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+e present study aimed to optimize the redundancy allocation problem based on sustainable maintenance. For this purpose, the
goal is to design a complex system based on redundancy allocation by considering the weight and reliability criteria of the system
and the maintenance and repair costs through the sustainability approach. In this regard, a mathematical model has been
developed.+is model minimizes system reliability and system weight simultaneously.+ere are also budget constraints on repair
costs, environmental costs, purchase of spare parts, and energy risk costs. In order to optimize this model, a hybrid algorithm
based on Whale Optimization Algorithm (WOA), Genetic Algorithm (GA), and Simulated Annealing (SA) is proposed. Ac-
cordingly, 81 test problems are provided and optimized by the proposed algorithm. +e obtained numerical results indicate that,
with increasing failure time of each component, the system’s reliability increases and the weight of the whole system increases.
Moreover, changing theWeibull distribution parameters directly affects the total amount of system reliability, but does not have a
definite and accurate effect on the total weight of the system. Moreover, increasing the budget for maintenance leads to finding
solutions with more reliability and less weight.
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1. Introduction

+e redundancy allocation problem (RAP) is an essential
issue in optimizing the reliability of complex high-tech,
high-component systems that require a high level of reli-
ability. Classic reliability models usually consider both
healthy and faulty conditions for each of the operating
components of the system. However, in recent years, in the
field of reliability research, several models have been pro-
posed considering performance measurements for each
component. Accordingly, each component with different
probabilities has different performance rates. In general,
redundancy allocation involves adding surplus components
to the system under conditions that, while increasing its
reliability, optimize the designed system configuration. Since
adding more components will increase the cost, volume, and
weight of the system, the interaction between these factors is
presented in the form of a multiobjective problem.

Sustainable maintenance in RAP was first introduced by
[1]. In their paper, first, the initial system was designed; then,
using the obtained information, the aspects of production
program and maintenance costs and sustainability perfor-
mance were evaluated. As a result, based on sustainable
maintenance, the reliability of each component and the
whole system are improved. +e economic aspect of sus-
tainability and customer satisfaction increase; environ-
mental pollutions and maintenance costs were reduced by
providing a reliability-based program. Adding this style of
maintenance can address the challenges of maintaining
reliability in redundancy allocation.

+is research develops the study of [1–3]. As a novel
contribution in the field of RAP, this study deals with the
multiobjective optimization of redundancy allocation under
maintenance with a sustainability approach. For this pur-
pose, the system under study, in addition to complying with
weight and configuration constraints, must clearly respect
the views of customers’ satisfaction.

As a novel contribution, it is assumed that customers
have a utility function that is inversely related to the con-
tinuous failures that occur in the system. Also, the main-
tenance process should not lead to damage to the
environment. To consider the economic perspective, the
costs of designing and maintaining the system must be
controlled. +ere are three main aspects of the proposed
optimizationmodel. (1) Minimize system design based on its
weight; (2) maximize customer satisfaction based on system
reliability; (3) control the pollutions, maintenance, and
operational costs. Since the optimization of the problem is a
challenging issue, the hybrid multiobjective solution method
based on a whale optimization algorithm, genetic algo-
rithms, and simulated annealing is used.

+e main question of this research is how to present and
apply a new metaheuristic algorithm to solve the redun-
dancy allocating problem that has the best possible solution
and the shortest solution time.

In the rest of the article and in Section 2, the most critical
research items in this field are presented. In Section 3, the
mathematical model of this research is presented, and in
Section 4, the proposed metaheuristic algorithm to solve this

model is presented. In Section 5, numerical results are
presented, and finally, in Section 6, conclusions are
presented.

