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Abstract 
 

This study describes an alternative development of metaheuristic approaches to automate a one dimensional 

problem. Extensive computational testing is done to demonstrate the effectiveness of the proposed heuristic, a 

Variable Neighbourhood Search (VNS)-based algorithm. Several heuristics algorithms that have been used for 

solving the bin packing problem,  Exact algorithm, Random Algorithm, First Fit Algorithm, Best Fit Algorithm, 

First Fit Decreasing Algorithm and Best Fit Decreasing Algorithm are incorporated into VNS and re-run for the 

results. The procedures have been coded in Matlab 2010 version 7.11 and the statistic was calculated with SPSS 

version 17.0. This study used two classes of bin packing problem instances (uniform and triplets) available in the 

OR Library. Results are compared to the reference solutions or the best known lower bounds where the optimum is 

not known. The results of the analysis showed that the combination with Best Fit Decreasing and First Fit 

Decreasing are remarkably effective tools for solving the bin packing problem. However, First Fit Decreasing found 

the existing best known or optimal solution to 8 instances with the least processing time. The success of VNS with 

the basic algorithms indicates that the results of this study can provide an alternative heuristic for one dimensional 

bin packing problem. 
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1. Introduction 
 

Bin packing problem (BPP) is a combinatorial optimization problem that has some similarities with classical 

knapsack problems. In the traditional knapsack problem, a set of objects of given sizes must be accommodated into 

a set of containers of given capacity so that the available capacity is utilized as efficiently as possible, with no 

additional constraints exist.  The BPP was exploited in many fields such as computer science and engineering, 

transportation, logistics and communications. Due to its theoretical and practical relevance, several variants and 

richer setting were proposed with the most advanced variants of BPP are the Variable Cost and Size Bin Packing 

Problem (VCSBPP ) ( Crainic et al., 2011) and the Generalized Bin Packing Problem (GBPP) (Baldi et al., 2012).  

Despite that, the interest in the simpler BPP continues as many techniques have been found applied not only to solve 

simple but also higher dimensional problems (Martello et al., 2000; Lodi et al., 2002) on three-dimensional 

problems. 

One-dimensional bin-packing problem is the simplest bin-packing problem. In bin packing problem, objects of 

different volumes must be packed into a finite number of bins of capacity C in way that minimizes the number of 

bins used. Even though this is a simple problem, but it is NP hard, so it is unlikely that there exists an algorithm that 

could solve every instance of it in polynomial time. Solution for more general realistic packing problem also 

depends on the effectiveness and efficiency of solution procedures for the basic problem. Choosing an objective 

function which is to minimize the number of bins is pointless because many different configurations, in terms of the 

assignment of items to bins, correspond to the same number of bins. Naturally, an objective function seeks a good 

solution that will always have nearly full bins. Along with maximizing bin loads, the objective function also seeks to 

reduce the number of bins. This study describes an alternative development of metaheuristic approaches to automate 

the bin packing process in one dimensional. This work has been motivated by an interest in developing modern 

automated algorithms that tackle this problem in more effective way as an alternative for than current existing 

methods. This alternative may also benefit the development of optimization techniques that can be applied to other 

such problems.  

Proceedings of the 2014 International Conference on Industrial Engineering and Operations Management 

Bali, Indonesia, January 7 – 9, 2014 



1561 

 

Among the study on solving the one-dimensional BPP are Falkenauer (1996) described a hybrid grouping genetic 

algorithm (HGGA), the branch-and-bound procedure of Martello and Toth (Alvim et al., 2004) used as the basic 

reference, Scholl et al. (1997) proposed an exact method (BISON) which makes use of several bounds, reduction 

procedures, heuristics, and de Carvalho (1999) and Vanderbeck (1999) presented exact algorithms based on column 

generation and branch-and-bound. More recently, Fleszar and Hindi (2002) proposed a new heuristics to BPP, based 

on the VNS metaheuristic (Hansen and Mladenovic, 1999) and using new lower bounds proposed by Fekete and 

Schepers (2001). A simple one dimensional BPP can be solved using the basic greedy algorithms Best Fit and First 

Fit algorithms, hence combining it will VNS can generate better and faster results. Hence, in this study we will be 

using two of the fastest heuristics for the approximate solution of BPP, the well-known First-Fit Decreasing (FFD) 

and Best-Fit Decreasing (BFD) greedy algorithms (Li and Chen, 2006). 

