7	0.0446	0.0436	0.0427	0.0415	0.01409	0.0401	0.0092	1850.0	0.0375	0.0367	1	2	3	4	4	5	6	7	
15	0.0159	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0/007	0.0301	0.0294	1	1	2	3	4	4	5	6	
1.9	0.0287	6.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233	1	i	2	2	3	4	4	5	
20	0.0228	0.0222	0.0217	0.0212	aoza	0.0302	0.0197	10192	0.0155	0.0181	Q	1	1	ž	2	3	3	4	
2.1	0.0179	0.0174	0.001	0.0165	0.0162	0.0158	0.0154	0.01.50	0.0146	0.0143	0	1	1	2	2	2	3	3	
22	0.0139	0.0136	0.0132	0.0129	0.0125	00122	0.0119	0.0116	0.0113	0.0110	0	1	1	1	2	2	2	3	
23	110107	0.0104	00102	In	$\nabla \cdot A$			-			0	1	1	1	1	2	2	2	
		(0,0)	1.	(J.C.1999)	0.00964	0.00939	0.00914				3	5	8	10	13	15	18	20	
			'ng	G	517,			0.00539	0.00666	0.00842	2	5	7	9	12	14	16	16	1
2.4	0101520	89700.0	0.00736	0.00755	0.00714	TI				da	2	4	6	ŝ	11	13	15	17	1
				YIT	in	0.007.14	00695	0.00676	0.00657	0.00539	2	4	6	7	9	11	13	15	1
25	0.00621	0.00604	0.00387	0.03570	0.00554	0.0005.39	0.00523	0.00506	0.00494	0.00480	2	3	5	6	\$	9	11	12	1
26	0.03466	0.00453	000440	0.03427	0.00415	0.00402	0.00391	0.00379	0.00368	0.00357	1	2	3	5	6	7	9	9	-
27	0.00347	0.0036	00075%	0.00317	0.00307	0.00298	0.00289	0.00250	8.00272	0.00054	1	2	3	4	5	õ	7	ŝ	
2.8	0.00256	0 00248	0.00240	0.00233	0.00226	0.002.19	0.00212	0.00205	0.00199	0.00193	1	I	2	3	4	4	5	ú	
29	0.001S7	0.00181	0.00175	0.00169	0.00164	0.06159	0.00154	0.00149	0.00144	0.0 159	0	-	1	2	2	3	3	4	l,
3.0	0.00135	0.00131	0.00126	0.00122	0.00118	0.001.14	0.00111	0.00107	40000	0.00100	0	1	1	2	2	2	3	3	
										mted.									
ſ	(z) = -	$\frac{1}{\sqrt{1-e^{x}}}$	$\left(-\frac{1}{2}\right)$	₂ 2)		10)			Exa		e/C	onte	oh:					
	$(z) = \int_{z}^{z}$	 Pervide)	/		A)(z)	lf X Jika	- N V	(Ö, 1), th	ien i	P(X)	>k	= Q	(k)	
Ę	(c)=]. 1	1 (6) 46				0		ð sen	27 ,	.t	A ~	14(0	· . I).	, 1114	ли Г	(A)	- KJ	= <u>U</u>	1,1
	3	172/2												SUL	m				

					1			
			1		t (p, df)			
df/p	0.40	0.25	0.10	0.05	0.025	0.01	0.005	0.0005
1	0.324920	1.000000	3.077684	6.313752	12.70620	31.82052	63.65674	636.6192
2	0.288675	0.816497	1.885618	2.919986	4.30265	6.96456	9.92484	31,5991
3	0.276671	0.764892	1.637744	2.353363	3.18245	4.54070	5.84091	12.9240
4	0.270722	0.740597	1.533206	2.131847	2.77645	3.74695	4.60409	8.6103
5	0.267181	0.726687	1.475884	2.015048	2.57058	3.36493	4.03214	6.8688
6	0.264835	0.717558	1.439756	1.943180	2.44691	3.14267	3.70743	5.9588
7	0.263167	0.711142	1.414924	1.894579	2.36462	2.99795	3.49948	5.4079
8	0.261921	0.706387	1.396815	1.859548	2.30600	2.89646	3.35539	5.0413
9	0.260955	0.702722	1.383029	1.833113	2.26216	2.82144	3.24984	4.7809
10	0.260185	0.699812	1.372184	1.812461	2.22814	2.76377	3.16927	4.5869
11	0.259558	0.597445	1.363430	1.795885	2.20099	2.71808	3.10581	4.4370
12	0.259033	0.695483	1.356217	1.782288	2.17881	2.68100	3.05454	43178
13	0.258591	0.693829	1.350171	1.770933	2.16037	2.65031	3.01228	4.2208
14	0.258213	0.692417	1.345030	1.761310	2.14479	2.62449	2.97684	4.1405
15	0.257885	0.691197	1.340606	1.753050	2.13145	2.60248	2.94671	4.0728
16	0.257599	0.690132	1.336757	1.745884	2.11991	2.58349	2.92078	4.0150
17	0.257347	0.689195	1.333379	1.739607	2.10982	2.56693	2.89823	3.9651
18	0.257123	0.688364	1.330391	1.734064	2.10092	2.55238	2.87844	3.9216
19	0.256923	0.687621	1.327728	1.729133	2.09302	2.53948	2.86093	3.8834
20	0.256743	0.686954	1.325341	1.724718	2.08596	2.52798	2.84534	3.8495
21	0.256580	0.686352	1.323188	1.720743	2.07961	2.51765	2.83136	3.8193
22	0.256432	0.685805	1.321237	1.717144	2.07387	2.50832	2.81876	3.7921
23	0.256297	0.685306	1.319460	1.713872	2.06866	2.49987	2.80734	3.7676
24	0.256173	0.684850	1.317836	1.710882	2.06390	2.49216	2.79694	3.7454
25	0.256060	0.684430	1.316345	1.708141	2.05954	2.48511	2.78744	3.7251
26	0.255955	0.684043	1.314972	1.705618	2.05553	2.47863	2.77871	3.7066
27	0.255858	0.683685	1.313703	1.703288	2.05183	2.47266	2.77068	3.6896
28	0.255768	0.683353	1.312527	1.701131	2.04841	2.46714	2.76326	3.6739
29	0.255684	0.683044	1.311434	1.699127	2.04523	2.46202	2.75639	3.6594
30	0.255605	0.682756	1.310415	1.697261	2.04227	2.45726	2.75000	3.6460
z	0.253347	0.674490	1.281552	1.644854	1.95996	2.32635	2.57583	3.2905
CI	· · · · · · · · · · · · · · · · · · ·		80%	90%	95%	98%	99%	99.9%

Numbers in each row of the table are values on a *t*-distribution with (*df*) degrees of freedom for selected right-tail (greater-than) probabilities (*p*).