2. Literature Review

Lins and Droguett [4] used a multiobjective genetic algo-
rithm and its combination with discrete simulation to solve
the redundancy allocation problem. Liang and Lo [5] de-
veloped a variable neighborhood search (VNS) algorithm to
solve multiobjective redundancy allocation problems. +e
efficiency of this algorithm was tested on three sets of
problems with 5, 14, and 24 subsystems, respectively. Uysal
[6] modeled four different types of multiobjective reliability
optimization problems using distance values. To solve these
models, an advanced genetic algorithm and the concept of
the Pareto solution set have been used. Sadjadi and Soltani
[7] presented a bee optimization algorithm to solve reli-
ability optimization problems. Chambari et al. [8] developed
a two-objective model of redundancy allocation. +ey
presented the two-objective reliability in a series-parallel
system with a certain level of component redundancy
strategy. To solve this model, they used two NSGA-II al-
gorithms and a multiobjective particle swarm optimization
algorithm. Ghorabaee et al. [9] presented a new and efficient
approach to modeling the objective function of their re-
dundancy allocation problem. +eir proposed approach is
based on simulation and optimization methods through
response level simulation using Enterprise Dynamic (ED)
simulation software. Next, the relationship between decision
and response variables has been obtained using experimental
design. Ardakan and Hamadani [10] studied two-objective
RAP based on maximizing the total reliability and mini-
mizing the total volume of the system. +ey then used two
statistical methods and comparative decision-making based
on the quality of the solutions obtained and also the pro-
cessing time, and finally ranked among the existing solution
methods. Zhang and Chen [11] presented a mathematical
model to maximizes the average operating time of the
system.+ey used two metaheuristic algorithms and particle
swarm optimization to solve their proposed redundancy
allocation problem.

Salmasnia et al. [12] modeled a series-parallel redun-
dancy allocation problem in which system reliability is
maximized, and the total cost is minimized. Teimoori et al.
[13] developed an electromagnetic mechanism meta-
heuristic algorithm to solve a redundancy allocation prob-
lem. Long et al. [14] introduced a redundancy allocation
problem with multiple strategy choices in which the con-
cepts of active redundancy and standby redundancy were
considered simultaneously. +ey used particle swarm mo-
tion optimization to optimize their problem. Karevan and
Vasili [1] presented a two-objective model for the redun-
dancy allocation problem. In this model, reliability, as well as
various maintenance and environmental costs, are opti-
mized. Budget constraints are also included in the allocation
of redundancy. Ouyang et al. [3] proposed a reliability-RAP
problem with considering standby components and cold
strategy. Moreover, they applied an improved version of the
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particle swarm optimization algorithmwith a flexible design.
Zaretalab et al. [15] considered a multistate component in
RAP. In this research, the reliability of the supplier is in-
vestigated. In order to find the optimal solution, they
proposed a mathematical model with the objective to
maximize the total reliability and used a Memetic algorithm
to solve it. Reference [16] proposed a multiobjective
mathematical model for a multitype system. In this model,
the optimal redundancy strategy is obtained by using the
NSGA-II algorithm.

Table 1 reviews the most important articles in the field of
RAP.

After reviewing various research on redundancy RAP
optimization, it is clear that the most important research gap
in this area is the optimization of redundancy allocation
under preventive maintenance with a sustainability ap-
proach. +erefore, as a novel contribution, the present study
optimizes the redundancy allocation problem based on
sustainable maintenance. For this purpose, the goal is to
design a complex system under conditions that, in addition
to considering the weight and reliability criteria of the
system, the maintenance and repair costs of the system are
controlled through the sustainability approach. Moreover, a
novel metaheuristic approach based onWOA, GA, and SA is
proposed which is a specific contribution in the field of RAP
optimization.

3. Research Mathematical Model

In this research, a series of parallel series elements that
contain k components are considered in a way that can be
used for each component of a number of spare parts as
parallel. For this purpose, it is assumed that for the first part
n1 spare part, for the second part n2 spare part up to km part,
nk spare parts can be used. Figure 1 shows such a structure.

Accordingly, there is a specific operational budget be-
cause each of the spare parts has different prices. Also, the
weight of the system should not be increased from a certain
limit.

It is assumed that the probabilistic function for each
component in the series-parallel structure follows the
Weibull distribution. According to equation (1), the reli-
ability of the part i (i ∈ {1, 2, . . ., k}) in time t is calculated as
follows:

Ri � e
t/θi( )βi , i ∈ 1, 2, . . . , k{ }, (1)

where the parameters βi and θi are the shape and scale
parameters of the im component, respectively. Next,
according to equation (2), the reliability of a set of com-
ponents of type im when ni spare items are added is cal-
culated as follows:

R
T
i � 1 − 1 − Ri( 􏼁

ni+1, i ∈ 1, 2, . . . , k{ }. (2)

Next, based on equation (3), the total reliability of the
series-parallel system can be calculated:

R
T
i � 􏽙

k

i�1
1 − 1 − Ri( 􏼁

ni+1􏼐 􏼑, i ∈ 1, 2, . . . , k{ }. (3)

