

Software Testing

https://taylorandfrancis.com

Software Testing
A Craftsman’s Approach

Fifth Edition

Paul C. Jorgensen and Byron DeVries

Fifth edition published [2021]
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

© 2021 Taylor & Francis Group, LLC

[First edition published by CRC Press 1995]
[Fourth edition published by CRC Press 2014]

CRC Press is an imprint of Taylor & Francis Group, LLC

The right of Paul C. Jorgensen and Byron DeVries to be identified as author[/s] of this work has
been asserted by them in accordance with sections 77 and 78 of the Copyright, Designs and Patents
Act 1988.

Reasonable efforts have been made to publish reliable data and information, but the author and
publisher cannot assume responsibility for the validity of all materials or the consequences of their
use. The authors and publishers have attempted to trace the copyright holders of all material repro-
duced in this publication and apologize to copyright holders if permission to publish in this form
has not been obtained. If any copyright material has not been acknowledged, please write and let
us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.
com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA
01923, 978-750-8400. For works that are not available on CCC, please contact mpkbookspermis-
sions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and
are used only for identification and explanation without intent to infringe.

ISBN: 978-0-367-35849-5 (hbk)
ISBN: 978-0-367-76762-4 (pbk)
ISBN: 978-1-003-16844-7 (ebk)

Typeset in Garamond
by SPi Global, India

http://www.copyright.com
http://www.copyright.com

To Carol, Kirsten, and Katia; Angela, Bryce, and Wesley

https://taylorandfrancis.com

vii

Contents

Preface ...xix
Authors ..xxi

PART I A Mathematical Context

 1 A Perspective on Testing .. 3
1.1 Basic Definitions ... 3
1.2 Test Cases .. 4
1.3 Insights from a Venn Diagram .. 5
1.4 Identifying Test Cases ... 7

1.4.1 Specification-based Testing ... 7
1.4.2 Code-based Testing .. 8
1.4.3 The Specification-based versus Code-based Debate 9

1.5 Fault Taxonomies .. 10
1.6 Levels of Testing .. 12
Exercises ... 13
References ... 14

 2 Examples .. 15
2.1 Structural Elements of Pseudo-code and Java .. 15
2.2 The Triangle Problem ... 19

2.2.1 Problem Statement .. 19
2.2.2 Discussion .. 20
2.2.3 Java Implementation .. 20

2.3 The NextDate Function ... 21
2.3.1 Problem Statement .. 21
2.3.2 Discussion .. 21
2.3.3 Java Implementation .. 22

2.4 The Foodies-Wish-List Online Shopping Application 24
2.4.1 Problem Statement .. 25
2.4.2 Discussion .. 25

2.5 The Garage Door Controller ... 29
2.6 Examples in Exercises ... 30

2.6.1 The Quadrilateral Program ... 30

viii ◾ Contents

2.6.2 The NextWeek Function .. 31
2.6.3 The Windshield Wiper Controller ... 31

Exercises ... 31
References ... 32

 3 Discrete Math for Testers ... 33
3.1 Set Theory ... 33

3.1.1 Set Membership ... 34
3.1.2 Set Definition ... 34
3.1.3 The Empty Set.. 35
3.1.4 Venn Diagrams ... 35
3.1.5 Set Operations ... 36
3.1.6 Set Relations .. 37
3.1.7 Set Partitions .. 38
3.1.8 Set Identities .. 39

3.2 Functions ... 39
3.2.1 Domain and Range .. 40
3.2.2 Function Types .. 40
3.2.3 Function Composition ... 41

3.3 Relations .. 42
3.3.1 Relations among Sets ... 42
3.3.2 Relations on a Single Set ... 44

3.4 Propositional Logic ... 45
3.4.1 Logical Operators .. 46
3.4.2 Logical Expressions ... 47
3.4.3 Logical Equivalence ... 47
3.4.4 Probability Theory ... 48

Exercises ... 50
Reference .. 51

 4 Graph Theory for Testers ... 53
4.1 Graphs ... 53

4.1.1 Degree of a Node .. 54
4.1.2 Incidence Matrices ... 54
4.1.3 Adjacency Matrices .. 55
4.1.4 Paths ... 56
4.1.5 Connectedness ... 57
4.1.6 Condensation Graphs .. 57
4.1.7 Cyclomatic Number ... 58

4.2 Directed Graphs .. 58
4.2.1 Indegrees and Outdegrees .. 59
4.2.2 Types of Nodes .. 60
4.2.3 Adjacency Matrix of a Directed Graph ... 60
4.2.4 Paths and Semipaths ... 61
4.2.5 Reachability Matrix .. 62
4.2.6 n-Connectedness .. 63
4.2.7 Strong Components ... 63

Contents ◾ ix

4.3 Graphs for Testing... 64
4.3.1 Program Graphs .. 64
4.3.2 Finite State Machines ... 66
4.3.3 Petri Nets .. 67
4.3.4 Event-Driven Petri Nets ... 70
4.3.5 Statecharts .. 73

Exercises ... 75
Reference .. 75

PART II Unit Testing

 5 Boundary Value Testing ... 79
5.1 Normal Boundary Value Testing ... 80

5.1.1 Generalizing Boundary Value Analysis ... 81
5.1.2 Limitations of Boundary Value Analysis 82

5.2 Robust Boundary Value Testing .. 82
5.3 Worst Case Boundary Value Testing ... 83
5.4 Special Value Testing ... 85
5.5 Examples ... 85

5.5.1 Test Cases for the Triangle Problem ... 85
5.5.2 Test Cases for the NextDate Function ... 85

5.6 Random Testing ... 92
5.7 Guidelines for Boundary Value Testing .. 93
Exercises ... 95

 6 Equivalence Class Testing .. 97
6.1 Equivalence Classes .. 97
6.2 Traditional Equivalence Class Testing .. 98
6.3 Improved Equivalence Class Testing .. 99

6.3.1 Weak Normal Equivalence Class Testing 100
6.3.2 Strong Normal Equivalence Class Testing 100
6.3.3 Weak Robust Equivalence Class Testing 101
6.3.4 Strong Robust Equivalence Class Testing 102

6.4 Equivalence Class Test Cases for the Triangle Problem 103
6.5 Equivalence Class Test Cases for the NextDate Function 104
6.6 Equivalence Class Test Cases for the completeOrder Method 108
6.7 “Edge Testing” ... 110
6.8 Reflections on Invalid Classes .. 111
6.9 Guidelines and Observations .. 111
Exercises ... 112
References ... 113

 7 Decision Table-Based Testing ... 115
7.1 Decision Tables ... 115
7.2 Decision Table Techniques ... 116
7.3 Test Cases for the Triangle Problem ... 120

x ◾ Contents

7.4 Test Cases for the NextDate Function .. 121
7.4.1 First Try .. 121
7.4.2 Second Try ... 122
7.4.3 Third Try .. 124

7.5 Cause and Effect Graphing ... 127
7.6 Guidelines and Observations .. 128
Exercises ... 128
References ... 129

 8 Code-Based Testing .. 131
8.1 Program Graphs .. 131
8.2 DD-Paths ... 132
8.3 Code Coverage Metrics ... 135

8.3.1 Program Graph-Based Coverage Metrics 135
8.3.2 E. F. Miller’s Coverage Metrics ... 136

8.3.2.1 Statement Testing ... 137
8.3.2.2 DD-Path Testing.. 137
8.3.2.3 Simple Loop Coverage ... 138
8.3.2.4 Predicate Outcome Testing .. 138
8.3.2.5 Dependent Pairs of DD-Paths 138
8.3.2.6 Complex Loop Coverage .. 138
8.3.2.7 Multiple Condition Coverage 139
8.3.2.8 “Statistically Significant” Coverage 140
8.3.2.9 All Possible Paths Coverage ... 140

8.3.3 A Closer Look at Compound Conditions 140
8.3.3.1 Boolean Expression (per Chilenski) 140
8.3.3.2 Condition (per Chilenski) .. 141
8.3.3.3 Coupled Conditions (per Chilenski) 141
8.3.3.4 Masking Conditions (per Chilenski) 141
8.3.3.5 Modified Condition Decision Coverage 142

8.3.4 Examples .. 143
8.3.4.1 Condition with Two Simple Conditions 143
8.3.4.2 Example: Compound Condition from NextDate 143
8.3.4.3 Test Coverage Analyzers .. 150
8.3.4.4 Java Code for Tests in Table 8.8 151
8.3.4.5 Junit Test Results .. 155
8.3.4.6 Capabilities of Selected Code Coverage Tools 156

8.4 Basis Path Testing ... 156
8.4.1 McCabe’s Basis Path Method ... 157
8.4.2 Observations on McCabe’s Basis Path Method 160
8.4.3 Essential Complexity ... 160

8.5 Guidelines and Observations .. 163
Exercises ... 163
References ... 164

Contents ◾ xi

 9 Testing Object-Oriented Software .. 165
9.1 Unit Testing Frameworks .. 165

9.1.1 Common Unit Testing Frameworks ... 166
9.1.2 JUnit Examples .. 166

9.2 Mock Objects and Automated Object Mocking...................................... 169
9.3 Dataflow Testing ... 171

9.3.1 Define/Use Testing Definition ... 171
9.3.2 Define/Use Testing Metrics ... 173
9.3.3 Define/Use Testing Example ... 174

9.4 Object-Oriented Complexity Metrics .. 181
9.4.1 WMC—Weighted Methods per Class ... 181
9.4.2 DIT—Depth of Inheritance Tree ... 182
9.4.3 NOC—Number of Child Classes .. 182
9.4.4 CBO—Coupling Between Classes ... 182
9.4.5 RFC—Response for Class .. 182
9.4.6 LCOM—Lack of Cohesion on Methods 182

9.5 Issues in Testing Object-Oriented Software ... 183
9.5.1 Implications of Composition and Encapsulation 183
9.5.2 Implications of Inheritance ... 183
9.5.3 Implications of Polymorphism .. 185

9.6 Slice-Based Testing .. 190
9.6.1 Example ... 192
9.6.2 Style and Technique .. 197
9.6.3 Slice Splicing .. 197
9.6.4 Program Slicing Tools .. 198

Exercises ... 198
References ... 199

 10 Retrospective on Unit Testing .. 201
10.1 The Test Method Pendulum .. 202
10.2 Traversing the Pendulum .. 204

10.2.1 Program Graph-Based Testing .. 204
10.2.2 Basis Path Testing .. 204
10.2.3 Dataflow Testing .. 206
10.2.4 Slice-Based Testing .. 209
10.2.5 Boundary Value Testing ... 210
10.2.6 Equivalence Class Testing .. 210
10.2.7 Decision Table Testing ... 211

10.3 Insurance Premium Case Study .. 213
10.4 Specification-Based Testing .. 214

10.4.1 Code-Based Testing ... 218
10.4.1.1 Path-based Testing .. 219
10.4.1.2 Dataflow Testing ... 221
10.4.1.3 Slice Testing .. 221

10.5 Guidelines ... 221
Exercises ... 223
References ... 223

xii ◾ Contents

PART III Beyond Unit Testing

 11 Life Cycle-Based Testing ... 227
11.1 Traditional Waterfall Testing ... 227

11.1.1 Waterfall Testing .. 229
11.1.2 Pros and Cons of the Waterfall Model .. 229

11.2 Testing in Iterative Lifecycles .. 230
11.2.1 Waterfall Spin-Offs ... 230
11.2.2 Specification-Based Life Cycle Models .. 232

11.3 Agile Testing .. 234
11.3.1 About User Stories ... 234

11.3.1.1 Behavior-Driven Development 235
11.3.1.2 Use Cases .. 241

11.3.2 Extreme Programming ... 242
11.3.3 Scrum ... 242
11.3.4 Test-Driven Development .. 243
11.3.5 Agile Model-Driven Development ... 245
11.3.6 Model-Driven Agile Development ... 245

11.4 Remaining Questions .. 246
11.4.1 Specification or Code Based? .. 246
11.4.2 Configuration Management? .. 246
11.4.3 Granularity? .. 248

11.5 Pros, cons, and Open Questions of TDD ... 248
11.6 Retrospective on MDD vs. TDD .. 249
References ... 251

 12 Integration Testing ... 253
12.1 Decomposition-Based Integration .. 253

12.1.1 Top-down Integration .. 256
12.1.2 Bottom-up Integration ... 258
12.1.3 Sandwich Integration .. 258
12.1.4 Pros and Cons .. 259

12.2 Call Graph-Based Integration ... 260
12.2.1 Pairwise Integration .. 261
12.2.2 Neighborhood Integration ... 262
12.2.3 Pros and Cons .. 264

12.3 Path-Based Integration.. 265
12.3.1 New and Extended Concepts .. 265
12.3.2 MM-Path Complexity ... 268
12.3.3 Pros and Cons .. 268

12.4 Example: Procedural integrationNextDate ... 269
12.4.1 Decomposition-Based Integration ... 269
12.4.2 Call Graph-Based Integration .. 270
12.4.3 Integration Based on MM-Paths .. 272
12.4.4 Observations and Recommendations .. 275

12.5 Example: O-O integrationNextDate .. 275
12.6 Model-Based Integration Testing .. 280

12.6.1 Message Communication ... 281

Contents ◾ xiii

12.6.2 Pairwise Integration .. 282
12.6.3 FSM/M Path Integration .. 286
12.6.4 Scenario 1: Normal Account Creation ... 286

Exercises ... 287
References ... 289

 13 System Testing ... 291
13.1 Threads .. 291

13.1.1 Thread Possibilities .. 292
13.1.2 Thread Definitions ... 293

13.2 Identifying Threads in Single-Processor Applications 294
13.2.1 User Stories/Use Cases .. 294
13.2.2 How Many Use Cases? ... 295

13.2.2.1 Incidence with Input Events and Messages 297
13.2.2.2 Incidence with Output Actions and Messages 300
13.2.2.3 Incidence with Classes ... 300

13.2.3 Threads in Finite State Machines .. 301
13.2.3.1 Paths in a Finite State Machine 301
13.2.3.2 How Many Paths? ... 303

13.2.4 Atomic System Functions .. 305
13.3 Identifying Threads in Systems of Systems .. 305

13.3.1 Dialogues ... 305
13.3.2 Communicating FSMs .. 307
13.3.3 Dialogues as Sequences of ASFs ... 309

13.4 System Level Test Cases .. 309
13.4.1 An Industrial Test Execution System ... 310
13.4.2 Use Cases to Test Cases ... 311
13.4.3 Finite State Machine Paths to Test Cases 312
13.4.4 Dialogue Scenarios to Test Cases .. 313
13.4.5 Communicating Finite State Machines to Test Cases 313

13.5 Coverage Metrics for System Testing .. 314
13.5.1 Use Case-Based Test Coverage .. 315
13.5.2 Model-Based Test Coverage... 318

13.6 Long Versus Short Test Cases.. 320
13.6.1 Supplemental Approaches to System Testing 324
13.6.2 Operational Profiles ... 324

13.6.2.1 Risk-Based Testing ... 327
13.7 Non-functional System Testing ... 332

13.7.1 Stress Testing Strategies .. 332
13.7.1.1 Compression ... 333
13.7.1.2 Replication .. 333

13.7.2 Mathematical Approaches ... 334
13.7.2.1 Queueing Theory ... 334
13.7.2.2 Reliability Models ... 334
13.7.2.3 Monte Carlo Testing ... 335