 

Variable Neighbourhood Search (VNS) heuristic (Hansen and Mladenovic,1997), is rapidly developed in its 

methods and its applications. VNS is a recent metaheuristic for solving combinatorial and global optimization 

problems whose basic idea is systematic change of neighbourhood within a local search (Hansen and 

Mladenovic,1997; 1999; 2001a; 2001b; 2001c; 2003; 2008, Hansen et.al.,2010). The aim of Variable 

Neighbourhood Search approaches is to avoid poor local optima by systematically changing neighbourhood in order 

to explore an increasingly larger region of the solution space at solving combinatorial and global optimization 

problems. It strives to obtain the eight qualities properties of metaheuristics that state by Hansen and 

Mladenovic(2003) and three more items added in Hansen et.al.(2010). VNS is based on simple principle namely 

systematic change of neighbourhood during the search. Its principle is simple and all steps of the basic and extended 

schemes rely upon it. This idea has had some antecedents. It allows a change of the neighbourhood structures within 

this search. Besides, they are state in precise mathematical terms.  

Hansen and Mladenovic(2001) claimed that VNS has proved efficient in solving the problems of several 

benchmarks with optimal or very close to optimal results and within moderate (or at least reasonable) computing 

times. Unlike many other metaheuristics, the basic schemes of VNS and its extensions are simple and require few, 

and sometimes no parameters. Therefore, to provide good solutions in simpler ways, VNS can lead to more efficient 

and sophisticated implementations. Moreover, its performance appears to be robust and the basic principles are easy 

to apply and very easy to use. The use of VNS gets good or better results than most other metaheuristics on many 

problems in much simpler way indeed. 

 

 

2. Methodology 
 

The VNS algorithm for the BPP is based on moves, the transfers of an item from its current bin to another or the 

swap of a pair of items across their respective current bins. Moves are considered valid if it does not violate the bin 

capacity constraint (Scholl et al., 1997; Fleszar and Hindi, 2002). VNS chooses the minimum free space weight in 

the current bin that allows the routine to identify the minimum free space so that it is easier to examine the items list 

in term of finding an item with its weight that can fit the current gap in the current bin completely. In addition, if 

there is no way item that can fit completely; the first item in the list that finds the gap without overlap is selected. 

The overlapping test in VNS is not needed. This is because the selected item will be packed at the current gap in 

the current bin. The remainder (free space) will be updated after an item is packed or there is no way item in the list 

that can be packed at the current remain. The remainder will be updated to the next available gap in the current bin. 

Then, the available gap weight related to the differences between loads of bin and bin capacity. These actions give 

us dimension of the available gap. Hence, the current best fitting will not overlap with other items that already 

packed in the current bin. Hence, this it will reduce the processing time. VNS consists of two stages: Shaking stage 

and local search stage. 

 

2.1 Model 

 

We adapt the objective function from Fleszar & Hindi (2002) in which it observes that a good solution will always 

have nearly full bins leads naturally to an objective function that seeks configurations having this feature.  

 

                                                                                                                     (1) 
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Where m is a number of bins in x and l(α) denotes a sum of sizes of items Άα assigned to bin α, i.e.,   

 

 

The objective function also seeks to reduce the number of bins when it maximizing bin loads. It is also worth 

observing that the value of the function will not change if an empty bin is added or removed. 

 

2.2 Procedures 

 

In developing the VNS procedure, there are three basic steps which are: shaking, local search and move. During the 

shaking phase, a random solution is generated from the current solution using the kth neighbourhood structure. In 

local search stage, the change in the objective function will result in the improvement, in which all possible 

improving moves will be specified in order to further improve he objective function values.The kth neighbourhood 

of solution x(Nk(x)) is defined as the set of solutions that can be obtained from x by successively performing k moves 

of some distinct items. k random moves are performed on x in order to find a random solution in Nk(x), A random 

move is generated as follows (Fleszar & Hindi,2002): 

 

1. A list of Z’, is created by copying from Z the items that have not been moved so far, preserving the non-

increasing item size order. 