In equations (2) and (3), it was assumed that spare parts
would be applied to all components. To solve this challenge,
suppose the integer variable xi represents the number of
spare parts that can be used for component im. In this case,
equations (4) and (5) are rewritten as follows. In this case,
equations (4) and (5) are rewritten as follows:

R
T
i � 1 − 1 − Ri( 􏼁

xi+1, i ∈ 1, 2, . . . , k{ }, (4)

R
T
i � 􏽙

k

i�1
1 − 1 − Ri( 􏼁

xi+1􏼐 􏼑, i ∈ 1, 2, . . . , k{ }. (5)

After stating the structure of the reliability calculation,
the mathematical model of the redundancy allocation
problem without considering permanent maintenance will
be as follows:

maxR
T
i � 􏽙

k

i�1
1 − 1 − Ri( 􏼁

xi+1􏼐 􏼑. (6)

Subject to

Ri � e
− tβi /θi( ), i ∈ 1, 2, . . . , k{ }, (7)

􏽘

k

i�1
cixi ≤ β

c
, (8)

􏽘

k

i�1
wi xi + 1( 􏼁≤ βw

, xi ∈ 0, 1, . . . , ni􏼈 􏼉. (9)

In the presented basic mathematical model, the values of
ci and wi are the purchase cost and the weight, respectively,
except for type i. +e values βc and βw also show the budgets
associated with the maximum justified cost for the system
and the maximum acceptable weight for the whole system.
Equation (6) is the model’s objective, which aims to max-
imize the reliability of the whole system. Equation (7) cal-
culates the reliability of each component. Equation (8) is
required to consider the weight of the original components
in the calculation of the overall weight of the system. But this
is not needed to limit the budget deficit in equation (9) since
the budget is considered only for the purchase of spare parts
and should not be considered the existence of the original
components. In order to develop the presented mathe-
matical model and reflect preventive maintenance, it is
assumed that αi percentage of components type i may need
to be replaced. Accordingly, the fixed cost of reinstallation is
calculated based on the following:

RAECO1(t) �
􏽐

k
i�1 Ci 1 − Ri( 􏼁

yi

1 + rm( 􏼁
t , (10)

where yi � αini and rm is the discount rate. Ci is the fixed
cost of supplying a spare part for the Type i part. Equation
(11) represents the second economic aspect. +is equation
identifies the variable costs of supply spare parts:

RAECO2(t) �
􏽐

k
i�1 1 − Ri( 􏼁

yi ∗ ni ∗Custi( 􏼁􏼂 􏼃

1 + rm( 􏼁
t , (11)
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where Custi is related to the variable cost of each component
of type i. In equation (12), mean downtime (MDT) is used
and indicates the time to find fault and fix it. As a result,
equation (12) shows the total lost amount of time:

RASOC1(t) � 􏽘
k

i�1
1 − Ri( 􏼁

yi ∗MDT ∗yi. (12)

Equation (13) shows the sum of the total cost of the
customer dissatisfaction resulting from the suspension of the

system. In this equation, chi is the cost of customer dis-
satisfaction is due to each hour of system downtime:

RASOC2(t) � ch∗RASOC1(t) � 􏽘
k

i�1
1 − Ri( 􏼁

yi ∗ ch∗MDT ∗yi.

(13)

Equations (14) and (15) represent carbon emission cost
and the amount of energy cost, respectively. In these
equations, CD is the carbon emission cost for each repair

Table 1: +e summary of the reviewed literature.

Research Budget
constraint

Weight
constraint

Single
objective Multiobjective Corrective

maintenance
Preventive
maintenance Sustainability Solution method

Sahoo et al.
[17] √ √ Improved genetic

algorithm
Sadjadi and
Soltani [7] √ √ √ √ Bee colony

optimization
Abouei
Ardakan
et al. [10]

√ √ √ Differential
evolution

Zhang and
Chen [11] √ √ √ Particle swarm

optimization
Chambari
et al. [8] √ √ √ NSGA-II

Lins and
Droguett [4] √ √ √ Genetic algorithm

Liang and Lo
[5] √ √

Variable
neighborhood

search
Long et al.
[14] √ √ Particle swarm

optimization

Karevan and
Vasili [1] √ √ √ √

Multiobjective
particle swarm
optimization

Ouyang et al.
[3] √ √ Particle swarm

optimization
Zaretalab
et al. [15] √ √ √ Memetic algorithm

Wang et al.
[16] √ √ √ NSGA-II

Present
research √ √ √ √ √

Hybrid whale-
genetic simulated

annealing

An1

Bn1

A0 B0 C0 K0

Cn3

Knk

Figure 1: +e proposed RAP series-parallel system structure.
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activity and EC represents the cost of consumed energy for
each repair activity.