Exercises ... 335
References ... 336

xiv ◾ Contents

 14 Model-Based Testing .. 337
14.1 Testing Based on Models .. 337
14.2 Appropriate Models .. 338

14.2.1 Peterson’s Lattice ... 338
14.2.2 Expressive Capabilities of Mainline Models 340
14.2.3 Modeling Issues ... 340
14.2.4 Making Appropriate Choices ... 342

14.3 Commercial Tool Support for Model-Based Testing 342
14.3.1 TestOptimal .. 342
14.3.2 Conformiq .. 343
14.3.3 Verified Systems International GmbH ... 346

Exercises ... 349
References ... 351

 15 Software Complexity .. 353
15.1 Unit Level Complexity ... 354

15.1.1 Cyclomatic Complexity .. 354
15.1.1.1 “Cattle Pens” and Cyclomatic Complexity 355
15.1.1.2 Node Outdegrees and Cyclomatic Complexity 356
15.1.1.3 Decisional Complexity ... 357

15.1.2 Computational Complexity .. 358
15.1.2.1 Halstead’s Metrics ... 358
15.1.2.2 Example: Day of Week with Zeller’s Congruence 359

15.2 Integration Level Complexity .. 361
15.2.1 Integration Level Cyclomatic Complexity 362
15.2.2 Message Traffic Complexity... 363

15.3 Software Complexity Example .. 364
15.4 Object-Oriented Complexity ... 366

15.4.1 WMC—Weighted Methods per Class ... 366
15.4.2 DIT—Depth of Inheritance Tree ... 367
15.4.3 NOC—Number of Child Classes .. 367
15.4.4 CBO—Coupling between Classes ... 367
15.4.5 RFC—Response for Class .. 367
15.4.6 LCOM—Lack of Cohesion on Methods 367

15.5 System Level Complexity .. 367
15.5.1 Cyclomatic Complexity of Source Code 368
15.5.2 Complexity of Specification Models .. 368
15.5.3 Use Case Complexity ... 368
15.5.4 UML Complexity .. 369

Exercise ... 369
References ... 372

 16 Testing Systems of Systems ... 373
16.1 Characteristics of Systems of Systems .. 374
16.2 Sample Systems of Systems .. 375

16.2.1 The Garage Door Controller (Directed) 375

Contents ◾ xv

16.2.2 Air Traffic Management System (Acknowledged) 376
16.2.3 The Foodie Wish List System .. 377

16.3 Software Engineering for Systems of Systems 378
16.3.1 Requirements Elicitation .. 378
16.3.2 Specification with a Dialect of UML .. 378

16.3.2.1 Air Traffic Management System Classes 379
16.3.2.2 Air Traffic Management System Use Cases and

Sequence Diagrams .. 379
16.3.3 Testing .. 382

16.4 Communication Primitives for Systems of Systems 382
16.4.1 ESML Prompts as Petri Nets .. 383

16.4.1.1 Petri Net Conflict .. 383
16.4.1.2 Petri Net Interlock .. 383
16.4.1.3 Enable, Disable, and Activate 384
16.4.1.4 Trigger .. 385
16.4.1.5 Suspend and Resume ... 385

16.4.2 New Prompts as Swim Lane Petri Nets 386
16.4.2.1 Request ... 386
16.4.2.2 Accept ... 386
16.4.2.3 Reject .. 386
16.4.2.4 Postpone ... 388
16.4.2.5 Swim Lane Description of the November 1993

Incident ... 389
16.5 Effect of Systems of Systems Levels on Prompts 389

16.5.1 Directed and Acknowledged Systems of Systems 390
16.5.2 Collaborative and Virtual Systems of Systems 390

Exercises ... 390
References ... 390

 17 Feature Interaction Testing .. 391
17.1 Feature Interaction Problem Defined ... 391
17.2 Types of Feature Interactions ... 393

17.2.1 Input Conflict ... 394
17.2.2 Output Conflict .. 397
17.2.3 Resource Conflict ... 398

17.3 A Taxonomy of Interactions ... 399
17.3.1 Static Interactions in a Single Processor 399
17.3.2 Static Interactions in Multiple Processors 401
17.3.3 Dynamic Interactions in a Single Processor 402
17.3.4 Dynamic Interactions in Multiple Processors 405

17.4 Interaction, Composition, and Determinism .. 406
Exercises ... 407
References ... 407

 18 Case Study: Testing Event-Driven Systems ... 409
18.1 The Garage Door Controller Problem Statement 410
18.2 Modeling with Behavior Driven Development (BDD) 410

xvi ◾ Contents

18.3 Modeling with Extended Finite State Machines 412
18.3.1 Deriving a Finite State Machine from BDD Scenarios 412
18.3.2 Top-down Development of a Finite State Machine 414

18.4 Modeling with Swim Lane Event-Driven Petri Nets 418
18.4.1 Normal Garage Door Closing .. 419
18.4.2 Garage Door Closing with an Intermediate Stop 420
18.4.3 Garage Door Closing with a Laser Beam Crossing 421
18.4.4 The Door Opening Interactions .. 421

18.5 Deriving Test Cases from Swim Lane Event-Driven
Petri Nets ... 423

18.6 Failure Mode Event Analysis (FMEA) ... 425
Exercises ... 430
References ... 430

 19 A Closer Look at All Pairs Testing .. 431
19.1 The All Pairs Technique .. 431

19.1.1 Program Inputs .. 433
19.1.2 Independent Variables ... 433
19.1.3 Input Order .. 435
19.1.4 Failures Due only to Pairs of Inputs ... 439

19.2 A Closer Look at the NIST Study .. 440
19.3 Appropriate Applications for All-Pairs Testing 440
19.4 Recommendations for All Pairs Testing .. 441
Exercises ... 442
References ... 442

 20 Software Technical Reviews ... 443
20.1 Economics of Software Reviews ... 443
20.2 Types of Reviews .. 445

20.2.1 Walkthroughs ... 445
20.2.2 Technical Inspections .. 445
20.2.3 Audits ... 446
20.2.4 Comparison of Review Types .. 446

20.3 Roles in a Review .. 446
20.3.1 Producer ... 447
20.3.2 Review Leader .. 447
20.3.3 Recorder ... 447
20.3.4 Reviewer .. 448
20.3.5 Role Duplication .. 448

20.4 Contents of an Inspection Packet ... 448
20.4.1 Work Product Requirements ... 448
20.4.2 Frozen Work Product ... 448
20.4.3 Standards and Checklists ... 449
20.4.4 Review Issues Spreadsheet .. 449
20.4.5 Review Reporting Forms ... 450
20.4.6 Fault Severity Levels .. 451
20.4.7 Review Report Outline .. 451

Contents ◾ xvii

20.5 An Industrial-Strength Inspection Process ... 452
20.5.1 Commitment Planning ... 453
20.5.2 Reviewer Introduction ... 453
20.5.3 Preparation .. 453
20.5.4 Review Meeting ... 454
20.5.5 Report Preparation .. 454
20.5.6 Disposition ... 455

20.6 Effective Review Culture ... 455
20.6.1 Etiquette ... 455
20.6.2 Management Participation in Review Meetings 456
20.6.3 A Tale of Two Reviews .. 456

20.6.3.1 A Pointy-Haired Supervisor Review 456
20.6.3.2 An Ideal Review ... 457

20.7 Inspection Case Study ... 457
References ... 459

 21 Epilogue: Software Testing Excellence ... 461
21.1 Craftsmanship ... 461
21.2 Best Practices of Software Testing .. 462
21.3 Our Top 10 Best Practices for Software Testing Excellence 463

21.3.1 Carefully Performed Technical Inspections 463
21.3.2 Careful Definition and Identification of Levels of Testing 463
21.3.3 Model-Based Testing at All Levels ... 464
21.3.4 System Testing Extensions .. 464
21.3.5 Incidence Matrices to Guide Regression Testing 464
21.3.6 Use of xUnit and Object Mocking at the Unit Level 464
21.3.7 Intelligent Combination of Specification-Based

and Code-Based Unit Level Testing .. 465
21.3.8 Use of Appropriate Tools at All Testing Levels 465
21.3.9 Exploratory Testing During Maintenance 465
21.3.10 Test-Driven Development .. 465

21.4 Mapping Best Practices to Diverse Projects ... 465
21.4.1 A Mission Critical Project .. 465
21.4.2 A Time Critical Project ... 465
21.4.3 Corrective Maintenance of Legacy code 466

21.5 An Extreme Example .. 466
References ... 468

Appendix A: Complete Technical Inspection Packet ..469

Appendix B: Foodies Wish List Example ...481

Index ..503

https://taylorandfrancis.com

xix

Preface

The fifth edition of Software Testing—A Craftsman’s Approach appears 25 years after
the first edition and now there is a co-author, Dr. Byron DeVries. Together, Paul and
Byron have 32 years of industrial experience and a few more years of university
teaching and research in Software Engineering. Paul’s testing experience is on tele-
phone switching systems software; Byron’s is on avionics systems.

The book has evolved over four editions and 25 years of classroom and indus-
trial use. We continue the pattern of presenting theory, using it to describe testing
techniques, and illustrating all of this with carefully selected examples. We retained
some of the classical examples and replaced others with a comprehensive web-based
example, the Foodies Wish List, that is used throughout where appropriate. This
lends a unifying “leitmotif” to our book.

Here are some the highlights of the Fifth Edition…

	 ◾	 This book now has a website, softwaretestcraft.org (also .com) that contains all
Java code, powerpoint presentations, and various notes.

	 ◾	 Parts 2, 3, and 4 are essentially object-oriented. All pseudo-code examples are
now converted to Java. Unit testing examples use JUnit.

	 ◾	 We included specific information on commercial and open-source tools for
code-based testing. Also, we added three examples of commercial Model-Based
Testing products to the Model-Based Testing chapter.

	 ◾	 Testing object-oriented software is consolidated in a single chapter.
	 ◾	 There is a new chapter on the feature interaction problem.
	 ◾	 There is a new emphasis (and example) for modeling and testing event-driven

systems.
	 ◾	 We retained the chapter on technical inspections and the corresponding appendix.

Some things have remained constant across all five editions. In the Preface to the
First Edition, Paul wrote:

We huddled around the door to the conference room, each taking a turn looking through the
small window. Inside, a recently hired software designer had spread out source listings on the
conference table and carefully passed a crystal hanging from a long chain over the source
code. Every so often, the designer marked a circle in red on the listing. Later, one of my col-
leagues asked the designer what he had been doing in the conference room. The nonchalant
reply: “Finding the bugs in my program.” This is a true story, it happened in the mid-1980s
when people had high hopes for hidden powers in crystals.

xx ◾ Preface

For the past 25 years, the goal of this book is to provide you with a better set of crys-
tals. As the title suggests, we believe that software (and system) testing is a craft, and
we have some mastery of that craft. We bring our combined industrial and academic
backgrounds to the theory, techniques, and examples. We hope that all of this will
crystalize into your software testing craft.

Paul C. Jorgensen
Rockford, Michigan

Byron DeVries
Grand Rapids, Michigan

December, 2020

xxi

Authors

Paul Jorgensen, Ph.D., spent his 20-year first career in all phases of software devel-
opment for the research and development laboratory of a telephone switching sys-
tems company. He began his university career in 1986 teaching graduate courses in
software engineering at Arizona State University, and since 1988, at Grand Valley State
University where he is a full professor. Paul retired from the university in the summer
of 2017 and is now a Professor Emeritus. He jokes that he has seven-day weekends,
every week. This schedule permits a lot of family contact and also allows time for his
consulting business, Software Paradigms. He has served on major CODASYL, ACM,
IEEE, and ISTQB committees, and in 2012, his university recognized his lifetime
accomplishments with its “Distinguished Contribution to a Discipline Award.”

In addition to this software testing book, he is also the author of Modeling Software
Behavior: A Craftsman’s Approach and The Craft of Model-Based Testing. He is a
co-author of Mathematics for Data Processing (McGraw-Hill, 1970) and Structured
Methods--Merging Models, Techniques, and CASE (McGraw-Hill, 1993).

Living and working in Italy for three years made him a confirmed "Italophile."
He, his wife Carol, and daughters Kirsten and Katia have visited friends there several
times. Paul and Carol have volunteered at the Porcupine School on the Pine Ridge
Reservation in South Dakota for 19 years. His preferred email addresses are jor-
gensp@gvsu.edu; paul@softwaretestcraft.org

Byron DeVries, Ph.D., has taught undergraduate and graduate software engineer-
ing courses at Grand Valley State University since he joined the faculty in 2017 as
an assistant professor. Prior to teaching, he spent over a dozen years in a variety
of avionics software development roles, often focused on verification. He actively
publishes in and serves on program committees for a variety of IEEE and ACM con-
ferences. In 2021, he was recognized by his university with the “Distinguished Early
Career Scholar Award.”

In the summers, you can most often find him either close to, or on, the water
around West Michigan with his wife, Angela. Though an avid sailor, he begrudgingly
spends more time on power boats for the sake of his two young boys: Bryce and
Wesley. You can reach him at his email addresses: devrieby@gvsu.edu and byron@
softwaretestcraft.org.

https://taylorandfrancis.com

A MATHEMATICAL
CONTEXT

I

https://taylorandfrancis.com

3

Chapter 1

A Perspective on Testing

Why do we test? The two main reasons are: to make a judgment about quality or accept-
ability and to discover problems. We test because we know that we are fallible—this is
especially true in the domain of software and software-controlled systems. The goal of
this chapter is to create a framework within which we can examine software testing.

1.1 Basic Definitions
Much of testing literature is mired in confusing (and sometimes inconsistent) ter-
minology, probably because testing technology has evolved over decades and via
scores of writers. The International Software Testing Qualification Board (ISTQB) has
an extensive glossary of testing terms (see the website http://www.istqb.org/down-
loads/glossary.html). The terminology here (and throughout this book) is compat-
ible with the ISTQB definitions, and they, in turn, are compatible with the standards
developed by the Institute of Electronics and Electrical Engineers (IEEE) Computer
Society. To get started, here is a useful progression of terms.

Error—people make errors. A good synonym is mistake. When people make mis-
takes while coding, we call these mistakes bugs. Errors tend to propagate; a
requirements error may be magnified during design and amplified still more
during coding.

Fault—a fault is the result of an error. It is more precise to say that a fault is the
representation of an error, where representation is the mode of expression,
such as narrative text, UML diagrams, hierarchy charts, source code, and so on.
Defect (see ISTQB Glossary) is a good synonym for fault, as is bug. Faults can
be elusive. An error of omission results in a fault is that something is missing
that should be present in the representation. This suggests a useful refinement,
we might speak of faults of commission and faults of omission. A fault of com-
mission occurs when we enter something into a representation that is incorrect.
Faults of omission occur when we fail to enter correct information. Of these two
types, faults of omission are more difficult to detect and resolve.

http://www.istqb.org
http://www.istqb.org

4 ◾ Software Testing

Failure—a failure occurs when the code corresponding to a fault executes. Two
subtleties arise here: one is that failures only occur in an executable representation,
which is usually taken to be source code, or more precisely, loaded object code;
the second subtlety is that this definition relates failures only to faults of commis-
sion. How can we deal with failures that correspond to faults of omission? We can
push this still further: What about faults that never happen to execute, or perhaps
do not execute for a long time? Technical reviews (see Chapter 20) prevent many
failures by finding faults; in fact, well-done reviews can find faults of omission.