2.  A random item i is selected from list Z’. 

3. All possible moves involving i  are determined and saved: 

a) Transfers are determined by considering all bins α=1,…,m where m is the number of bins in x. The 

transfer of item i to bin α is saved only if i.e., if there is enough space in bin α for item i ( 

s(α) = c – l(α)). 

b) Swaps are determined by considering the items in the list Z’ other than i. Processing starts from the end 

of the list and finishes in one of two cases: either the beginning of the list is reached or item j = Z’q  is 

too big to be exchanged with item i, i.e.  In the latter case, all items in front of q in 

Z’ are not considered since they are not smaller than j and cannot, therefore, be swapped with i. 

Swap i j is saved only if two conditions are satisfied:  (swapping items of the same size does 

not change the solution) and  i.e., there is enough space for i to place it in bin bj 

after removing j (the opposite condition is ensured by the stopping condition). 

4. If there is no possible move for item i, then i is removed from Z’ and processing is restarted from step 2. 

Otherwise, from all possible moves involving i, a random move is selected and performed. Item i and the 

counterpart item in the case of a swap are marked as moved, in order to exclude their participation in 

further moves in the current shaking. 

This process is repeated until k moves are performed or until it is not possible to perform any move using items not 

marked as moved. Note that if there are no possible moves for an item, i, it is removed from Z’ in step 4 above only 

temporarily, since after some transfers or swaps are performed, moves involving i can be found. This shaking 

procedure is always preserves the number of bins. Hence, a solution with a larger number of bins will not be created. 

However, it is not certain that every optimal solution can be obtained starting from a given solution by shaking in 

this manner (Fleszar and Hindi, 2002) 

A local optimum is determined by a steepest descent algorithm. At each step, the procedure effectively enumerates 

all possible improving moves (transfers and swaps) and performs one that maximises the improvement of the 

objective function (1), if any. Since moves involving items from full bins do not increase the objective function, 

these are excluded from consideration. Thus at the beginning of each pass of the local search procedure, a list Z’ of 

all items i for which l(bi )(c is created in a linear time, by copying from Z while preserving order. Thereafter, the 

following is carried out:  

 

Transfers: For each non-full bin α, items are taken from Z’ starting from the end of the list. For each item i, the 

value of transferring it from bi  to α (bi ≠ α) is computed and the best transfer is saved. The evaluation is stopped 

either when the beginning of the list is reached or when the item j = Z’q is too big to fit into bin α, i.e., when tj > s(α). 
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In the latter case all items in Z’ in front of q are not considered, since they are not smaller than j and cannot, 

therefore, be put in α. 

 

Swaps: Items from list Z’ are considered. For each item i = Z’q the following is carried out: 

1) r = q - 1. 

2)  While item j = Z’r has the same size as i, i.e., while tj = ti , decrease r (swapping items of the same size 

does not change the solution). 

3) For each item in Z’ starting from r backwards, the value of swapping i with j = Z’r  is computed and the best 

swap is saved. Processing is terminated either when the beginning of the list is reached or when j is too big 

to be exchanged with i, i.e., when tj > ti + s(bi). Note that there is always space for item i in bin bj , since i is 

always follows j in Z’ ensuring that ti ≤ tj  . 

 

For each of the transfers and swaps necessary, we vary the methods as per the algorithms: 

(1) Exact method 

(2) Random method 

(3) First Fit Algorithm 

(4) Best Fit Algorithm 

(5) First Fit Decreasing Algorithm and, 

(6)  Best Fit Decreasing Algorithm  

 

Observe that in a near-optimal solution, many bins are full. Consequently, the number of items in Z’ is usually small 

and there are very few bins to which items can be transferred. Naturally, since the overarching goal of the local 

search is to reduce the number of bins, once a bin becomes empty, it is immediately removed from the solution. 