RAENV1(t) � 􏽘
k

i�1
1 − Ri( 􏼁

yi ∗CD, (14)

RAENV2(t) � 􏽘
k

i�1
1 − Ri( 􏼁

yi ∗EC. (15)

Based on the above equations, the developed multi-
objective mathematical model of redundancy allocation with
respect to preventive maintenance can be presented as
follows:

maxf1 � 􏽙
k

i�1
1 − 1 − Ri( 􏼁

xi+1􏼐 􏼑, (16)

minf2 � 􏽘

k

i�1
wi xi + 1( 􏼁. (17)

Subject to

Ri � e
− tβi /θi( ), i ∈ 1, 2, . . . , k{ },

􏽘

k

i�1
cixi + RAECO1(t) + RAECO2(t) + RASOC2(t)

+ RAENV1(t) + RAENV2(t) ≤ β
c
,

RAECO1(t) �
􏽐

k
i�1 Ci 1 − Ri( 􏼁

yi

1 + rm( 􏼁
t ,

RAECO2(t) �
􏽐

k
i�1 1 − Ri( 􏼁

yi ∗ ni ∗Custi( 􏼁􏼂 􏼃

1 + rm( 􏼁
t ,

RASOC2(t) �
􏽐

k
i�1 1 − Ri( 􏼁

yi ∗ ch∗MDT∗yi

1 + rm( 􏼁
t ,

RAENV1(t) �
􏽐

k
i�1 1 − Ri( 􏼁

yi ∗CD

1 + rm( 􏼁
t ,

RAENV2(t) � 􏽘
k

i�1
1 − Ri( 􏼁

yi ∗EC, xi ∈ 0, 1, . . . , ni􏼈 􏼉.

(18)

4. Hybrid Whale-Genetic-Simulated
Annealing Algorithm

In order to present the proposed hybrid algorithm, first, the
whale optimization algorithm (WOA) is described, which is
one of the newest presented metaheuristic algorithms. +e
WOA algorithm is one of the nature-inspired and pop-
ulation-based optimization algorithms that can be used in
various fields [18]. +e details of this metaheuristic algo-
rithm are explained as follows.

+e whales can identify the location of the chase and
surround them. In WOA, each solution is interpreted as a
whale with a specific position. Since the optimal design space
is not known in the search space, the algorithm assumes that
the best candidate solution for the present is the target hunt
or is close to the desired state. After the best search factor is
identified, other search factors try to update their location
relative to the best search factor. +is behavior is expressed
through the following equations:

D
→

� C · X
∗
(t) − X(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (19)

X(t + 1) � X
∗
(t) − A

→
· D
→

, (20)

where t denotes the current iteration, A and C are the co-
efficient vectors, X ∗the location vector is the best solution
obtained now, and X the location vector of the current
solution. It should be noted that if there is a better solution,
X∗ should be updated in each iteration. Vectors A and C are
calculated as follows:

A
→

� 2 a
→

· r
→

− a
→

, (21)

C
→

� 2 · r
→

, (22)

where a is a controllable parameter that linearly decreases
from 2 to 0 and r is a random vector at a distance of 0 to 1.

In this research, a solution method based on whale
optimization, genetics, and simulated annealing algorithms
is developed and called HWGSA to extract the non-
dominated solutions of the proposed mathematical model.
In this hybrid algorithm, siege hunting is used in the WOA
algorithm to generate neighbor solutions. Moreover, the
crossover operator in the GA algorithm is used to converge
the solutions (exploration). Finally, to create variation in the
solutions, the neighborhood creation operator is used in the
SA algorithm (exploitation).