Incident—when a failure occurs, it may or may not be readily apparent to the user
(or customer or tester). An incident is the symptom associated with a failure that
alerts the user to the occurrence of a failure.

Test—testing is obviously concerned with errors, faults, failures, and incidents. A
test is the act of exercising software with test cases. A test has two distinct goals:
to find failures or to demonstrate correct execution.

Test Case—test case has an identity and is associated with a program behavior. A
test case also has a set of inputs and expected outputs.

Figure 1.1 portrays a life cycle model for testing. Notice that, in the development
phases, three opportunities arise for errors to be made, resulting in faults that may
propagate through the remainder of the development process. The Fault Resolution
step is another opportunity for errors (and new faults). When a fix causes formerly
correct software to misbehave, the fix is deficient. We will revisit this when we dis-
cuss regression testing.

From this sequence of terms, we see that test cases occupy a central position in
testing. The process of testing can be subdivided into separate steps: test planning,
test case development, running test cases, and evaluating test results. The focus of
this book is how to identify useful sets of test cases.

1.2 Test Cases
The essence of software testing is to determine a set of test cases for the item to be
tested. A test case is (or should be) a recognized work product. A complete test case
will contain a test case identifier, a brief statement of purpose (e.g., a business rule),

Figure 1.1 A testing life cycle.

Spec

Design

Coding

Testing

Fault
Resolution

Isolate
Fault

Classify
Fault

A Perspective on Testing ◾ 5

a description of pre-conditions, the actual test case inputs, the expected outputs, a
description of expected post-conditions, and an execution history. The execution his-
tory is primarily for test management use—it may contain the date when the test was
run, the person who ran it, the version on which it was run, and the Pass/Fail result.

The output portion of a test case is frequently overlooked, which is unfortunate
because this is often the hard part. Suppose, for example, you were testing software
that determined an optimal route for an aircraft, given certain FAA air corridor con-
straints and the weather data for a flight day. How would you know what the optimal
route really is? Various responses can address this problem. The academic response
is to postulate the existence of an oracle that “knows all the answers.” One industrial
response to this problem is known as Reference Testing, where the system is tested
in the presence of expert users. These experts make judgments as to whether outputs
of an executed set of test case inputs are acceptable.

Test case execution entails establishing the necessary preconditions, providing the
test case inputs, observing the outputs, comparing these with the expected outputs,
and then ensuring that the expected post-conditions exist to determine whether the test
passed. From all of this, it becomes clear that test cases are valuable—at least as valuable
as source code. Test cases need to be developed, reviewed, used, managed, and saved.

1.3 Insights from a Venn Diagram
Testing is fundamentally concerned with behavior, and behavior is orthogonal to the
code-based view common to software (and system) developers. A quick distinction
is that the code-based view focuses on what it is and the behavioral view considers
what it does. One of the continuing sources of difficulty for testers is that the base
documents are usually written by and for developers; the emphasis is therefore on
code-based, instead of behavioral, information. In this section, we develop a simple
Venn diagram that clarifies several nagging questions about testing.

Consider a universe of program behaviors. (Notice that we are forcing attention
on the essence of testing.) Given a program and its specification, consider the set S
of specified behaviors, and the set P of programmed behaviors. Figure 1.2 shows the
relationship between the specified and programmed behaviors. Of all the possible pro-
gram behaviors, the specified ones are in the circle labeled S; and all those behaviors

Figure 1.2 Specified and implemented program behaviors.

S P

Specification
(Spec-based)

Program
(Code-based)

Program Behavoirs

6 ◾ Software Testing

actually programmed are in P. With this diagram, we can see more clearly the problems
that confront a tester. What if certain specified behaviors have not been programmed?
In our earlier terminology, these are faults of omission. Similarly, what if certain pro-
grammed (implemented) behaviors have not been specified? These correspond to
faults of commission and to errors that occurred after the specification was complete.
The intersection of S and P (the football-shaped region) is the “correct” portion, that
is, behaviors that are both specified and implemented. A very good view of testing is
that it is the determination of the extent of program behavior that is both specified and
implemented. (As an aside, note that “correctness” only has meaning with respect to a
specification and an implementation. It is a relative term, not an absolute.)

The new circle in Figure 1.3 is for test cases. Notice the slight discrepancy with
our universe of discourse and the set of program behaviors. Because a test case
results in a program behavior, the mathematicians might forgive us. Now, consider
the relationships among the sets S, P, and T. There may be specified behaviors that
are not tested (regions 2 and 5), specified behaviors that are tested (regions 1 and 4),
and test cases that correspond to unspecified behaviors (regions 3 and 7).

Similarly, there may be programmed behaviors that are not tested (regions 2
and 6), programmed behaviors that are tested (regions 1 and 3), and test cases that
correspond to behaviors that were not implemented (regions 4 and 7).

Each of these regions is important. If specified behaviors exist for which no test
cases are available, the testing is necessarily incomplete. If certain test cases cor-
respond to unspecified behaviors, some possibilities arise: either such a test case
is unwarranted, the specification is deficient, or the tester wishes to determine that
specified non-behavior does not occur. (In my experience, good testers often postu-
late test cases of this latter type. This is a fine reason to have good testers participate
in specification and design reviews.)

We are already at a point where we can see some possibilities for testing as a
craft: what can a tester do to make the region where these sets all intersect (region
1) as large as possible? Another approach is to ask how the test cases in the set T are
identified. The short answer is that test cases are identified by a testing method. This
framework gives us a way to compare the effectiveness of diverse testing methods,
as we shall see in Chapter 10.

Figure 1.3 Specified, implemented, and tested behaviors.

1

7
T

S

4

P

3

25

8

6

Specification
(expected)

Program
(Implemented)

Test Cases
(verified)

Program Behavoirs

A Perspective on Testing ◾ 7

1.4 Identifying Test Cases
Two fundamental approaches are used to identify test cases; for decades, these have
been called functional and structural testing. Why functional? In a sense, a program is
a function that maps elements of its input space to elements of its output space. The
“structural” part is less clear—to be generous, it might refer to the structure of the
code being tested. Specification-based and code-based are more descriptive names,
and they will be used here. Both approaches have several distinct test case identifi-
cation methods, they are generally just called testing methods. They are methodical
in the sense that two testers following the same “method” will devise very similar
(equivalent?) test cases.

1.4.1 Specification-based Testing

The reason that specification-based testing was originally called “functional testing”
is that any program can be considered to be a function that maps values from its
input domain to values in its output range. (Function, domain, and range are defined
in Chapter 3.) This notion is commonly used in engineering, when systems are con-
sidered to be black boxes. This led to another synonymous term—black box testing,
in which the content (implementation) of the black box is not known, and the func-
tion of the black box is understood completely in terms of its inputs and outputs
(see Figure 1.4). Many times, we operate very effectively with black box knowledge;
in fact, this is central to object orientation. As an example, most people successfully
operate automobiles with only black box knowledge.

With the specification-based approach to test case identification, the only infor-
mation used is the specification of the software. Therefore, the test cases have two
distinct advantages: (1) they are independent of how the software is implemented, so
if the implementation changes, the test cases are still useful; and (2) test case develop-
ment can occur in parallel with the implementation, thereby reducing overall project
development interval. On the negative side, specification-based test cases frequently
suffer from two problems: significant redundancies may exist among test cases, com-
pounded by the possibility of gaps of untested software.

Figure 1.5 shows the results of test cases identified by two specification-based
methods. Method A identifies a larger set of test cases than does Method B. Notice
that, for both methods, the set of test cases is completely contained within the set of
specified behavior. Because specification-based methods are based on the specified
behavior, it is hard to imagine these methods identifying behaviors that are not speci-
fied. In Chapter 10, we will see direct comparisons of test cases generated by various
specification-based methods for the examples defined in Chapter 2.

Figure 1.4 An engineer’s black box.

Inputs Outputs

8 ◾ Software Testing

In Chapters 5, 6, and 7, we will examine the mainline approaches to specification-
based testing, including boundary value analysis, robustness testing, worst-case analy-
sis, special value testing, input (domain) equivalence classes, and decision table-based
testing. The common thread running through these techniques is that all are based
on definitional information of the item tested. Some of the mathematical background
presented in Chapter 3 applies primarily to the specification-based approaches.

1.4.2 Code-based Testing

Code-based testing is the other fundamental approach to test case identification. To
contrast it with black box testing, it is sometimes called white box (or even clear box)
testing. The clear box metaphor is probably more appropriate, because the essential
difference is that the implementation (of the black box) is known and used to iden-
tify test cases. The ability to “see inside” the black box allows the tester to identify
test cases based on how the function is actually implemented.

Code-based testing has been the subject of some fairly strong theory. To really
understand code-based testing, familiarity with the concepts of linear graph the-
ory (Chapter 4) is essential. With these concepts, the tester can rigorously describe
exactly what is tested. Because of its strong theoretical basis, code-based testing
lends itself to the definition and use of test coverage metrics. Test coverage metrics
provide a way to explicitly state the extent to which a software item has been tested,
and this in turn makes testing management more meaningful.

Figure 1.6 shows the results of test cases identified by two code-based methods.
As before, Method A identifies a larger set of test cases than does Method B. Is a
larger set of test cases necessarily better? This is an excellent question, and code-
based testing provides important ways to develop an answer. Notice that, for both
methods, the set of test cases is completely contained within the set of programmed

Figure 1.6 Comparing code-based test case identification methods.

Specification Program

Test
Method

A

Specification Program

Test
Method

B

Figure 1.5 Comparing specification-based test case identification methods.

Specification Program

Test
Method

A

Specification Program

Test
Method

B

A Perspective on Testing ◾ 9

behavior. Because code-based methods are based on the program, it is hard to imag-
ine these methods identifying behaviors that are not programmed. It is easy to imag-
ine, however, that a set of code-based test cases is relatively small with respect to the
full set of programmed behaviors. In Chapter 10, we will see direct comparisons of
test cases generated by various code-based methods.

1.4.3 The Specification-based versus Code-based Debate

Given the two fundamentally different approaches to test case identification, it is
natural to question which is better. If you read much of the literature, you will find
strong adherents to either choice.

The Venn diagrams presented earlier yield a strong resolution to this debate.
Recall that the goal of both approaches is to identify test cases. Specification-based
testing uses only the specification to identify test cases, while code-based testing uses
the program source code (implementation) as the basis of test case identification.
Later chapters will establish that neither approach by itself is sufficient. Consider pro-
gram behaviors: if all specified behaviors have not been implemented, code-based
test cases will never be able to recognize this. Conversely, if the program implements
behaviors that have not been specified, this will never be revealed by Specification-
based test cases. (A Trojan Horse is a good example of such unspecified behavior.)
The quick answer is that both approaches are needed; the testing craftsperson’s
answer is that a judicious combination will provide the confidence of specification-
based testing and the measurement of code-based testing. Earlier, we asserted that
specification-based testing often suffers from twin problems of redundancies and
gaps. When specification-based test cases are executed in combination with code-
based test coverage metrics, both of these problems can be recognized and resolved.

The Venn diagram view of testing provides one final insight. What is the relation-
ship between the set T of test cases and the sets S and P of specified and implemented
behaviors? Clearly, the test cases in T are determined by the test case identification
method used. A very good question to ask is how appropriate (or effective) is this
method? To close a loop from an earlier discussion, recall the causal trail from error
to fault, failure, and incident. If we know what kind of errors we are prone to make,
and if we know what kinds of faults are likely to reside in the software to be tested,
we can use this to employ more appropriate test case identification methods. This is
the point at which testing really becomes a craft.

Figure 1.7 Sources of test cases.

S P

Spec-based
Functional
Black Box

(establishes confidence)

Code-based
Structural

White/Clear Box
(seeks faults)

Program Behavoirs

10 ◾ Software Testing

1.5 Fault Taxonomies
Our definitions of error and fault hinge on the distinction between process and prod-
uct: process refers to how we do something, and product is the end result of a pro-
cess. The point at which testing and Software Quality Assurance (SQA) meet is that
SQA typically tries to improve the product by improving the process. In that sense,
testing is clearly more product oriented. SQA is more concerned with reducing errors
endemic in the development process, while testing is more concerned with discover-
ing faults in a product. Both disciplines benefit from a clearer definition of types of
faults. Faults can be classified in several ways: the development phase in which the
corresponding error occurred, the consequences of corresponding failures, difficulty
to resolve, risk of no resolution, and so on. My favorite is based on anomaly (fault)
occurrence: one time only, intermittent, recurring, or repeatable.

For a comprehensive treatment of types of faults, see the IEEE Standard
Classification for Software Anomalies (IEEE, 1993). (A software anomaly is defined in
that document as “a departure from the expected,” which is pretty close to our defini-
tion.) The IEEE standard defines a detailed anomaly resolution process built around
four phases (another life cycle): recognition, investigation, action, and disposition.
Some of the more useful anomalies are given in Tables 1.1 through 1.5; most of these
are from the IEEE standard, but we have added some of our favorites.

Since the primary purpose of a software review is to find faults, review checklists
(see Chapter 20) are another good source of fault classifications. Karl Wiegers has an
excellent set of checklists on his website: [http://www.processimpact.com/pr_good-
ies.shtml].

Table 1.1 Input/Output Faults

Type Instances

Input Correct input not accepted

Incorrect input accepted

Description wrong or missing

Parameters wrong or missing

Output Wrong format

Wrong result

Correct result at wrong time (too early, too late)

Incomplete or missing result

Spurious result

Spelling/grammar

Cosmetic

http://www.processimpact.com
http://www.processimpact.com

A Perspective on Testing ◾ 11

Table 1.2 Logic Faults

Missing case(s)

Duplicate case(s)

Extreme condition neglected

Misinterpretation

Missing condition

Extraneous condition(s)

Test of wrong variable

Incorrect loop iteration

Wrong operator (e.g., < instead of ≤)

Table 1.4 Interface Faults

Incorrect interrupt handling

I/O timing

Call to wrong procedure

Call to nonexistent procedure

Parameter mismatch (type, number)

Incompatible types

Superfluous inclusion

Table 1.3 Computation Faults

Incorrect algorithm

Missing computation

Incorrect operand

Incorrect operation

Parenthesis error

Insufficient precision (round-off, truncation)

Wrong built-in function

12 ◾ Software Testing

1.6 Levels of Testing
Thus far, we have said nothing about one of the key concepts of testing—levels of
abstraction. Levels of testing echo the levels of abstraction found in the Waterfall
Model of the software development life cycle. Although this model has its drawbacks,
it is useful for identifying distinct levels of testing and for clarifying the objectives
that pertain to each level. A diagrammatic variation of the Waterfall Model, known as
the V-Model in ISTQB parlance, is given in Figure 1.8; this variation emphasizes the
correspondence between testing and design levels. Notice that, especially in terms of
Specification-based testing, the three levels of definition (specification, preliminary
design, and detailed design) correspond directly to three levels of testing—system,
integration, and unit testing.