 

For example for the First-fit algorithm, the item is processed in arbitrary order. For each item, it attempts to place 

the item in the first bin that can accommodate the item. If no bin is found, it opens a new bin and puts the item 

within the new bin. Another example is the First Fit Decreasing (FFD) strategy, operates by first sorting the items to 

be inserted in decreasing order by their sizes, and then inserting each item into the first bin in the list with sufficient 

remaining space.  

 

3. Analysis and Results 
 

In order to validate the performance of the algorithm, the computational results and discussion of VNS are discussed. 

This study used two classes of benchmark BPP instances available in the OR library 

(tpps://www.ms.ic.ac.uk/info.html). The first class (U) is uniformly distributed size items in (20, 100) to be packed 

into bins of size 150, while the second class (T) consists of triplets of items from (25, 50) to be packed into bins of 

size 100. All the instances in the T class are constructed with a known global optimal solution whereas each instance 

is equal to the number items divided by 3. Results are compared to the reference solutions, which are the optimal 

solutions or the best known lower bounds where the optimum is not known. The absolute deviation is represented by 

the number of bins and the relative deviations computed as the absolute deviation divided by the number of bins in 

the optimal solutions (or in the best-known lower bounds). The time processing is measured in seconds. 

 

N indicates the number of instances in each test set. The “hits” column shows the number of the reference solutions 

achieved. The next four columns show the absolute deviation (abs dev.) and the relative deviation (rel. dev.) from 

the reference solution. For both, the average (av.) and the maximum (max.) values over all members of each set are 

displayed.  
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3.1 Result using Exact Algorithm 

 

SET  N  HITS 
ABS. DEV.    REL. DEV.    TIME  

AV. MAX.   AV. MAX.   AV. MAX.  

U120  20 0 2.75 4 0.06 0.083 0.04 0.187 

U250  20 0 6 8 0.06 0.08 0.03 0.047 

U500  20 0 10.8 13 0.05 0.066 0.04 0.062 

U1000  20 0 19.8 23 0.05 0.056 0.07 0.094 

T60  20 0 1.7 3 0.09 0.15 0.02 0.047 

T120  20 0 2.95 4 0.07 0.1 0.02 0.047 

T249  20 0 5.3 7 0.06 0.084 0.02 0.062 

T501  20 0 9.85 11 0.06 0.066 0.04 0.047 

ALL  160 0 7.39 23   0.06 0.15   0.04 0.187 

 

3.2 Using Random Algorithm 

 

SET  N  HITS 
ABS. DEV.    REL. DEV.    TIME  

AV. MAX.   AV. MAX.   AV. MAX.  

U120  20 0 3.65 8 0.07 0.154 0.02 0.031 

U250  20 0 5.25 7 0.05 0.069 0.02 0.031 

U500  20 0 10.2 12 0.05 0.059 0.03 0.062 

U1000  20 0 18.9 22 0.05 0.055 0.07 0.094 

T60  20 0 2.65 3 0.13 0.15 0.03 0.031 

T120  20 0 5.2 6 0.13 0.15 0.02 0.031 

T249  20 0 10.3 12 0.12 0.145 0.03 0.062 

T501  20 0 20.1 23 0.12 0.138 0.04 0.109 

ALL  160 0 9.52 23   0.09 0.154   0.03 0.109 

 

3.3 Using First Fit Algorithm 

 

SET  N  HITS 
ABS. DEV.    REL. DEV.    TIME  

AV. MAX.    AV. MAX.    AV. MAX.  

U120  20 0 3.05 5   0.06 0.104   0.02 0.031 

U250  20 0 6.4 9 0.06 0.086 0.02 0.031 

U500  20 0 11.6 15 0.06 0.074 0.03 0.047 

U1000  20 0 20.9 24 0.05 0.058 0.05 0.078 

T60  20 0 1.65 3 0.08 0.15 0.02 0.031 

T120  20 0 2.95 4 0.07 0.1 0.02 0.031 

T249  20 0 5.35 7 0.06 0.084 0.02 0.031 

T501  20 0 9.8 11 0.06 0.066 0.02 0.062 

ALL  160 0 7.7 24   0.06 0.15   0.03 0.078 
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3.4 using Best Fit Algorithm 

 

SET  N  HITS 
ABS. DEV.    REL. DEV.    TIME  

AV. MAX.    AV. MAX.    AV. MAX.  