4.1. +e HWGSA Steps

Step 1 (solution structure): in the HWGSA algorithm,
the number of spare parts with K different component
is displayed in the form of a vector as shown in Figure 2.
In this vector, each cell demonstrates the number of
allocation redundant component to the system.
According to Figure 2, n1 is the number of redundant
spare parts allocated to the first item of the system.
Other cells can be defined in the same way. By using
this solution representation, it can be a guarantee that
all decision variables and the model constraints can be
handled in the proposed algorithm.
Step 2: randomly generate POP initial solutions and
calculate the values of the objective functions (f1, f2)
for each member of the population based on equations
(16) and (17).
Step 3: generate a set of new solutions based on
equations (19)–(22) in the WOA algorithm and set
them into P set.
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Step 4: repeat steps 5 to 19 for ITmax times
Step 5: for each solution (S) in the POP, set
k⟵0 andy⟵0 and go to step 6.
Step 6: compare S with each solution (j) in Pset.
Step 6.1: if f1(S)≥fPset

1 (j) andf2(S)≤fPset
2 (j),

Pset⟵
Pset

j
. (23)

Step 6.2: else, if f1(S)>fPset
1 (j) orf2(S)<fPset

2 (j),

k⟵k + 1. (24)

Step 6.3: else, if f1(S)≤fPset
1 (j) orf2(S)≥fPset

2 (j) ,

y⟵y + 1. (25)

Step 6.4: if k> 0 andy �� 0,

Pset⟵Pset∪ S. (26)

Step 7: for each solution: Si � n1i, n2i, . . . , nki􏼈 􏼉 and Sj �

n1j, n2j, . . . , nkj􏽮 􏽯 from Pset, repeat step 8.
Step 8: calculate the new Snew solution using the
crossover operator in the GA algorithm:

S
new⟵ < n1i ∗ n1j􏼐 􏼑

0.5>
∪ < n2i ∗ n2j􏼐 􏼑

0.5>
∪ , . . . , ∪ < nki ∗ nkj􏼐 􏼑

0.5>
􏼚 􏼛.

(27)

Step 9: T⟵Tmax.
Step 10: repeat steps 11–16 while T>Tmin (based on SA
algorithm).
Step 11: generate a random number in the range
1, 2, . . . , 2K{ }.
Step 12: if a �� 2∗ i ∈ 1, 2, . . . , 2K{ }.
Generate a random b number b in the range
b ∈ [1, nmax

i ].
Step 12.1: if ni + b≤ nmax

i , then

S
new

ni􏼈 􏼉⟵ S
new

ni􏼈 􏼉 + b. (28)

Step 13: if a �� 2∗ i − 1, thengenerate a random b

number b in the range b ∈ [1, nmax
i ].

Step: 13.1: if Snew ni􏼈 􏼉 − b≥ 0,

S
new

ni􏼈 􏼉⟵S
new

ni􏼈 􏼉 − b. (29)

Step 14: for Snew, calculate the values of the objective
functions f1, f2 based on equations (16) and (17).
Step 15: if f1(Snew)≥f1(S) andf2(Snew)≤f2(S),

S⟵S
new

. (30)

Step 15.1: if f1(Snew)>f1(S) orf2(Snew)<f2(S) ,

Δe1⟵f1(S) − f1 S
new

( 􏼁,

ΔE⟵f2 S
new

( 􏼁 − f2(S),

ΔE⟵λ1Δe1 + λ2Δe2,

λ1 � 1whether Δe1 > 0( 􏼁 or 0 Δe1 ≤ 0( 􏼁,

λ2 � 1whether Δe2 > 0( 􏼁 or 0 Δe2 ≤ 0( 􏼁,

A⟵e
− (ΔE/KT)

.

(31)

Step 15.2: if random<A,

S⟵S
new

. (32)

Step 16: T⟵T∗ δ and return to step 10.
Step 17: NewPOP⟶ NewPOP∪ Snew

Step 18: insert POP⟶ NewPOP and go to step 4.
Step 19: display the Pset set.

In order to adjust the parameters of the algorithm,
several problems have been randomly generated and opti-
mized. +en, with the trial and error approach, the best
values for the algorithm parameters are selected.
ITmax � 100, A� 0.3, and Tmin � 1 are set accordingly.

5. Numerical Results

First, it is necessary to examine the results of the algorithm
by solving an important case study in Iran. In this case
study, a system with 5 components is available. +e reli-
ability of each component in this system is measured based
on the Weibull distribution with the beta and theta pa-
rameters, which have values of 2 and 10, respectively.
According to the previous data, up to 30% of the parts are
damaged in each component. +e average failure time is
estimated at 2 days. +e cost of providing each spare part is
5 currency units and the repair fee is equal to 3.5 currency
units. +e cost of customer dissatisfaction with each day of
part failure is equivalent to 1 currency. +e interest rate is
10% and the maximum maintenance budget is 200 cur-
rency units. Regarding environmental pollution, the
amount of CO2 produced per day of system activity is equal
to 1.7 units and the amount of energy consumed per day is
equal to 1.5 units.