A practical relationship exists between levels of testing versus Specification-
based and code-based testing. Most practitioners agree that code-based testing is
most appropriate at the unit level, while Specification-based testing is most appro-
priate at the system level. This is generally true, but it is also a likely consequence of
the base information produced during the requirements specification, preliminary
design, and detailed design phases. The constructs defined for code-based testing
make the most sense at the unit level, and similar constructs are only now becoming

Table 1.5 Data Faults

Incorrect initialization

Incorrect storage/access

Wrong flag/index value

Incorrect packing/unpacking

Wrong variable used

Wrong data reference

Scaling or units error

Incorrect data dimension

Incorrect subscript

Incorrect type

Incorrect data scope

Sensor data out of limits

Off by one

Inconsistent data

A Perspective on Testing ◾ 13

available for the integration and system levels of testing. We develop such structures
in Chapters 9, 12, and 13 to support code-based testing at the integration and system
levels for both traditional and object-oriented software.

Exercises
 1.1 Make a Venn Diagram that reflects a part of the following statement: “… we

have left undone that which we ought to have done, and we have done that
which we ought not to have done …”

 1.2 Make a Venn Diagram that reflects the essence of Reinhold Niebuhr’s “Serenity
Prayer”:

God, grant me the serenity to accept the things I cannot change,
Courage to change the things I can,
And wisdom to know the difference.

 1.3 Describe each of the eight regions in Figure 1.3. Can you recall examples of
these in software you have written?

 1.4 One of the folk tales of software lore describes a disgruntled employee who
writes a payroll program which contains logic that checks for the employee’s
identification number before producing paychecks. If the employee is ever
terminated, the program creates havoc. Discuss this situation in terms of the
error, fault, and failure pattern and decide which form of testing would be
appropriate.

 1.5 Figure 1.9 shows the V-Model (aka the Waterfall Model) phases in which mis-
takes might be made, thereby becoming faults. Try to map the faults in Tables 1.1
through 1.5 into the “fault insertion” phases in Figure 1.9.

Figure 1.8 Levels of abstraction and testing in the Waterfall Model.

Coding

Requirements
Specification

Preliminary
Design

System
Testing

Integration
Testing

Unit
Testing

Detailed
Design

14 ◾ Software Testing

References
IEEE Computer Society, IEEE Standard Glossary of Software Engineering Terminology, 4th

Edition. 1983, ANSI/IEEE Std 729–1983.
IEEE Computer Society, IEEE Standard Classification for Software Anomalies, 1993, IEEE Std

1044–1993.

Figure 1.9 Possibilities for Fault Insertion in the V-Model.

Spec

Design

Coding

Testing

Fault
Resolution

Isolate
Fault

Classify
Fault

15

Chapter 2

Examples

Three examples will be used in Chapters 5 through 10 to illustrate the various unit
testing methods: the triangle problem (a venerable example in testing circles); a logi-
cally complex function, NextDate; and an online shopping example that typifies MIS
applications, Foodies-Wish-List. Taken together, these examples raise most of the
issues that testers will encounter at the unit level. The discussion of higher levels of
testing in Chapters 11 through 17 uses a garage door controller example which also
illustrates some of the issues of “systems of systems.” Finally, Section 2.6 describes
three examples that will be used in the exercise portions of selected chapters.

For the purposes of code-based testing, Java implementations of the three unit-
level examples are given in this chapter. System-level descriptions of the garage door
controller are given in Chapters 11 through 17. These applications are modeled with
finite state machines, variations of Event-Driven Petri Nets, selected statecharts, and
with the Universal Modeling Language (UML).

2.1 Structural Elements of Pseudo-code and Java
Previous editions of this book used pseudo-code as an “implementation” of code
examples. Most of the pseudo-code has been rewritten as Java code. The pseudo-code
was deliberately similar to Visual Basic for Applications (VBA). Tables 2.1 and 2.2
show most language constructs in “VBA’ form and in Java.

Table 2.1

Comments "VBA" ' <text>

Java //<text>

Data Structure / Class
Declaration

"VBA" Type <type name><list of field descriptions>

Java public class <class name> {<list of data declarations>

(Continued)

16 ◾ Software Testing

Table 2.1 (Continued)

(Continued)

Data Declaration "VBA" Dim <variable list> As <type>

Java <type> <variable list>;

Input/Output "VBA" Input (<variable list>) Output (<variable list>)

Java NA

Variable Naming "VBA"
and Java

A sequence of alphanumeric (and selected special)
characters with no length limit. Descriptive names are
preferred. By convention, variable names begin with a
lower case letter. If the variable name consists of two
or more words, the first letter of each successive word
is capitalized, e.g.,, accountBalance.

Binary Arithmetic Operators Same for both "VBA" and Java

Addition both +

Subtration both -

Multiplication both *

Division both /

Remainder both %

Unary Arithmetic Operators, Java only

Positive value Java +

Negative value Java -

Increment by 1 Java ++

Decrement by 1 Java --

Logical complement Java ! (reverses value of a boolean variable)

Relational Operators

Equals "VBA" =

Java ==

Not Equals "VBA" <>

Java !=

Greater than both >

Greater than or equal both >=

Less than both <

Less than or equal both <=

Examples ◾ 17

(Continued)

Table 2.1 (Continued)

Table 2.2

Control Flow Statements (usually more than one line)

Conditional
Statement

"VBA" Java

If-then

If <condition> if <condition> {

Then <block of statements> <block of statements> ;

EndIf }

If-then-else

If <condition> if <condition> {

Then <block of statements> <block of statements> ;

Else <block of statements> } else {

EndIf <block of statements> ;

}

If-ElseIF

If <condition> if <condition> {

Then <block of statements> <block of statements> ;

ElseIF <block of statements> } else if <condition> {

ElseIF <block of statements> <block of statements> ;

... } else if <condition> {

EndIf <block of statements> ;

}

Conditional Operators

Conjunction "VBA" AND

Java &&

Disjunction "VBA" OR

Java ||

Negation "VBA" NOT

Java !

Expressions In both "VBA" and java, an expression can be a single
variable, a single procedure, (or method invocation)
or a compound built out of these with operators.

Assignment
Statement

both <variable> = <expression>

18 ◾ Software Testing

Mutual Exclusive
Alternatives

Case <variable> of switch <variable> {

Case 1 variable = value case 1: <block of statements>

Case 2 variable = value break;

Case 3 variable = value case 2: <block of statements>

End Case break;

}

Pre-test loop

While <condition> while <condition> {

<block of statements> <block of statements>

EndWhile }

For (also a pre-
test loop)

For Index = first, last, increment
for(<type> index = first, index <=
last, index++) {

<block of statements> <block of statements>

EndFor }

Post-test loop

Do do {

<block of statements> <block of statements>

Until <condition> } while <condition> ;

Other (Java only) Sequence-changing Statements

Branching
Statement

Java (description)

break Terminates a switch or repetition

continue Terminates innermost repetition, Then continues the loop

return <value> Returns <value> and exits from a method

return Exits from a void method

Procedure/Method Definition

"VBA" Java

Procedure <procedure name>
(Input: <list of variables>;Output:
<list of variables>) <body>

<modifier> <return type>
methodName (<parameter list>)
{modifiers: public, private,
protected; return type is the type
of value returned (items in the
parameter list are preceded by
their type

End <procedure name> }

Table 2.2 (Continued)

(Continued)

Examples ◾ 19

2.2 The Triangle Problem
The triangle problem is the most widely used example in software testing liter-
ature. Some of the more notable entries in four decades of testing literature are
Gruenberger (1973); Brown (1975); Myers (1979); Pressman (1982) and subsequent
editions; Clarke (1983); Clarke (1984); Chellappa (1987); and Hetzel (1988). There
are others, but this list makes the point.

2.2.1 Problem Statement

Simple version: The triangle program accepts three integers, a, b, and c, as input.
These are taken to be sides of a triangle. The output of the program is the type of tri-
angle determined by the three sides: Equilateral, Isosceles, Scalene, or Not A Triangle.
Sometimes this problem is extended to include right triangles as a fifth type; we will
use this extension in some of the exercises.

Improved version: The triangle program accepts three integers, a, b, and c, as
input. These are taken to be sides of a triangle. The integers a, b, and c must satisfy
the following conditions:

c1. 1 ≤ a ≤ 200 c4. a < b + c

c2. 1 ≤ b ≤ 200 c5. b < a + c

c3. 1 ≤ c ≤ 200 c6. c < a + b

The output of the program is the type of triangle determined by the three sides:
Equilateral, Isosceles, Scalene, or NotATriangle. If an input value fails any of con-
ditions c1, c2, or c3, the program notes this with an output message, for example,

Functions Function
functionName(<parameter list>)

NA

a Function is treated as a variable,
e.g., x = squareRoot(49

Inter-unit
Communication

Call procedureName(<parameter
list>

A message can be treated as a
variable

Class/Object Definition

<name> (<attribute list>;
<method list>, <body>) End
<name>

public class <class name> {<list of
data declarations>}

Object Instantiation

Instantiate <class name>.<object
name> (list of attribute values)

<class name> <object name> = new
<class name>(<parameter list>);

Table 2.2 (Continued)

20 ◾ Software Testing

“Value of b is not in the range of permitted values.” If values of a, b, and c satisfy
conditions c1, c2, and c3, one of four mutually exclusive outputs is given:

 1. If all three sides are equal, the program output is Equilateral.
 2. If exactly one pair of sides is equal, the program output is Isosceles.
 3. If no pair of sides is equal, the program output is Scalene.
 4. If any of conditions c4, c5, and c6 is not met, the program output is NotATriangle.

2.2.2 Discussion

Perhaps one of the reasons for the longevity of this example is that it contains clear
but complex logic. It also typifies some of the incomplete definitions that impair
communication among customers, developers, and testers. The first specification pre-
sumes the developers know some details about triangles, particularly the Triangle
Inequality: the sum of any pair of sides must be strictly greater than the third side.
The upper limit of 200 is both arbitrary and convenient; it will be used when we
develop boundary value test cases in Chapter 5.

We use this example because:

	 ◾	 it is well-known in the software testing literature.
	 ◾	 it is easy to determine expected outputs, and
	 ◾	 it is an easy example for infeasible program paths.

The Java code is given next. Note, for this and other examples, Java source code will
be written in Monaco 8.5 font.

2.2.3 Java Implementation
public class Triangle {

 public static final int OUT_OF_RANGE = -2;
 public static final int INVALID = -1;
 public static final int SCALENE = 0;
 public static final int ISOSELES = 1;
 public static final int EQUILATERAL = 2;

 public static int triangle(int a, int b, int c) {

 boolean c1, c2, c3, isATriangle;

 // Step 1: Validate Input
 c1 = (1 <= a) && (a <= 200);
 c2 = (1 <= b) && (b <= 200);
 c3 = (1 <= c) && (c <= 200);

 int triangleType = INVALID;
 if (!c1 || !c2 || !c3)
 triangleType = OUT_OF_RANGE;
 else {
 // Step 2: Is A Triangle?
 if ((a < b + c) && (b < a + c) && (c < a + b))
 isATriangle = true;
 else
 isATriangle = false;

Examples ◾ 21

 // Step 3: Determine Triangle Type
 if (isATriangle) {
 if ((a == b) && (b == c))
 triangleType = EQUILATERAL;
 else if ((a != b) && (a != c) && (b != c))
 triangleType = SCALENE;
 else
 triangleType = ISOSELES;
 } else
 triangleType = INVALID;
 }

 return triangleType;
 }
}

2.3 The NextDate Function
The complexity in the triangle program is due to relationships between inputs and
correct outputs. We will use the NextDate function to illustrate a different kind of
complexity—logical relationships among the input variables.

2.3.1 Problem Statement

NextDate is a function of three variables: month, date, and year. It returns the date of
the day after the input date. The month, date, and year variables have integer values
subject to these conditions (the year range ending in 2042 is arbitrary, and is from
the First Edition):

 c1. 1 ≤ month ≤ 12
 c2. 1 ≤ day ≤ 31
 c3. 1842 ≤ year ≤ 2042

As we did with the triangle program, we could make our problem statement more spe-
cific. This entails defining responses for invalid values of the input values for the day,
month, and year. We could also define responses for invalid combinations of inputs,
such as June 31 of any year. If any of conditions c1, c2, or c3 fails, NextDate produces an
output indicating the corresponding variable has an out-of-range value—for example,
“Value of month not in the range 1...12.” Because numerous invalid day–month–year
combinations exist, NextDate collapses these into one message: “Invalid Input Date.”

2.3.2 Discussion

Two sources of complexity exist in the NextDate function: the complexity of the input
domain discussed previously, and the rule that determines when a year is a leap
year. A year is 365.2422 days long; therefore, leap years are used for the “extra day”
problem. If we declared a leap year every fourth year, a slight error would occur. The
Gregorian calendar (after Pope Gregory) resolves this by adjusting leap years on cen-
tury years. Thus, a year is a leap year if it is divisible by 4, unless it is a century year.
Century years are leap years only if they are multiples of 400 (Inglis, 1961); so 1996,

22 ◾ Software Testing

2016, and 2000 are leap years, while the year 1900 is not a leap year. The NextDate
function also illustrates a sidelight of software testing. Many times, we find examples
of Zipf’s Law, which states that 80% of the activity occurs in 20% of the space. Notice
how much of the source code is devoted to leap year considerations. In the second
implementation, notice how much code is devoted to input value validation.