U120  20 0 2.75 4   0.06 0.083   0.02 0.031 

U250 20 0 6 8 0.06 0.08 0.02 0.031 

U500  20 0 10.8 13 0.05 0.066 0.04 0.062 

U1000 20 0 19.8 23 0.05 0.056 0.08 0.109 

T60 20 0 1.7 3 0.09 0.15 0.02 0.031 

T120  20 0 2.95 4 0.07 0.1 0.02 0.031 

T249  20 0 5.35 7 0.06 0.084 0.02 0.031 

T501  20 0 9.85 11 0.06 0.066 0.04 0.062 

ALL  160 0 7.4 23   0.06 0.15   0.03 0.109 

 

3.5 Using First Fit Decreasing Algorithm 

 

SET  N  HITS 
ABS. DEV.    REL. DEV.    TIME  

AV. MAX.    AV. MAX.    AV. MAX.  

U120  20 8 0.6 1   0.01 0.022   0.02 0.031 

U250  20 0 1.4 3 0.01 0.03 0.02 0.031 

U500  20 0 2.65 3 0.01 0.015 0.03 0.047 

U1000  20 0 4.9 7 0.01 0.018 0.06 0.078 

T60  20 0 3.1 4 0.16 0.2 0.02 0.031 

T120  20 0 5.8 7 0.15 0.175 0.02 0.031 

T249  20 0 12 13 0.15 0.157 0.02 0.031 

T501  20 0 23.1 24 0.14 0.144 0.02 0.047 

ALL  160 8 6.69 24   0.08 0.2   0.03 0.078 

 

3.6 Using Best Fit Decreasing algorithm 

 

SET  N  HITS 
ABS. DEV.    REL. DEV.    TIME  

AV. MAX.   AV. MAX.   AV. MAX.  

U120  20 8 0.6 1 0.01 0.022 0.02 0.047 

U250  20 0 1.4 3 0.01 0.03 0.03 0.047 

U500  20 0 2.95 8 0.02 0.041 0.04 0.062 

U1000  20 0 4.85 7 0.01 0.018 0.07 0.078 

T60  20 0 3.2 4 0.16 0.2 0.02 0.047 

T120  20 0 5.8 7 0.15 0.175 0.02 0.047 

T249  20 0 12 13 0.15 0.157 0.03 0.047 

T501  20 0 23.1 24 0.14 0.144 0.04 0.062 

ALL  160 8 5.98 24   0.07 0.2   0.03 0.078 
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3.7 Comparison of all methods 

 

Algorithm  HITS  

ABS. DEV.    REL. DEV.    TIME  

AV. MAX.   AV. MAX.   AV. MAX.  

Exact  0 7.39 23 0.06 0.15 0.04 0.19 

Random  0 9.52 23 0.09 0.15 0.03 0.11 

First Fit  0 7.7 24 0.06 0.15 0.03 0.08 

Best Fit  0 7.4 23 0.06 0.15 0.03 0.11 

First Fit 

Decreasing  
8 6.69 24   0.08 0.2   0.03 0.08 

Best Fit 

Decreasing  
8 6.73 24   0.08 0.2   0.03 0.08 

 

 

3.8 Comparison of processing time 

 

 

 
 

Figure 1: Comparison of Processing time between BFD and FFD optimum solutions 

 

Computational experiments show that all the algorithms give results in reasonably short processing times (Figure 1). 