With this information and the design of the HWGSA
algorithm in theMATLABR2016, the redundancy allocation
problem is optimized. After executing the HWGSA algo-
rithm, a set of Pareto solutions is obtained, which is shown in
Figure 3.

As shown in Figure 3, the value of the first objective
function varies between 0.05 and 0.45. +e value of the
second objective function fluctuates between 120 and 320.
Since the first objective function is of the maximization type,
the ideal value for it is 0.45. Also, since the second objective
function is of the minimization type, the ideal value for it is
120. When the first objective function moves from 0.05 to its
ideal value, the second objective function moves away from
its ideal value. In other words, in the set of Pareto solutions
obtained, it is never possible to approach both goals at the

n1 n2 nk...

Figure 2: Solution representation.

6 Mathematical Problems in Engineering



0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

1st Objective

120
140
160
180
200
220
240
260
280
300
320

2n
d 

O
bj

ec
tiv

e

Figure 3: +e obtained Pareto solutions from the proposed hybrid algorithm.

Table 2: +e information of the generated test problems.

Test problem MDT θi βi βc

p1 2 3 2 150
p2 4 3 2 150
p3 6 3 2 150
p4 2 7 2 150
p5 4 7 2 150
p6 6 7 2 150
p7 2 12 2 150
p8 4 12 2 150
p9 6 12 2 150
p10 2 3 3 150
p11 4 3 3 150
p12 6 3 3 150
p13 2 7 3 150
p14 4 7 3 150
p15 6 7 3 150
p16 2 12 3 150
p17 4 12 3 150
p18 6 12 3 150
p19 2 3 4 150
p20 4 3 4 150
p21 6 3 4 150
p22 2 7 4 150
p23 4 7 4 150
p24 6 7 4 150
p25 2 12 4 150
p26 4 12 4 150
p27 6 12 4 150
p28 2 3 2 200
p29 4 3 2 200
p30 6 3 2 200
p31 2 7 2 200
p32 4 7 2 200
p33 6 7 2 200
p34 2 12 2 200
p35 4 12 2 200
p36 6 12 2 200
p37 2 3 3 200
p38 4 3 3 200
p39 6 3 3 200
p40 2 7 3 200
p41 4 7 3 200

Mathematical Problems in Engineering 7



same time to their ideal values. +is indicates that the goals
used are in conflict with each other. Proof of such a conflict
confirms that the multiobjective consideration of the
mathematical model is quite correct and logical and that the
use of the HWGSA algorithm can well find Pareto’s set of
solutions to this problem.

5.1. Results of Implementation. In this part of the research,
various test problems of the proposed mathematical model
are optimized in order to determine the effect of different
parameters of the problem on the optimal solutions of the
model. In this regard, the information provided in Section 5
is used. Also, for four important parameters of the math-
ematical model, namely βc, βi, θi, andMDT, 3 values each are
proposed. +erefore, a total of 81 test problems have been
designed. Details of each of these issues are provided in
Table 2.

After designing 81 different numerical examples, each of
them was optimized in Matlab software using the HWGSA
algorithm. After execution, a set of Pareto solutions to each
test problem was obtained. +en, the mean values of the first
and second objective functions of the Pareto solutions and
also the number of Pareto solutions were reported. +is
report is in accordance with Table 3.

5.2. Numerical Analysis. +e first parameter studied is the
average failure time for which the values of 2, 4, and 6 days
were considered. Figures 4 and 5 show the effect of the value
of this parameter on the mean of the first objective function
and the second objective function.

As shown in Figure 4, the longer the failure time, the
higher the average system reliability. +e reason for this is
that the longer the failure time, the more parts are allocated
to each component. Accordingly, to the system reliability

Table 2: Continued.