2.3.3 Java Implementation
public class NextDate {

 public static SimpleDate nextDate(SimpleDate date) {

 int tomorrowDay, tomorrowMonth, tomorrowYear;

 tomorrowMonth = date.month;
 tomorrowDay = date.day;
 tomorrowYear = date.year;
 switch (date.month) {

 // 31 day months (except Dec.)
 case 1:
 case 3:
 case 5:
 case 7:
 case 8:
 case 10:
 if (date.day < 31)
 tomorrowDay = date.day + 1;
 else {
 tomorrowDay = 1;
 tomorrowMonth = date.month + 1;
 }
 break;

 // 30 day months
 case 4:
 case 6:
 case 9:
 case 11:
 if (date.day < 30)
 tomorrowDay = date.day + 1;
 else {
 tomorrowDay = 1;
 tomorrowMonth = date.month + 1;
 }

 break;
 // December
 case 12:
 if (date.day < 31)
 tomorrowDay = date.day + 1;
 else {
 tomorrowDay = 1;
 tomorrowMonth = 1;
 if (date.year == 2042)
 System.out.println("Date beyond 2042 ");
 else

Examples ◾ 23

 tomorrowYear = date.year + 1;
 }

 break;
 // February
 case 2:
 if (date.day < 28)
 tomorrowDay = date.day + 1;
 else {
 if (date.day == 28) {
 if (date.isLeap())
 tomorrowDay = 29;
 else {
 tomorrowDay = 1;
 tomorrowMonth = 3;
 }
 } else if(date.day == 29) {
 tomorrowDay = 1;
 tomorrowMonth = 3;
 }
 }

 break;
 }

 return new SimpleDate(tomorrowMonth, tomorrowDay,
tomorrowYear);
 }
}

public class SimpleDate {

 int month;
 int day;
 int year;

 public SimpleDate(int month, int day, int year) {

 if(!rangesOK(month, day, year))
 throw new IllegalArgumentException("Invalid Date");

 this.month = month;
 this.day = day;
 this.year = year;
 }

 public int getMonth() {
 return month;
 }
 public void setMonth(int month) {
 this.month = month;
 }
 public int getDay() {
 return day;
 }
 public void setDay(int day) {
 this.day = day;
 }
 public int getYear() {
 return year;
 }

24 ◾ Software Testing

 public void setYear(int year) {
 this.year = year;
 }
 boolean rangesOK(int month, int day, int year) {

 boolean dateOK = true;

 dateOK &= (year > 1841) && (year < 2043); // Year OK?
 dateOK &= (month > 0) && (month < 13); // Month OK?
 dateOK &= (day > 0) && (
 ((month == 1 || month == 3 || month == 5
|| month == 7 || month == 8 || month == 10 || month == 12) && day < 32) ||
 ((month == 4 || month == 6 || month == 9
|| month == 11) && day < 31) ||
 ((month == 2 && isLeap(year)) && day < 30) ||
 ((month == 2 && !isLeap(year)) && day < 29));
 return dateOK;
 }

 private boolean isLeap(int year) {

 boolean isLeapYear = true;
 if(year % 4 != 0)
 isLeapYear = false;
 else if(year % 100 != 0)
 isLeapYear = true;
 else if(year % 400 != 0)
 isLeapYear = false;

 return isLeapYear;
 }

 public boolean isLeap() {

 return isLeap(year);
 }

 @Override
 public boolean equals(Object obj) {
 boolean areEqual = false;
 if(obj instanceof SimpleDate) {
 SimpleDate simpleDate = (SimpleDate) obj;

 areEqual = simpleDate.getDay() == getDay() &&
 simpleDate.getMonth() == getMonth() &&
 simpleDate.getYear() == getYear();
 }

 return areEqual;
 }

}

2.4 The Foodies-Wish-List Online Shopping Application
Foodies-Wish-List is an online shopping service for extremely rare (and expensive!)
gourmet foods. It can be used either on a one-time basis as a guest, or repeatedly by
members. There is no initial cost for either category, but to be a Foodies-Wish-List
member, one must register with customary information, such as:

	 ◾	 member name
	 ◾	 address

Examples ◾ 25

	 ◾	 shipping address
	 ◾	 telephone number
	 ◾	 email address
	 ◾	 preferred payment method

 – member credit card
 – PayPal

The registration process ends with an account number being assigned to the new
Foodies-Wish-List member.

Registered Foodies-Wish-List members receive discounts based on the price of an
individual order as follows:

	 ◾	 orders less than $200 receive no discount
	 ◾	 orders between $200 and $800 (inclusive) receive a 10% discount
	 ◾	 orders over $800 receive a 15% discount

There is no discount for any guest order.
Foodies-Wish-List members receive free shipping on any order over $200. For

orders less than $200, there is a standard shipping price of $5.00. All guest orders are
charged a $10 shipping fee.

Foodie Items

 1. Vanilla beans; $112/pound
 2. hop shoots; $128/pound
 3. Jamon Iberico de Belotta; $220/pound
 4. Kopi Luwak coffee; $200/pound
 5. Kobe beef; $200/pound
 6. Moose House cheese; $400 – $500/pound
 7. Italian white truffles: $2000/pound
 8. Saffron; $4540/pound, $10/gram
 9. Almas caviar; $11,364/pound

2.4.1 Problem Statement

The full Foodies Wish List problem will be used as an integration testing and data-
flow testing example. Here we only describe two parts of the problem—building an
order and computing the final price.

2.4.2 Discussion

The public void method completeOrder is used to illustrate how Behavior-Driven
Development (BDD) and decision tables can be combined to improve the bottom-up
process inherent in agile software development.

The usual format for a BDD scenario uses key words Given, When, and Then.
Here we move from this format directly into a partial decision table, and then expand
the table using the mechanisms of a decision table.

Given: the running price total of an Order
And: the Order was placed by a Member,
When: the Member selects “Finish”

26 ◾ Software Testing

Then: compute discount
And: apply any taxes
And: apply shipping charges
And: open Payment Screen

The Given, When portions are modeled as conditions, and the Then portion is the
action portion of the decision table.

 c1. Member Order
 c2. Order price < $20
 c3. Member selects “Finish”
 a1. no discount.
 a2. 10% discount.
 a3. 15% discount.
 a4. apply any taxes.
 a5. apply shipping charges.
 a6. open Payment Screen.

This scenario yields the first rule of a decision table:

c1. Member Order T

c2. Order price < $20 T

c3. Member selects “Finish” T

a1. no discount x

a2. 10% discount —

a3. 15% discount —

a4. apply any taxes x

a5. apply shipping charges x

a6. open Payment Screen. x

Since this is a Limited Entry Decision Table (LEDT), we can mechanically expand it
to the following (incomplete) decision table: (DT1).

c1. Member Order T T T T F F F F

c2. Order price < $200 T T F F T T F F

c3. Member selects “Finish” T F T F T F T F

a1. no discount x — — — — — — —

a2. 10% discount — — — — — — — —

a3. 15% discount — — — — — — — —

a4. apply any taxes x — — — — — — —

a5. apply shipping charges x — — — — — — —

a6. open Payment Screen. x — — — — — — —

Examples ◾ 27

The mechanical expansion raises a few questions; these might be answered by addi-
tional BDD scenarios, or by discussion with the Customer. (Note that one of the
values of a good model is that it stimulates discovery. One historical example: the
Periodic Table of Elements predicted the existence of several chemical elements
before they were shown to exist.) We can/should ask:

 1. What does it mean for c1. Member order to be false?
 2. What is so special about c2. Order price < $200?
 3. What happens when c3. Member selects “Finish” is false?

Some possible answers are as follows:

 1. More than one category of people submitting an order. For now, we will assume
just one category, Non-member.

 2. Actions a1, a2, and a3 suggest there are three ranges of order prices. For now,
we could call them small, medium, or large.

 3. Since this is an online shopping example, we might assume that when c3.
Member selects “Finish” is false, the customer selects a “Order” screen. This, in
turn, will create a new action, a7. Order. A simpler solution is to just not per-
form action a6.

c1. Member Order T T T T F F F F

c2. Order price < $200 T T F F T T F F

c3. Member selects “Finish” T F T F T F T F

a1. no discount x — — — — — — —

a2. 10% discount — — — — — — — —

a3. 15% discount — — — — — — — —

a4. apply any taxes x — — — — — — —

a5. apply shipping charges x — — — — — — —

a6. open Payment Screen. x — — — — — — —

a7. open Order screen — x — x — x — x

With these assumptions, the Member half of our decision table is

c1. Order by Member

c2. Order price is < $200 $200 to $800 > $800

c3. Member selects “Finish” T F T F T F

a1. no discount x — — — — —

(Continued)

28 ◾ Software Testing

a2. 10% discount — — x — — —

a3. 15% discount — — — — x —

a4. apply any taxes x — x — x —

a5. apply shipping charges x — x — x —

a6. open Payment Screen. x — x — x —

a7. open Continue Shopping screen — x — x — x

and the non-Member half is (note change to “Guest”):

c1. Order by Guest

c2. Order price is < $200 $200 to $800 > $800

c3. Member selects “Finish” T F T F T F

a1. no discount x — — — — —

a2. 10% discount — — — — — —

a3. 15% discount — — — — — —

a4. apply any taxes x — x — x —

a5. apply shipping charges x — x — x —

a6. open Payment Screen. x — x — x —

a7. open Continue Shopping screen — x — x — x

At this point, the modeler must either seek new BDD scenarios or speak with the
Customer. For now, assume the modeler learns that

 1. guests receive no discount, regardless of order size, and
 2. shipping charges are applied to any order of price < $200.

This reduces the Guest portion to:

c1. Order by Guest

c2. Order price is —

c3. Member selects “Finish” T F

a1. no discount x x

(Continued)

Examples ◾ 29

a2. 10% discount — —

a3. 15% discount — —

a4. apply any taxes x —

a5. apply shipping charges x x

a6. open Payment Screen. x —

a7. open Continue Shopping screen — x

And the final decision table is

c1. Order by Member Guest

c2. Order price is < $200 $200 to $800 > $800 —

c3. Member selects “Finish” T F T F T F T F

a1. no discount x x — — — — x x

a2. 10% discount — — x — — — — —

a3. 15% discount — — — — x — — —

a4. apply any taxes x x x — x — x —

a5. apply shipping charges x — — — — — x —

a6. open Payment Screen. x — x — x — x —

a7. open Order screen — x — x — x — x

2.5 The Garage Door Controller
A system to open a garage door is comprised of several components: a drive motor,
a drive chain, the garage door wheel tracks, end-of-track sensors, and a wireless con-
trol keypad. The garage door is controlled by the wireless keypad. In addition, there
are two safety features, a laser beam near the floor, and an obstacle sensor. These
latter two devices operate only when the garage door is closing. If the light beam is
interrupted (possibly by a pet), the door immediately stops, and then reverses direc-
tion until the door is fully open. If the door encounters an obstacle while it is clos-
ing (say a child’s tricycle left in the path of the door), the door stops and reverses
direction until it is fully open. There is a third way to stop a door in motion, either
when it is closing or opening—a signal from the wireless keypad. The response to
this signal is different—the door stops in place. A subsequent signal starts the door
in the same direction as when it was stopped. Finally, the end-of-track sensors detect
when the door has moved to one of the extreme positions, either fully open or fully
closed, and stop the drive motor.

30 ◾ Software Testing

2.6 Examples in Exercises
We identify three examples that we will use in the Exercise portions of selected
chapters. Each example is similar to an ongoing example, yet different enough to be
thought provoking.

2.6.1 The Quadrilateral Program

The Quadrilateral Program is deliberately similar to the Triangle Program. It accepts
four integers, a, b, c, and d, as input. These are taken to be sides of a four-sided figure
and they must satisfy the following conditions:

 c1. 1 ≤ a ≤ 200 (top)
 c2. 1 ≤ b ≤ 200 (left side)
 c3. 1 ≤ c ≤ 200 (bottom)
 c4. 1 ≤ d ≤ 200 (right side)

The output of the program is the type of quadrilateral determined by the four sides
(see Figure 2.1): Square, Rectangle, Trapezoid, or General. (Since the problem state-
ment only has information about lengths of the four sides, a square cannot be dis-
tinguished from a rhombus, similarly, a parallelogram cannot be distinguished from
a rectangle.)

 1. A square has two pairs of parallel sides (a||c, b||d), and all sides are equal (a
= b = c = d).

 2. A kite has two pairs of equal sides, but no parallel sides (a = d, b = c).
 3. A rhombus has two pairs of parallel sides (a||c, b||d), and all sides are equal

(a = b = c = d).
 4. A trapezoid has one pair of parallel sides (a||c) and one pair of equal sides (b = d).
 5. A parallelogram has two pairs of parallel sides (a||c, b||d), and two pairs of

equal sides (a = c, b = d).
 6. A rectangle has two pairs of parallel sides (a||c, b||d) and two pairs of equal

sides (a = c, b = d).
 7. A (general) quadrilateral has four sides, none equal and none parallel (aka a

trapezium).

Figure 2.1 The Seven Quadrilaterals.

ParallelogramTrapezoid

d b
a

c
Square Rhombus QuadrilateralKite

dd

Rectangle

a

d b
a

c

d

d
a

b
c

Examples ◾ 31

2.6.2 The NextWeek Function

The complexity in the quadrilateral program is primarily computational. The com-
plexity of the NextWeek function, as with its clone, NextDate, is due to logical rela-
tionships among the input variables. NextWeek is a function of three variables:
month, date, and year. It returns the date of the day one week after the input date.
The month, date, and year variables have integer values subject to these conditions:

 c1. 1 ≤ month ≤ 12
 c2. 1 ≤ day ≤ 31
 c3. 1842 ≤ year ≤ 2042

2.6.3 The Windshield Wiper Controller

An automobile windshield wiper is controlled by a lever with a dial. The lever has
four positions: OFF, INT (for intermittent), LOW, and HIGH; and the dial has three
positions, numbered simply 1, 2, and 3. The dial positions indicate three intermittent
speeds, and the dial position is relevant only when the lever is at the INT position.
The decision table below shows the windshield wiper speeds (in wipes per minute)
for the lever and dial positions.

c1. Lever OFF INT INT INT LOW HIGH

c2. Dial n/a 1 2 3 n/a n/a

a1. Wiper 0 4 6 12 30 60

Exercises
 1. Recall the discussion from Chapter 1 about the relationship between the speci-

fication and the implementation of a program. If you study the implementation
of NextDate carefully, you will see a problem. Look at the Switch clause for
30-day months (4, 6, 9, 11). There is no special action for day = 31. Discuss
whether this implementation is correct. Repeat this discussion for the treatment
of values of day 29 in the Switch clause for February.

 2. In Chapter 1, we mentioned that part of a test case is the expected output. What
would you use as the expected output for a NextDate test case of June 31, 1942?
Why?

 3. One common addition to the triangle problem is to check for right triangles.
Three sides constitute a right triangle if the Pythagorean relationship is satis-
fied: c2 = a2 + b2. This change makes it convenient to require that the sides be
presented in increasing order, i.e., a <= b <= c. Extend public static int triangle3
to include the right triangle feature.

 4. What would the public static int triangle3 do for the sides -3, -3, 5 if it did not
contain the input validation code?

// Step 1: Validate Input
c1 = (1 <= a) && (a <= 200);

32 ◾ Software Testing

c2 = (1 <= b) && (b <= 200);
c3 = (1 <= c) && (c <= 200);

 Discuss this in terms of the considerations we made in Chapter 1.
 5. Consider a function YesterDate as the inverse of NextDate. Given a mon th, day,

year, YesterDate returns the date of the day before. Develop a program for
YesterDate. This is a “symmetric” program to NextDate. For testing purposes, we
could implement

 NextDate(YesterDate(mm. dd. yyyy)
 and get the original date as a result.
 6. Develop a program for NextWeek.

References
Brown, J.R. and Lipov, M., Testing for software reliability, Proceedings of the International

Symposium on Reliable Software, Los Angeles, April 1975, pp. 518–527.
Chellappa, Mallika, Nontraversible Paths in a Program, IEEE Transactions on Software

Engineering, Vol. SE-13, No. 6, June 1987, pp. 751–756.
Clarke, Lori A. and Richardson, Debra J., The application of error sensitive strategies to debug-

ging, ACM SIGSOFT Software Engineering Notes, Vol. 8, No. 4, August 1983.
Clarke, Lori A. and Richardson, Debra J., A reply to Foster’s comment on “The Application

of Error Sensitive Strategies to Debugging”, ACM SIGSOFT Software Engineering Notes,
Vol. 9, No. 1, January 1984.

Gruenberger, F., Program testing, the historical perspective, in Program Test Methods, William
C. Hetzel, Ed., Prentice-Hall, New York, 1973, pp. 11–14.

Hetzel, Bill, The Complete Guide to Software Testing, 2nd ed., QED Information Sciences, Inc.,
Wellesley, MA, 1988.