The BFD and FFD are remarkably effective tools for solving the bin packing problem. When applied to 160 

benchmark instances, both of it found the existing best known or optimal solutions to 8 instances. Our computational 

experiments showed that FFD performed slightly better than BFD in term of processing time.  
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4. Conclusion and Recommendation 
 

Several methods which are exact algorithm, Random Algorithm, First Fit Algorithm, Best Fit Algorithm, First Fit 

Decreasing Algorithm and Best Fit Decreasing Algorithm are used for the transfers and moves necessary in order to 

improve the objective function values. Computational experiments also show that all five algorithms give results in 

reasonably short processing times. The BFD and FFD are remarkably effective tools for solving the bin packing 

problem.  However, FFD found the optimal solutions to 8 instances with the least processing time. The success of 

VNS algorithm indicates that the VNS metaheuristic does provide a useful framework for tackling many operational 

research problems.  

 

There are still more works to be done in order to improve the performance of the algorithm, by extending the usage 

of the algorithm procedure for two dimensional bin packing problem. Similarly, future work could explore the 

possibility of designing more sophisticated VNS-based heuristics that combine creatively several ideas developed in 

this work. The solution strategies presented in this study could conceivably be used to solve effectively similar 

problem like simple assembly line balancing. 

 

 

Acknowledgements 

 
This project has been funded by Research Management Institute (RMI) Universiti Teknologi MARA, through its 

Research Intensive Fund (RIF) No: 600-RMI/DANA 5/3/RIF(619/2012) under the Research Interest Group,  

“Logistics Modelling”. 

 

 

References 

 
 

Alvim, A.C.F., Ribeiro, C.C., Glover, F. and Aloise, D.J., A Hybrid Improvement Heuristic for the One-

Dimensional Bin Packing Problem, Journal of Heuristics, no. 10: pp. 205 – 229, 2004. 

Baldi, M.M. Crainic, T.G. Perboli, G. Tadei, R. The generalized bin packing problem, Transportation Research Part 

E, vol. 48, no. 6, pp. 1205-1220. 2012 

Carvelho, J.M.V. Exact Solutions Of Bin-Packing Problems Using Column Generation And Branch And Bound,  

Annals of Operations Research, no. 86, pp. 629 – 659, 1999.  

Chung-Lun Li, Zhi-Long Chen.  Bin-packing problem with concave costs of bin utilization, Naval Research 

Logistic, vol. 53, no. 4, pp. 298-308, 2006. 

Crainic, T.G. Perboli, G. Rei, W. Tadei, R. Efficient lower bounds and heuristics for the variable cost and size bin 

packing problem, Computer & Operations Research, vol. 38, pp. 1474-1482, 2011. 

Falkenauer, E. A Hybrid Grouping Genetic Algorithm for Bin Packing, Journal of Heuristics, no. 2, pp.  5 – 30, 

1996.  

Fekete, S.P. and Schepers, J. New Classes of Fast Lower Bounds for the Bin Packing Problems,  Mathematical 

Programming, no. 91, pp. 11 – 31, 2001.  

Fleszar, K. and Hindi, K.S. New Heuristics for One-Dimensional Bin-Packing, Computers and Operations 

Research, no. 29, pp. 821 - 839, 2002. 

Hansen, P. and Mladenović, N., Complement to a comparative analysis of heuristics for the p-median problem, 

Statistics and Computing 18 (1) : 41- 46, 2008. 

Hansen, P. and Mladenovic, N., Developments of variable neighborhood search, in: Essays and Surveys in 

Metaheuristics, C. Ribeiro and P. Hansen, eds, Kluwer, Dordrecht, pp. 415-440, 2001c. 

Hansen, P. and Mladenovic, N., Variable neighborhood search, in: Handbook of Metaheuristics, F. Glover and G. 

Kochenberger, eds, Kluwer, Dordrecht, pp. 145-184, 2003. 

Hansen, P., and Mladenovic, N., An introduction to variable neighborhood search, in: Metaheuristics, Advances and 

Trends in Local Search Paradigms for Optimization, S. Voss et al., eds, Kluwer, Dordrecht, pp. 433-458, 1999. 

Hansen, P., and Mladenovic, N., J-Means: A new local search heuristic for minimum sum-of-squares clustering. 

Pattern Recognition 34:405-413, 2001b. 

Hansen, P., and Mladenovic, N., Variable neighborhood search for the p-median. Location Sci. 5: 207-226, 1997. 