Test problem MDT θi βi βc

p42 6 7 3 200
p43 2 12 3 200
p44 4 12 3 200
p45 6 12 3 200
p46 2 3 4 200
p47 4 3 4 200
p48 6 3 4 200
p49 2 7 4 200
p50 4 7 4 200
p51 6 7 4 200
p52 2 12 4 200
p53 4 12 4 200
p54 6 12 4 200
p55 2 3 2 350
p56 4 3 2 350
p57 6 3 2 350
p58 2 7 2 350
p59 4 7 2 350
p60 6 7 2 350
p61 2 12 2 350
p62 4 12 2 350
p63 6 12 2 350
p64 2 3 3 350
p65 4 3 3 350
p66 6 3 3 350
p67 2 7 3 350
p68 4 7 3 350
p69 6 7 3 350
p70 2 12 3 350
p71 4 12 3 350
p72 6 12 3 350
p73 2 3 4 350
p74 4 3 4 350
p75 6 3 4 350
p76 2 7 4 350
p77 4 7 4 350
p78 6 7 4 350
p79 2 12 4 350
p80 4 12 4 350
p81 6 12 4 350
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Table 3: +e results of implementing test problems.

Test problem Number of Pareto solutions Average of the first objective Average of the second objective
p1 47 4.63E − 08 7778
p2 50 1.90E − 07 10418
p3 43 4.44E − 07 11685
p4 47 4.00E − 08 7806
p5 50 1.53E − 07 10012
p6 50 4.35E − 07 11987
p7 50 3.68E − 08 7400
p8 50 1.17E − 07 9065
p9 47 3.98E − 07 11974
p10 49 0.01662008 8835
p11 48 0.03045951 9929
p12 49 0.072815946 13343
p13 49 0.013728675 8404
p14 48 0.037327078 11058
p15 48 0.063445359 12667
p16 48 0.010736866 7748
p17 47 0.026810576 9781
p18 50 0.053703995 12076
p19 50 0.226867023 8415
p20 50 0.355636589 10608
p21 48 0.476344384 13027
p22 49 0.199889028 7810
p23 49 0.323638156 9890
p24 49 0.449719356 12334
p25 50 0.212840018 8075
p26 50 0.315307874 9771
p27 45 0.42569378 11862
p28 45 4.10E − 13 7575
p29 47 1.71E − 12 10087
p30 50 4.54E − 12 12018
p31 50 3.73E − 13 7751
p32 48 1.35E − 12 9494
p33 45 4.38E − 12 12209
p34 49 3.63E − 13 7710
p35 45 1.20E − 12 9478
p36 49 3.00E − 12 10554
p37 50 0.00017731 8309
p38 47 0.000592272 10591
p39 50 0.001369745 12721
p40 50 0.000179898 8621
p41 46 0.000445769 9745
p42 46 0.001063624 11771
p43 46 0.000103981 7192
p44 50 0.000419827 9963
p45 49 0.001049651 11854
p46 48 0.03452181 8191
p47 47 0.081674209 10598
p48 47 0.152745337 13447
p49 47 0.031635127 7964
p50 50 0.060361023 9335
p51 50 0.133430003 12419
p52 47 0.031239782 7892
p53 47 0.065909873 9920
p54 45 0.130330611 12522
p55 50 3.64E − 18 7555
p56 49 1.37E − 17 9683
p57 46 4.26E − 17 12421
p58 49 3.18E − 18 7753
p59 48 1.18E − 17 9760
p60 46 3.71E − 17 12045
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relationship, the more allocated parts, the amount of reli-
ability also increases.+e same is true of the second objective
function. As the failure time increases, the number of al-
located parts increases, and therefore the total weight of the

system increases. +erefore, according to Figure 5, the trend
of the second objective function is ascending.

In Figures 6 and 7, the effect of the theta parameter or the
Weibull distribution scale parameter on the first and second
objective functions is investigated.

As shown in Figure 6, the larger the scale parameter, the
lower the reliability of the entire system. +e reason for this
is that as the scale parameter increases, the reliability of each
component decreases, and therefore the total reliability of
the system decreases. But the effect of this parameter on the
total weight of the system does not follow a specific trend. In
Figure 7, by increasing the scale parameter, first, the total
weight of the system increases and then decreases. In other
words, the second objective function is not directly affected
by changes in this parameter.

In Figures 8 and 9, the effect of another parameter of the
Weibull distribution, namely the beta or shape parameter, is
investigated.

According to Figure 8, the higher the value of the figure
parameter, the higher the reliability of the whole system.+e
reason for this is that as the shape parameter increases, the
reliability of each component increases, and as a result, the
reliability of the whole system increases. But this parameter
does not have a significant effect on the heading function.
+is is also well seen in Figure 9. In general, it is concluded
that Weibull distribution behavior does not have a direct
effect on the relationship of the second objective function.