Inglis, Stuart J., Planets, Stars, and Galaxies, 4th Ed., John Wiley & Sons, New York, 1961.
Myers, Glenford J., The Art of Software Testing, Wiley Interscience, New York, 1979.
Pressman, Roger S., Software Engineering: A Practitioner’s Approach, McGraw-Hill, New York,

1982.

33

Chapter 3

Discrete Math for Testers

More than any other life cycle activity, testing lends itself to mathematical description
and analysis. In this chapter and in the next, testers will find the mathematics they
need. Following the craftsperson metaphor, the mathematical topics presented here are
tools; a testing craftsperson should know how to use them well. With these tools, a tes-
ter gains rigor, precision, and efficiency—all of which improve testing. The “for testers”
part of the chapter title is important: this chapter is written for testers who either have
a sketchy math background or who have forgotten some of the basics. Serious math-
ematicians (or maybe just those who take themselves seriously) will likely be annoyed
by the informal discussion here. Readers who are already comfortable with the topics
in this chapter should skip to the next chapter and start right in on graph theory.

In general, discrete mathematics is more applicable to specification-based testing,
while graph theory pertains more to structural testing. “Discrete” raises a question:
What might be indiscrete about mathematics? The mathematical antonym is continu-
ous, as in calculus, which software developers (and testers) seldom use. Discrete
math includes set theory, functions, relations, propositional logic, and probability
theory, each of which is discussed here.

3.1 Set Theory
How embarrassing to admit, after all the lofty expiation of rigor and precision, that
no explicit definition of a set exists. This is really a nuisance because set theory
is central to these two chapters on math. At this point, mathematicians make an
important distinction: naive versus axiomatic set theory. In naive set theory, a set is
recognized as a primitive term, much like point and line are primitive concepts in
geometry. Here are some synonyms for “set”: collection, group, and bunch—you get
the idea. The important thing about a set is that it lets us refer to several things as
a group, or a whole. For example, we might wish to refer to the set of months that
have exactly 30 days (we need this set when we test the NextDate function from
Chapter 2). In set theory notation, we write:

M1 = {April, June, September, November}

34 ◾ Software Testing

and we read this notation as “M1 is the set whose elements are the months April,
June, September, November.”

3.1.1 Set Membership

The items in a set are called elements or members of the set, and this relationship is
denoted by the symbol ∈. Thus, we could write April ∈ M1. When something is not a
member of a set, we use the symbol ∉, so we might write December ∉ M1.

3.1.2 Set Definition

A set is defined in three ways: by simply listing its elements, by giving a decision
rule, or by constructing a set from other sets. The listing option works well for sets
with only a few elements as well as for sets in which the elements obey an obvious
pattern. We used this method in defining M1 above. We might define the set of allow-
able years in the NextDate program as follows:

Y = {1842, 1843, 1844, …, 2041, 2042}

When we define a set by listing its elements, the order of the elements is irrel-
evant. We will see why when we discuss set equality. The decision rule approach is
more complicated, and this complexity carries both advantages and penalties. We
could define the years for NextDate as:

Y = {year: 1842 ≤ year ≤ 2042}

which reads “Y is the set of all years such that (the colon is “such that”) the years
are between 1842 and 2042 inclusive.” When a decision rule is used to define a set,
the rule must be unambiguous. Given any possible value of year, we can therefore
determine whether that year is in our set Y.

The advantage of defining sets with decision rules is that the unambiguity require-
ment forces clarity. Experienced testers have encountered “untestable requirements.”
Many times, the reason that such requirements cannot be tested boils down to an ambig-
uous decision rule. In our triangle program, for example, suppose we defined a set:

N = {t: t is a nearly equilateral triangle}

We might say that the triangle with sides (300, 300, 299) is an element of N, but how
would we treat the triangles with sides (50, 50, 51) or (5, 5, 6)?

A second advantage of defining sets with decision rules is that we might be inter-
ested in sets where the elements are difficult to list. In the NextDate problem, for
example, we might be interested in the set:

S years year isa leap year� � �:

We cannot easily write down the elements of this set; but given a particular value for
year, we can easily apply the decision rule.

The main disadvantage of decision rules is that they can become logically com-
plex, particularly when they are expressed with the predicate calculus quantifiers ∃
(“there exists”) and ∀ (“for all”). If everyone understands this notation, the precision
is helpful. Too often customers are overwhelmed by statements with these quantifiers.
A second problem with decision rules has to do with self-reference. This is interest-
ing, but it really has very little application for testers. The problem arises when a

Discrete Math for Testers ◾ 35

decision rule refers to itself, which is a circularity. As an example, the Barber of Seville
“is the man who shaves everyone who does not shave himself.” A more entertaining
example is the business card which, on one side says “The statement on the other side
is true.” and the other side says “The statement on the other side is false.”.

3.1.3 The Empty Set

The empty set, denoted by the symbol ∅, occupies a special place in set theory. The
empty set contains no elements. At this point, mathematicians will digress to prove
a lot of facts about empty sets:

 1. The empty set is unique; that is, there cannot be two empty sets (we will take
their word for it).

 2. ∅, {∅}, {{∅}}, are all different sets (we will not need this).

It is useful to note that, when a set is defined by a decision rule that is always false,
the set is empty. For instance, ∅ = {year: 2042 ≤ year ≤ 1842}.

3.1.4 Venn Diagrams

There are two traditional techniques to diagram relationships among sets: Venn dia-
grams, and Euler diagrams. Both help visualize concepts that have already been
expressed textually. The chair of my college Mathematics Department maintained
that, in her words, “Mathematics is not a function of its diagrams.” Maybe not, but
diagrams are certainly expressive, and they promote easy communication and under-
standing. Today, sets are commonly pictured by Venn diagrams—as in Chapter 1,
when we discussed sets of specified and programmed behaviors. In a Venn diagram,
a set is depicted as a circle; points in the interior of the circle correspond to elements
of the set. Then, we might draw our set M1 of 30-day months as in Figure 3.1.

Venn diagrams were originally devised by John Venn, a British logician, in 1881.
Most Venn diagrams show two or three overlapping circles. (It is impossible to show
a Venn diagram of five sets showing all the possible intersections.) Shading is used in
two opposite ways—most often, shaded regions are subsets of interest, but occasionally,
shading is used to indicate an empty region. It is therefore important to include a legend
explicitly stating the meaning of shading. Also, Venn diagrams should be placed within
a rectangle that represents the universe of discourse. Figures 1.3 and 1.4 in Chapter 1
are examples of two- and three-set Venn diagrams. When the circles overlap, there is no
presumption of relationships among the sets; at the same time, the overlapping regions

Figure 3.1 Venn diagram of the set of 30-day months.

April

November

September

June

Univers of Discourse

36 ◾ Software Testing

describe all the potential intersections. It is topologically impossible to draw a Venn
diagram of five sets. Finally, there is no way to diagram the empty set.

Venn diagrams communicate various set relationships in an intuitive way, but
some picky questions arise. What about finite versus infinite sets? Both can be drawn
as Venn diagrams; in the case of finite sets, we cannot assume that every interior point
corresponds to a set element. We do not need to worry about this, but it is helpful
to know the limitations. Sometimes, we will find it helpful to label specific elements.

Another sticking point has to do with the empty set. How do we show that a
set, or maybe a portion of a set, is empty? The common answer is to shade empty
regions, but this is often contradicted by other uses in which shading is used to
highlight regions of interest. The best practice is to provide a legend that clarifies the
intended meaning of shaded areas.

It is often helpful to think of all the sets in a discussion as being subsets of some
larger set, known as the universe of discourse. We did this in Chapter 1 when we chose
the set of all program behaviors as our universe of discourse. The universe of discourse
can usually be guessed from given sets. In Figure 3.1, most people would take the uni-
verse of discourse to be the set of all months in a year. Testers should be aware that
assumed universes of discourse are often sources of confusion. As such, they constitute
a subtle point of miscommunication between customers and developers.

3.1.5 Set Operations

Much of the expressive power of set theory comes from basic operations on sets:
union, intersection, and complement. Other handy operations are used: relative com-
plement, symmetric difference, and Cartesian product. Each of these is defined next.
In each of these definitions, we begin with two sets, A and B, contained in some uni-
verse of discourse U. The definitions use logical connectives from the propositional
calculus: and (∧), or (∨), exclusive–or (⊕), and not (~).

Definition

Given sets A and B,

Their union is the set A ∪ B = {x: x ∈ A ∨ x ∈ B}.
Their intersection is the set A ∩ B = {x: x ∈ A ∧ x ∈ B}.
The complement of A is the set A’ = {x: x ∉A}.
The relative complement of B with respect to A is the set.
 A – B = {x: x ∈ A ∧ x ∉ B}
The symmetric difference of A and B is the set A ⊕ B = {x: x ∈ A ⊕ x ∈ B}.

Venn diagrams for these sets are shown in Figure 3.2.
The intuitive expressive power of Venn diagrams is very useful for describing

relationships among test cases and among items to be tested. Looking at the Venn
diagrams in Figure 3.2, we might guess that:

A ⊕ B = (A ∪ B) – (A ∩ B)

This is the case, and we could prove it with propositional logic.
Venn diagrams are used elsewhere in software development: together with directed

graphs, they are the basis of the statechart notations, which are among the most rig-
orous specification techniques supported by Computer-Aided Software Engineering

Discrete Math for Testers ◾ 37

(CASE) technology. Statecharts are also the control notation chosen for the UML, the
Unified Modeling Language from the IBM Corp. and the Object Management Group.

The Cartesian product (also known as the cross product) of two sets is more
complex; it depends on the notion of ordered pairs, which are two element sets in
which the order of the elements is important. The usual notation for unordered and
ordered pairs is:

 unordered pair: (a, b)
 ordered pair: <a, b>

The difference is that, for a ≠ b, (a, b) = (b, a), but <a, b > ≠ < b, a>. This distinction
is important to the material in Chapter 4; as we shall see, the fundamental difference
between ordinary and directed graphs is exactly the difference between unordered
and ordered pairs.

Definition

The Cartesian product of two sets A and B is the set.

A × B = {<x, y>: x ∈ A ∧ y ∈ B}.

Venn diagrams do not show Cartesian products, so we will look at a short example.
The Cartesian product of the sets A = {1, 2, 3} and B = {w, x, y, z} is the set:

A B
, w , x , y , z , w , x

, y , z
� � � � � � � � � � � � � �

� � � �
1 1 1 1 2 2

2 2

, , , , , ,

, ,, , , ,� � � � � � � �� �3 3 3 3, w , x , y , z

The Cartesian product has an intuitive connection with arithmetic. The cardinality of
a set A is the number of elements in A and is denoted by |A|. (Some authors prefer
Card(A).) For sets A and B, |A × B| = |A| × |B|. When we study specification-based
testing in Chapter 5, we will use the Cartesian product to describe test cases for
programs with several input variables. The multiplicative property of the Cartesian
product means that this form of testing generates a large number of test cases.

3.1.6 Set Relations

We use set operations to construct interesting new sets from existing sets. When we
do, we often would like to know something about the way the new and the old sets
are related. Given two sets, A and B, we define three fundamental set relationships:

Figure 3.2 Venn diagrams of basic sets.

A U B

A B

A ∩ B

A B

A EOR B

A B

A - B

A BA

A’

A

38 ◾ Software Testing

Definition

A is a subset of B, written A ⊆ B, if and only if (iff) a ∈ A ⇒ a ∈ B.
A is a proper subset of B, written A ⊂ B, iff A ⊆ B ∧ B – A ≠ ∅.
A and B are equal sets, written A = B, iff A ⊆ B ∧ B ⊆ A.

Mathematicians use “iff” for “if and only if.” In plain English, set A is a subset of set
B if every element of A is also an element of B. In order to be a proper subset of B,
A must be a subset of B and there must be some element in B that is not an element
of A. Finally, the sets A and B are equal if each is a subset of the other.

3.1.7 Set Partitions

A partition of a set is a very special situation that is extremely important for testers.
Partitions have several analogs in everyday life: we might put up partitions to sepa-
rate an office area into individual offices; we also encounter political partitions when
a state is divided up into legislative districts. In both of these, notice that the sense of
“partition” is to divide up a whole into pieces such that everything is in some piece
and nothing is left out. More formally:

Definition

Given a set A, and a set of subsets A1, A2, …, An of A, the subsets are a partition of A iff

A1 ∪ A2 ∪ … ∪ An = A, and i ≠ j ⇒ Ai ∩ Aj = ∅.

Because a partition is a set of subsets, we frequently refer to individual subsets as
elements of the partition.

The two parts of this definition are important for testers. The first part guarantees
that every element of A is in some partition subset, while the second part guarantees
that no element of A is in two of the partition subsets.

This corresponds well with the legislative districts example: everyone is repre-
sented by some legislator, and nobody is represented by two legislators. A jigsaw
puzzle is another good example of a partition.

Partitions are helpful to testers because the two definitional properties yield
important assurances: completeness (everything is somewhere) and non-redundancy.
When we study specification-based testing, we shall see that its inherent weakness is
the vulnerability to both gaps and redundancies: some things may remain untested,

Figure 3.3 A partition of the universe of discourse.

Discrete Math for Testers ◾ 39

while others are tested repeatedly. One of the difficulties of specification-based test-
ing centers on finding an appropriate partition. In the Triangle Program, for example,
the universe of discourse is the set of all triplets of positive integers. (Note that this
is actually a Cartesian product of the set of positive integers with itself three times.)
We might partition this universe three ways:

 1. Into triangles and non-triangles
 2. Into equilateral, isosceles, scalene, and non-triangles
 3. Into equilateral, isosceles, scalene, right, and non-triangles

At first, these partitions seem okay, but there is a problem with the last partition. The
sets of scalene and right triangles are not disjoint (the triangle with sides 3,4,5 is a
right triangle that is scalene.)

3.1.8 Set Identities

Set operations and relations, when taken together, yield an important class of set
identities that can be used to algebraically simplify complex set expressions. Math
students usually are asked to derive all these; we will just list them and (occasion-
ally) use them.

Name Expression

Identity Laws A ∪ ∅ = A
A ∩ ∪ = A

Domination Laws A ∪ U = U
A ∩ ∅ = ∅

Idempotent Laws A ∪ A = A
A ∩ A = A

Complementation Laws (A’) ’ = A

Commutative Laws A ∪ B = B ∪ A
A ∩ B = B ∩ A

Associative Laws A ∪ (B ∪ C) = (A ∪ B) ∪ C
A ∩ (B ∩ C) = (A ∩ B) ∩ C

Distributive Laws A ∪ B ∩ C) = (A ∪ B) ∩ (A ∪ C)
A ∩ (B U C) = (A ∩ B) U (A ∩ C)

DeMorgan’s Laws (A ∪ B) ’ = A ’ ∩ B′
(A ∩ B) ’ = A ’ ∪ B′

3.2 Functions
Functions are a central notion to software development and testing. The whole func-
tional decomposition paradigm, for example, implicitly uses the mathematical notion
of a function. Informally, a function associates elements of sets. In the NextDate

40 ◾ Software Testing

program, for example, the function of a given date is the date of the following day,
and in the triangle problem, the function of three input integers is the kind of tri-
angle formed by sides with those lengths.