1568 

 

Hansen, P., and Mladenovic, N., Variable neighborhood search: Principles and applications, Eur. J. Open Res. 

130:449-467, 2001a. 

Hansen, P., Mladenović, N. and Moreno Pérez, JA., Variable neighbourhood search: Methods and applications, 

Annals of Operations Research 175 (1) : 367- 407, 2010. 

Lodi, A. Martello, S. Vigo, D. Heuristic algorithms for the three-dimensional bin packing problem, European 

Journal of Operational Research, vol. 141, no. 2, pp. 410-420, 2002. 

Martello, S., Lodi, A. and Vigo, D. Heuristic algorithm for the three dimensional bin packing problem, Management 

Science, vol. 141, no. 2, pp. 410 – 420, 2002.  

OR Library. Retrieved on July 2013 from http://www.ms.ic.ac.uk/info.html. 

Scholl, A. Klien, R. and Jurgens, C. BISON: A Fast Hybrid Procedure For Exactly Solving The One-Dimensional 

Bin Packing Problem, Computers and Operations Research, vol. 24, no. 7, pp. 627-45, 1997. 

Vanderbeck, F. Computational Study Of A Column Generation Algorithm For Bin Packing And Cutting Stock 

Problems, Maths Programming, no. 86, pp. 565 – 594, 1999.  

  

	
Biography	
 

Nurul Afza Hashim is a final year student at UiTM, pursuing a Master degree in Quantitative Sciences.  Upon 

graduation, she plans to pursue a PhD in the area of Financial Logistics modeling. 

 

Faridah Zulkipli is currently a fulltime lecturer at the Centre for Statistical and Decision Science Studies at the 

Faculty of Computer and Mathematical Sciences of Universiti Teknologi MARA (UiTM), Shah Alam, Malaysia. 

She earned a Bachelor of Science degree in Decision Science from Universiti Utara Malaysia (UUM), Sintok, 

Malaysia, and a Master in Decision Sciences from Universiti Utara Malaysia (UUM), Sintok, Malaysia. She is a 

member of Research Interest Group for Logistics Modeling and has published and reviewed international conference 

papers. Her research interests include system dynamics, computer simulation, heuristic techniques, logistics process 

modeling and optimization. She is a member for Management Science/Operations Research Society of Malaysia 

(2008-2015), and a member of Malaysia Institute of Statistics (ISM). 

 

Siti Sarah Januri is currently a fulltime lecturer at the Centre for Statistical and Decision Science Studies at the 

Faculty of Computer and Mathematical Sciences of Universiti Teknologi MARA (UiTM), Shah Alam, Malaysia. 

She earned a Diploma and Bachelor of Science degree in Statistics from Universiti Teknologi MARA (UiTM), Shah 

Alam, Malaysia, and a Master in Quantitative Sciences from UiTM, Shah Alam. She is a member of Research 

Interest Group for Logistics Modeling and has published and reviewed international conference papers. Her research 

interests include logistics process modeling, warehousing, vehicle routing problem, and optimization. She is a 

member for Management Science/Operations Research Society of Malaysia (2009-2015), and a member of Malaysia 

Institute of Statistics (ISM). 

 

S.Sarifah Radiah Shariff is currently a fulltime senior lecturer at the Centre for Statistical and Decision Science 

Studies at the Faculty of Computer and Mathematical Sciences of Universiti Teknologi MARA (UiTM), Shah Alam, 

Malaysia. Dr Shariff earned a Bachelor of Science degree in Statistics and Mathematics from Purdue University, 

West Lafayette, Indiana, USA, a Master in Information Technology from UiTM, Shah Alam and PhD in Operational 

Research from University of Malaya, Kuala Lumpur. She is the Head of Research Interest Group for Logistics 

Modelling and has published and reviewed journal and conference papers. Her research interests include facility 

location modeling, logistics process modeling, warehousing, inventory routing, optimization and performance 

measurement. She is the Secretary for Management Science/Operations Research Society of Malaysia (2013-2015), 

a member of INFORMS, and a Lifetime Member of Mathematical Society of Malaysia (PERSAMA). 

 

 