Finally, the effect of the maximum available budget
parameter on the objective functions is investigated.

Figures 10 and 11 show that the higher the maximum
budget, the more reliability moves towards greater values,
and the maximum weight moves towards lower values. In
other words, by increasing this parameter, both targets move
towards better values. +e reason for this is that with the
increase in the maximum budget, the solution space of the

Table 3: Continued.

Test problem Number of Pareto solutions Average of the first objective Average of the second objective
p61 47 3.12E − 18 7544
p62 50 8.92E − 18 9106
p63 47 2.76E − 17 11049
p64 47 1.13E − 06 7768
p65 50 3.99E − 06 9129
p66 50 1.37E − 05 12406
p67 50 1.32E − 06 8025
p68 45 3.78E − 06 9788
p69 50 1.11E − 05 12303
p70 49 9.25E − 07 7256
p71 47 3.75E − 06 9945
p72 46 9.68E − 06 11952
p73 50 0.002756355 7505
p74 47 0.009871848 10485
p75 49 0.021730016 13178
p76 50 0.002644596 7776
p77 48 0.007916174 9692
p78 47 0.01986529 12681
p79 50 0.002472504 7409
p80 50 0.00670114 9371
p81 50 0.017636415 12516
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Figure 4: Impact of failure time parameter on the first objective
function.
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Figure 5: Impact of failure time on the second objective function.
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problem increases, and as a result, the objective functions
can find better values for themselves.

6. Conclusion

In this research, first, the most critical research items in the
field of redundancy allocation were reviewed. Next, it be-
came clear that the issue of environmental pollution and
sustainable maintenance repairs are two new and up-to-date
topics for research in this field. +erefore, in this study, as a
key innovation, we sought to provide a model that allocates
redundancy in a complex system so that it covers envi-
ronmental pollution and sustainable maintenance repairs
well. In this regard, after a deep understanding of the basic
articles, a developed model was designed for this purpose.
Due to the high complexity of themodel and its nonlinearity,
designing a suitable and up-to-date approximate solution
method for it was necessary. +erefore, the whale optimi-
zation, genetic and simulated annealing in a multiobjective
mode was combined as a novel solution method.

In the numerical results, first, it was cleared that the
objectives used in this research, i.e., maximizing the reli-
ability of the system and reducing the weight of the whole
system, are two completely conflicting ones. +at is, in-
creasing reliability leads to an increase in the weight of the
entire system and vice versa.+erefore, optimizing these two
objectives simultaneously leads to finding a set of optimal
solutions, which we call the Pareto set of solutions. Next, 81
sample problems were designed and optimized by the
proposed algorithm. +e results of this section show that
with increasing the failure time of each component, the
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Figure 6: +e effect of the scale parameter of the Weibull function
on the first objective.
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Figure 7: +e effect of the scale parameter of the Weibull function
on the second objective.
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Figure 8: +e effect of the shape parameter of the weibull function
on the first objective.
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Figure 9:+e effect of the shape parameter of theWeibull function
on the second objective.
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Figure 10: +e effect of the maximum budget parameter on the
first objective.
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Figure 11: Impact of the maximum budget parameter on the
second objective.
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reliability of the system increases, and also the weight of the
whole system increases. Also, changing the Weibull distri-
bution parameters has a direct effect on the total amount of
system reliability but does not have a definite and accurate
effect on the total weight of the system. Also, increasing the
budget at hand for maintenance leads to finding solutions
with more reliability and less weight.

+e most important advantage of the proposed math-
ematical model of research is that it has been able to show
the aspects of sustainability in the redundancy allocation
problem and also has formulated repairs andmaintenance of
complex systems in a simple way. +e designed meta-
heuristic algorithm also has the advantage of optimizing
mathematical models with multiple objectives and variables
in a short time. +is issue can be considered as the most
important managerial insight of this research. Another
managerial insight of this research is that it is possible to
manage the repair and maintenance planning of complex
systems in such a way that in addition to reducing system
costs, the productivity of manpower specialized in repair
maintenance is increased.

In order to develop this research, the authors suggest
considering uncertainty in the important parameters in the
mathematical model and also using another novel meta-
heuristic algorithm such as the gray wolf optimizer and
runner-root algorithm.
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+e input data for analysis of the mathematical method and
metaheuristic algorithms which are used to support the
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