Any program can be thought of as a function that associates its outputs with its
inputs. In the mathematical formulation of a function, the inputs are the domain and
the outputs are the range of the function.

Definition

Given sets A and B, a function f is a subset of A × B such that, for ai, aj ∈ A, bi, bj ∈
B, and f(ai) = bi, f(aj) = bj, bi ≠ bj ⇒ ai ≠ aj.

Formal definitions like this one are notoriously terse, so let us take a closer look.
The inputs to the function f are elements of the set A, and the outputs of f are ele-
ments of B. What the definition says is that the function f is “well behaved” in the
sense that an element in A is never associated with more than one element of B.
(If this could happen, how would we ever test such a function? This would be an
example of non-determinism.)

3.2.1 Domain and Range

In the definition just given, the set A is the domain of the function f, and the set B is
the range. Because input and output have a “natural” order, it is an easy step to say
that a function f is really a set of ordered pairs in which the first element is from the
domain and the second element is from the range. Here are two common notations
for function:

f: A → B

f ⊆ A × B

We have not put any restrictions on the sets A and B in this definition. We could have
A = B, and either A or B could be a Cartesian product of other sets.

3.2.2 Function Types

Functions are further described by particulars of the mapping. In the definition
below, we start with a function f: A → B, and we define the set:

f(A) = {bi ∈ B: bi = f(ai) for some ai ∈ A}

This set is sometimes called the image of A under f.

Definition

f is a function from A onto B iff f(A) = B.
f is a function from A into B iff f(A) ⊂ B (note the proper subset here!)
f is a one-to-one function from A to B iff, for all ai, aj ∈ A, ai ≠ aj ⇒ f(ai) ≠ f(aj).
f is a many-to-one function from A to B iff, there exists ai, aj ∈ A, ai ≠ aj such that

f(ai) = f(aj).

Discrete Math for Testers ◾ 41

Back to plain English, if f is a function from A onto B, we know that every element of
B is associated with some element of A. If f is a function from A into B, we know that
there is at least one element of B that is not associated with an element of A. One-
to-one functions guarantee a form of uniqueness: distinct domain elements are never
mapped to the same range element. (Notice this is the inverse of the “well-behaved”
attribute described earlier.) If a function is not one-to-one, it is many-to-one; that is,
more than one domain element can be mapped to the same range element. In these
terms, the “well-behaved” requirement prohibits functions from being one-to-many.
Testers familiar with relational databases will recognize that all these possibilities
(one-to-one, one-to-many, many-to-one, and many-to-many) are allowed for relations.

Referring again to our testing examples, suppose we take A, B, and C to be sets of
dates for the NextDate program, where:

 A date January date December� � �� �:1 1842 31 2042

 B date January date January� � �� �: 2 1842 1 2043

 C A B� �

Now, NextDate: A → B is a one-to-one, onto function, and NextDate: A → C is a one-
to-one, into function.

It makes no sense for NextDate to be many-to-one, but it is easy to see how the
triangle problem can be many-to-one. When a function is one-to-one and onto, such
as NextDate:A → B previously, each element of the domain corresponds to exactly
one element of the range; conversely, each element of the range corresponds to
exactly one element of the domain. When this happens, it is always possible to find
an inverse function (see the YesterDate excercise in Chapter 2) that is one-to-one
from the range back to the domain.

All this is important for testing. The into versus onto distinction has implications
for domain- and range-based specification-based testing, and one-to-one functions
may require much more testing than many-to-one functions.

3.2.3 Function Composition

Suppose we have sets and functions such that the range of one is the domain of the
next:

f: A → B

g: B → C

h: C → D

When this occurs, we can compose the functions. To do this, let us refer to specific
elements of the domain and range sets a ∈ A, b ∈ B, c ∈ C, d ∈ D, and suppose that
f(a) = b, g(b) = c, and h(c) = d. Now the composition of functions h, g, and f is:

h ⚬ g ⚬ f(a) = h(g(f(a)))
 = h(g(b))
 = h(c)
 = d

42 ◾ Software Testing

Function composition is a very common practice in software development; it is inher-
ent in the process of defining procedures and subroutines.

Composed chains of functions can be problematic for testers, particularly when
the range of one function is a proper subset of the domain of the “next” function in
the chain. A special case of composition can be used, which helps testers in a curi-
ous way. Recall we discussed how one-to-one onto functions always have an inverse
function. It turns out that this inverse function is unique and is guaranteed to exist
(again, the math folks would prove this). If f is a one-to-one function from A onto B,
we denote its unique inverse by f−1. It turns out that for a ∈ A and b ∈ B, f−1 · f(a) = a
and f · f−1(b) = b. The NextDate and YesterDate programs are such inverses. The way
this helps testers is that, for a given function, its inverse acts as a “cross-check,” and
this can often expedite the identification of specification-based test cases.

3.3 Relations
Functions are a special case of a relation: both are subsets of some Cartesian product,
but in the case of functions, we have the “well-behaved” requirement that says that
a domain element cannot be associated with more than one range element. This is
borne out in everyday usage: when we say something “is a function” of something
else, our intent is that there is a deterministic relationship present. Not all relation-
ships are strictly functional. Consider the mapping between a set of patients and a set
of physicians. One patient may be treated by several physicians, and one physician
may treat several patients—a many-to-many mapping.

3.3.1 Relations among Sets

Definition

Given two sets A and B, a relation R is a subset of the Cartesian product A × B.
Two notations are popular; when we wish to speak about the entire relation, we

usually just write R ⊆ A × B; for specific elements ai ∈ A, bi ∈ B, we write ai R bi. Most
math texts omit treatment of relations; we are interested in them because they are
essential to both data modeling and object-oriented analysis.

Next, we need to explain an overloaded term—cardinality. Recall that, as it applies
to sets, cardinality refers to the number of elements in a set. Because a relation is also
a set, we might expect that the cardinality of a relation refers to how many ordered
pairs are in the set R ⊆ A × B. Unfortunately, this is not the case.

Definition

Given two sets A and B, a relation R ⊆ A × B, the cardinality of relation R is:

One-to-one iff R is a one-to-one function from A to B.
Many-to-one iff R is a many-to-one function from A to B.
One-to-many iff at least one element a ∈ A is in two ordered pairs in R, that is <a,

bi > ∈ R and < a, bj > ∈ R.
Many-to-many iff at least one element a ∈ A is in two ordered pairs in R, that is

<a, bi > ∈ R and < a, bj > ∈ R and at least one element b ∈ B is in two ordered
pairs in R, that is <ai, b > ∈ R and < aj, b > ∈ R.

Discrete Math for Testers ◾ 43

The distinction between functions into and onto their range has an analog in relations—
the notion of participation.

Definition

Given two sets A and B, a relation R ⊆ A × B, the participation of relation R is:

Total iff every element of A is in some ordered pair in R
Partial iff some element of A is not in some ordered pair in R
Onto iff every element of B is in some ordered pair in R
Into iff some element of B is not in some ordered pair in R

In plain English, a relation is total if it applies to every element of A, and partial if
it does not apply to every element. Another term for this distinction is mandatory
versus optional participation. Similarly, a relation is onto if it applies to every ele-
ment of B, and into if it does not. The parallelism between total/partial and onto/
into is curious and deserves special mention here. From the standpoint of relational
database theory, no reason exists for this; in fact, a compelling reason exists to avoid
this distinction. Data modeling is essentially declarative, while process modeling is
essentially imperative. The parallel sets of terms force a direction on relations, when
in fact no need exists for the directionality. Part of this is a likely holdover from the
fact that Cartesian products consist of ordered pairs, which clearly have a first and
second element.

The cardinality and participation concepts are nicely merged in the UML (min, max)
notation for relations. For a relation R(min,max) on sets A and B (see Figure 3.4), we
have the following:

In A(min, max), if min = 0 participation in relation R is partial; if min = 1 partici-
pation in relation R is total. In B(min, max), if min = 0 the mapping is into; if min = 1
the mapping is onto. Here are some examples:

In Figure 3.5,

R1 is a partial one-to-one mapping of A into B,
R2 is a total one-to-one mapping of A onto B,
R3 is a partial one-to-many mapping of A into B, and
R4 is a total one-to-many mapping of A onto B.

So far, we have only considered relations between two sets. Extending relations to
three or more sets is more complicated than simply the Cartesian product. Suppose,
for example, we had three sets, A, B, and C, and a relation R ⊆ A × B × C. Do we intend
the relation to be strictly among three elements, or is it between one element and
an ordered pair (there would be three possibilities here)? This line of thinking also

Figure 3.4 Relation R on sets A and B.

A BR
(min, max) (min, max)

44 ◾ Software Testing

needs to be applied to the definitions of cardinality and participation. It is straight-
forward for participation, but cardinality is essentially a binary property. (Suppose,
for example the relation is one-to-one from A to B and is many-to-one from A to C.)
We discussed a three-way relation in Chapter 1, when we examined the relationships
among specified, implemented, and tested program behaviors. We would like to have
some form of totality between test cases and specification–implementation pairs; we
will revisit this when we study functional and structural testing.

Testers need to be concerned with the definitions of relations because they bear
directly on software properties to be tested. The onto/into distinction, for example,
bears directly on what we will call output-based functional testing. The mandatory–
optional distinction is the essence of exception handling, which also has implications
for testers.

3.3.2 Relations on a Single Set

Two important mathematical relations are used, both of which are defined on a
single set: ordering relations and equivalence relations. Both are defined with respect
to specific properties of relations.

Let A be a set, and let R ⊆ A × A be a relation defined on A, with <a, a>, <a, b>,
<b, a>, <b, c>, <a, c > ∈ R. Relations have four special attributes:

Definition

A relation R ⊆ A × A is:

Reflexive iff for all a ∈ A, <a, a > ∈ R.
Symmetric iff < a, b > ∈ R ⇒ <b, a > ∈ R.
Antisymmetric < a, b>, <b, a > ∈ R ⇒ a = b.
Transitive iff < a, b>, <b, c > ∈ R ⇒ <a, c > ∈ R.

Family relationships are nice examples of these properties. You might want to think
about the following relationships and decide for yourself which attributes apply:
brother of, sibling of, and ancestor of. Now we can define the two important relations.

Figure 3.5 Examples of (min,max) related to Cardinality and Participation.

A BR1
(0, 1) (0, 1)

A BR2
(1, 1) (1, 1)

A BR3
(0, 1) (0, n)

A BR4
(1, 1) (1, n)

Discrete Math for Testers ◾ 45

Definition

A relation R ⊆ A × A is an ordering relation if R is reflexive, antisymmetric, and
transitive.

Ordering relations have a sense of direction; some common ordering relations
are Older than, ≥, ⇒, and Ancestor of. (The reflexive part usually requires some
fudging—we really should say Not Younger Than and Not a Descendant of.) Ordering
relations are a common occurrence in software: data access techniques, hashing
codes, tree structures, and arrays are all situations in which ordering relations are
used.

The power set of a given set is the set of all subsets of the given set. The power
set of the set A is denoted P(A). The subset relation ⊆ is an ordering relation on P(A),
because it is reflexive (any set is trivially a subset of itself), it is antisymmetric (the
definition of set equality), and it is transitive.

Definition

A relation R ⊆ A × A is an equivalence relation if R is reflexive, symmetric, and
transitive.

Mathematics is full of equivalence relations: equality and congruence are two
quick examples. A very important connection exists between equivalence relations
and partitions of a set. Suppose we have some partition A1, A2, …, An of a set B, and
we say that two elements, b1 and b2 of B, are related (i.e., b1 R b2) if b1 and b2 are in
the same partition element. This relation is reflexive (any element is in its own parti-
tion), it is symmetric (if b1 and b2 are in a partition element, then b2 and b1 are), and
it is transitive (if b1 and b2 are in the same set, and if b2 and b3 are in the same set,
then b1 and b3 are in the same set). The relation defined from the partition is called
the equivalence relation induced by the partition.

The converse process works in the same way. If we start with an equivalence rela-
tion defined on a set, we can define subsets according to elements that are related to
each other. This turns out to be a partition, and it is called the partition induced by
the equivalence relation. The sets in this partition are known as equivalence classes.
The end result is that partitions and equivalence relations are interchangeable, and
this becomes a powerful concept for testers. Recall that the two properties of a parti-
tion are notions of completeness and non-redundancy. When translated into testing
situations, these notions allow testers to make powerful, absolute statements about
the extent to which a software item has been tested. In addition, great efficiency
follows from testing just one element of an equivalence class and assuming that the
remaining elements will behave similarly.

3.4 Propositional Logic
We have already been using propositional logic notation; if you were perplexed by
this usage definition before, you are not alone. Set theory and propositional logic
have a chicken-and-egg relationship—it is hard to decide which should be discussed
first. Just as sets are taken as primitive terms and are therefore not defined, we take
propositions to be primitive terms. A proposition is a sentence that is either true or

46 ◾ Software Testing

false, and we call these the truth values of the proposition. Furthermore, propositions
are unambiguous: given a proposition, it is always possible to tell whether it is true
or false. The sentence “Mathematics is difficult” would not qualify as a proposition
because of the ambiguity. There are also temporal and spatial aspects of proposi-
tions. For example, “It is raining” may be true at some times at false at others. In
addition, it may be true for one person and false for another at the same time but
different locations. We usually denote propositions with lower-case letters p, q, and r.
Propositional logic has operations, expressions, and identities that are very similar
(in fact, they are isomorphic) to set theory.

3.4.1 Logical Operators

Logical operators (also known as logical connectives or operations) are defined in
terms of their effect on the truth values of the propositions to which they are applied.
This is easy, only two values are used: T (for true) and F (for false). Arithmetic opera-
tors could also be defined this way (in fact, that is how they are taught to children),
but the tables become too large. The three basic logical operators are and (∧) or
(∨), and not (~); these are sometimes called conjunction, disjunction, and negation.
Negation is the only unary (one operand) logical operator; the others are all binary.
These, and other logical operators, are defined by “truth tables” such as this one that
defines and (∧) or (∨), and not (~).

p q p ∧ q p ∨ q ~ p

T T T T F

T F F T F

F T F T T

F F F F T

Conjunction and disjunction are familiar in everyday life: a conjunction is true only
when all components are true, and a disjunction is true if at least one component is
true. Negations also behave as we expect. Two other common connectives are used:
exclusive–or (⊕) and IF–THEN (→). They are defined as follows:

p q p ⊕ q p → q

T T F T

T F T F

F T T T

F F F T

An exclusive–or is true only when one of the propositions is true, while a disjunction
(inclusive–or) is true also when both propositions are true. The IF–THEN connective

Discrete Math for Testers ◾ 47

usually causes the most difficulty. The easy view is that this is just a definition; but
because the other connectives all transfer nicely to natural language, we have similar
expectations for IF–THEN. The quick answer is that the IF–THEN connective is closely
related to the process of deduction: in a valid deductive syllogism, we can say “if
premises, then conclusion” and the IF–THEN statement will be a tautology.

3.4.2 Logical Expressions

We use logical operators to build logical expressions in exactly the same way that we
use arithmetic operators to build algebraic expressions. We can specify the order in
which operators are applied with the usual conventions on parentheses, or we can
employ a precedence order (negation first, then conjunction followed by disjunc-
tion). Given a logical expression, we can always find its truth table by “building up”
to it following the order determined by the parentheses. For example, the expres-
sion ~((p → q) ∧ (q → p)) has the following truth table (note the equivalence to
Exclusive OR):

p q p → q q → p (p → q) ∧ (q → p) ~((p → q) ∧ (q → p))

T T T T T F

T F F T F T

F T T F F T

F F T T T F

3.4.3 Logical Equivalence

The notions of arithmetic equality and identical sets have analogs in propositional
logic. Notice that the expressions ~((p → q) ∧ (q → p)) and p ⊕ q have identical truth
tables. This means that, no matter what truth values are given to the base proposi-
tions p and q, these expressions will always have the same truth value. This property
can be defined in several ways; we use the simplest.

Definition

Two propositions p and q are logically equivalent (denoted p ⇔ q) iff their truth
tables are identical.

By the way, the curious “iff” abbreviation we have been using for “if and only if”
is sometimes called the bi-conditional, so the proposition p iff q is really (p → q) ∧
(q → p), which is denoted p ⇔ q.

Definition

A proposition that is always true is a tautology; a proposition that is always false is
a contradiction.

In order to be a tautology or a contradiction, a proposition must contain at least
one connective and two or more primitive propositions. We sometimes denote a

48 ◾ Software Testing

tautology as a proposition T, and a contradiction as a proposition F. We can now state
several laws that are direct analogs of the ones we had for sets.

Law Expression

Identity p ∧ T ⇔ p

p ∨ F ⇔ p

Domination p ∨ T ⇔ T

p ∧ F ⇔ F

Idempotent p ∧ p ⇔ p

p ∨ p ⇔ p

Complementation ~(~p) ⇔ p

Commutative p ∧ q ⇔ q ∧ p

p ∨ q ⇔ q ∨ p

Associative p ∧ (q ∧ r) ⇔ (p ∧ q) ∧ r

p ∨ (q ∨ r) ⇔ (p ∨ q) ∨ r

Distributive p ∧ (q ∨ r) ⇔ (p ∧ q) ∨ (p ∧ r)

p ∨ (q ∧ r) ⇔ (p ∨ q) ∧ (p ∨ r)

DeMorgan’s Laws ~(p ∧ q) ⇔ ~p ∨ ~q

~(p ∨ q) ⇔ ~p ∧ ~q

3.4.4 Probability Theory

We will have two occasions to use probability theory in our study of software testing:
one deals with the probability that a particular path of statements executes, and the
other generalizes this to a popular industrial concept called an operational profile
(see Chapter 13). Because of this limited use, we will only cover the rudiments here.

As with both set theory and propositional logic, we start out with a primitive
concept—the probability of an event. Here is the definition provided by a classic
textbook (Rosen, 1991):

The probability of an event E, which is a subset of a finite sample space S
of equally likely outcomes, is p(E) = |E|/|S|, where |E| denotes the car-
dinality (number of elements) of the set E.

This definition hinges on the idea of an experiment that results in an outcome, the
sample space is the set of all possible outcomes, and an event is a subset of out-
comes. This definition is circular: What are “equally likely” outcomes? We assume
these have equal probabilities, but then probability is defined in terms of itself.

Discrete Math for Testers ◾ 49

The French mathematician Laplace had a reasonable working definition of proba-
bility two centuries ago. To paraphrase it, the probability that something occurs is the
number of favorable ways it can occur divided by the total number of ways (favorable
and unfavorable). Laplace’s definition works well when we are concerned with draw-
ing colored marbles out of a bag (probability folks are unusually concerned with
their marbles; maybe there’s a lesson here), but it does not extend well to situations
in which it is hard to enumerate the various possibilities.

We will use our (refurbished) capabilities in set theory and propositional logic to
arrive at a more cohesive formulation. As testers, we will be concerned with things
that happen; we will call these events and say that the set of all events is our universe
of discourse. Next, we will devise propositions about events, such that the proposi-
tions refer to elements in the universe of discourse. Now, for some universe U and
some proposition p about elements of U, we make a definition:

Definition

The truth set T of a proposition p, written T(p), is the set of all elements in the uni-
verse U for which p is true.

Propositions are either true or false, therefore, a proposition p divides the uni-
verse of discourse into two sets, T(p) and (T(p))’, where T(p) U (T(p))’ = U. Notice
that (T(p))’ is the same as T(~p). Truth sets facilitate a clear mapping among set
theory, propositional logic, and probability theory.

Definition

The probability that a proposition p is true, denoted Pr(p), is |T(p)|/|U|.
With this definition, Laplace’s “number of favorable ways” becomes the cardinal-

ity of the truth set T(p), and the total number of ways becomes the cardinality of
the universe of discourse. This forces one more connection: because the truth set of
a tautology is the universe of discourse, and the truth set of a contradiction is the
empty set, the probabilities of ∅ and U are, respectively, 0 and 1.

The NextDate problem is a good source of examples. Consider the month variable
and the proposition:

p(m): m is a 30-day month

The universe of discourse is the set U = {Jan., Feb., …, Dec.}, and the truth set of
p(m) is the set

T(p(m)) = {Apr., June, Sept., Nov.}

Now, the probability that a given month is a 30-day month is:

Pr(p(m)) = |T(p(m))|/|U| = 4/12.

A subtlety exists in the role of the universe of discourse; this is part of the craft
of using probability theory in testing—choosing the right universe. Suppose we want
to know the probability that a month is February. The quick answer: 1/12. Now, sup-
pose we want the probability of a month with exactly 29 days. Less easy—we need a

50 ◾ Software Testing

universe that includes both leap years and common years. We could use congruence
arithmetic and choose a universe that consists of months in a period of four consecu-
tive years—say 1991, 1992, 1993, and 1994. This universe would contain 48 “months,”
and in this universe, the probability of a 29-day month is 1/48. Another possibility
would be to use the 200 year range of the NextDate program, in which the year 1900
is not a leap year. This would slightly reduce the probability of a 29-day month. One
conclusion: getting the right universe is important. A bigger conclusion: it is even
more important to avoid “shifting universes.”

Here are some facts about probabilities that we will use without proof. They refer
to a given universe, propositions p and q, with truth sets T(p) and T(q):

 Pr ~ Prp p� � � � �1�

 Pr Pr Prp q p q�� � � � �� � �

 Pr Pr Pr Prp q p q p q�� � � � � � � � �� ��

These facts, together with the tables of set theory and propositional identities, pro-
vide a strong algebraic capability to manipulate probability expressions.

Exercises

Operation Propositional Logic Set Theory

Disjunction Or Union

Conjunction And Intersection

Negation Not Complement

Implication If, Then Subset

Exclusive or Symmetric difference

 1. A very deep connection (an isomorphism) exists between set operations and
the logical connectives in the propositional logic (see the table above). For sets
A and B….
 a. Express A ⊕ B in words.
 b. Express (A ∪ B) – (A ∩ B) in words.
 c. Convince yourself that A ⊕ B and (A ∪ B) – (A ∩ B) are the same set.
 d. Is it true that A ⊕ B = (A – B) ∪ (B – A)?

 2. In many parts of the U.S., real estate taxes are levied by different taxing bodies,
for example, a school district, a fire protection district, a township, and so on.
Discuss whether these taxing bodies form a partition of a state. Do the 50 states
form a partition of the United States of America? (What about the District of
Columbia?)

Discrete Math for Testers ◾ 51

 3. Is brotherOf an equivalence relation on the set of all people?? How about sib-
lingOf?, sameBirthdayAs?

 4. In the text after Figure 3.5, four relations are given as examples. In A(min, max),
min can have the values 0 and 1, and max can have the values 1 and n (where
n means “many”). Similarly, in B(min, max), min can have the values 0 and 1,
and max can have the values 1 and n. List all the combinations of (min, max)
values to identify the full set of possible relation types between two sets A and
B. Try to express a few of them as examples.

 Here is one example, a relation between patients (A) and physicians (B):
 Some facts:

 1. a patient may be treated by more than one physician
 2. a physician may treat more than one patient
 3. some patients are not treated by any physician
 4. some physicians might not treat any patients

 Taken together, these facts define a many-to-many relation between patients
 and physicians, that is Partial (point 3) and Into (point 4). We could write this
 as A(0,n) and B(0,n).

Reference
Rosen, Kenneth H., Discrete Mathematics and Its Applications, McGraw-Hill, New York, 1991.

https://taylorandfrancis.com

53

Chapter 4

Graph Theory for Testers

Graph theory is a branch of topology that is sometimes referred to as “rubber sheet
geometry.” Curious, because the rubber sheet parts of topology have little to do with
graph theory; furthermore, the graphs in graph theory do not involve axes, scales,
points, and curves as you might expect. Whatever the origin of the term, graph
theory is probably the most useful part of mathematics for computer science—far
more useful than calculus—yet it is not commonly taught. Our excursion into graph
theory will follow a “pure math” spirit: in which definitions are as devoid of specific
interpretations as possible. Postponing interpretations results in maximum latitude
in interpretations later, much like well-defined abstract data types promote reuse.

Two basic kinds of graphs are used: undirected and directed. Because the latter
are a special case of the former, we begin with undirected graphs. This will allow us
to inherit many concepts when we get to directed graphs.

4.1 Graphs
A graph (also known as a linear graph) is an abstract mathematical structure defined
from two sets—a set of nodes and a set of edges that form connections between
nodes. A computer network is a fine example of a graph. More formally.

Definition

A graph G = (V, E) is composed of a finite (and nonempty) set V of nodes and a set
E of unordered pairs of nodes (edges between nodes).

The usual notation is for a graph with m nodes and p edges is V = {n1, n2, …, nm}
and E = {e1, e2, …, ep}, where each edge ek = {ni, nj} for some nodes ni, nj ∈ V. Nodes
are sometimes called vertices; edges are sometimes called arcs; and we sometimes
call nodes the endpoints of an arc. The common visual form of a graph shows nodes
as circles and edges as lines connecting pairs of nodes, as in Figure 4.1. We will use
this figure as a continuing example, so take a minute to become familiar with it.

54 ◾ Software Engineering

In the graph in Figure 4.1, the node and edge sets are

V = {n1, n2, n3, n4, n5, n6, n7}

E = {e1, e2, e3, e4, e5}

= {(n1, n2), (n1, n4), (n3, n4), (n2, n5), (n4, n6)}

To define a particular graph, we must first define a set of nodes and then define a set
of edges between pairs of nodes. We can think of nodes as program statements or as
program units, and we have various kinds of edges, representing, for instance, flow
of control, define/use relationships, or message connection.

4.1.1 Degree of a Node

Definition

The degree of a node in a graph is the number of edges that have that node as an
endpoint. We write deg(n) for the degree of node n.

We might say that the degree of a node indicates its “popularity” in a graph. In
fact, social scientists use graphs to describe social interactions, in which nodes are
people, edges often refer to things like “friendship,” “communicates with,” and so on.
If we make a graph in which classes are nodes and edges are messages, the degree
of a node (object) indicates the extent of integration testing that is appropriate for
the class.

The degrees of the nodes in Figure 4.1 are:

deg ,deg ,deg ,deg ,deg ,degn n n n n n1 2 3 4 5 62 2 1 3 1� � � � � � � � � � � � � � � � � � 11 07, deg .and n� � �

4.1.2 Incidence Matrices

Graphs need not be represented pictorially—they can be fully represented in an
incidence matrix. This concept becomes very useful for testers, so we will formalize
it here. When graphs are given a specific interpretation, the incidence matrix always
provides useful information for the new interpretation.

Figure 4.1 A graph with seven nodes and five edges.

n1 n2

n3 n4

n5

n6

n7

e2

e5

e2

e5

e1

e3

e4

Graph Theory for Testers ◾ 55

Definition

The incidence matrix of a graph G = (V, E) with m nodes and n edges is an m × n
matrix, where the element in row i, column j is a 1 if and only if node i is an endpoint
of edge j; otherwise, the element is 0.

The incidence matrix of the graph in Figure 4.1 is

e1 e2 e3 e4 e5

n1 1 1 0 0 0

n2 1 0 0 1 0

n3 0 0 1 0 0

n4 0 1 1 0 1

n5 0 0 0 1 0

n6 0 0 0 0 1

n7 0 0 0 0 0

We can make some observations about a graph by examining its incidence matrix.
First, notice that the sum of the entries in any column is 2. That is because every edge
has exactly two endpoints. If a column sum in an incidence matrix is ever something
other than 2, there is a mistake somewhere. Thus, forming column sums is a form of
integrity checking similar in spirit to that of parity checks. Next, we see that the row
sum is the degree of the node. When the degree of a node is zero, as it is for node
n7, we say the node is isolated. (This might correspond to unreachable code, or to
objects that are included but never used.)

4.1.3 Adjacency Matrices

The adjacency matrix of a graph is a useful supplement to the incidence matrix.
Because adjacency matrices deal with connections, they are the basis of many later
graph theory concepts. Given a graph, we can always find its adjacency matrix, and,
given an adjacency matrix, we can always create a member of a set of topologically
equivalent graphs (the placement of nodes may be different, but the connectivity
will be the same. This might seem like a trivial point, but consider the two graphs
in Figure 4.2. They are visually different, but topologically equivalent (because they
have the same adjacency matrix).

Figure 4.2 Two equivalent graphs.

n1 n2

n3n4

e2

n1 n3

n2n4

e2

e1

e3

e4 e2
e1

e3e4

56 ◾ Software Engineering

Definition

The adjacency matrix of a graph G = (V, E) with m nodes is an m × m matrix, where
the element in row i, column j is a 1 if and only if an edge exists between node i and
node j; otherwise, the element is 0.

The adjacency matrix is symmetric (element i,j always equals element j,i), and a
row sum is the degree of the node (as it was in the incidence matrix). The adjacency
matrix of the graph in Figure 4.1 is:

n1 n2 n3 n4 n5 n6 n7

n1 0 1 0 1 0 0 0

n2 1 0 0 0 1 0 0

n3 0 0 0 1 0 0 0

n4 1 0 1 0 0 1 0

n5 0 1 0 0 0 0 0

n6 0 0 0 1 0 0 0

n7 0 0 0 0 0 0 0

4.1.4 Paths

As a preview of how we will use graph theory, the code-based approaches to testing
(see Part II) all center on types of paths in a program. Here, we define (interpretation-
free) paths in a graph.

Definition

A path is a sequence of edges such that, for any adjacent pair of edges ei, ej in the
sequence, the edges share a common (node) endpoint.

Paths can be described either as sequences of edges or as sequences of nodes;
the node sequence choice is more common. Some paths in the graph in Figure 4.1:

Path Node Sequence Edge Sequence

Between n1 and n5 n1, n2, n5 e1, e4

Between n6 and n5 n6, n4, n1, n2, n5 e5, e2, e1, e4

Between n3 and n2 n3, n4, n1, n2 e3, e2, e1

Paths can be generated directly from the adjacency matrix of a graph using a binary
form of matrix multiplication and addition. In our continuing example, edge e1 is
between nodes n1 and n2, and edge e4 is between nodes n2 and n5. In the product of
the adjacency matrix with itself, the element in position (1, 2) forms a product with
the element in position (2, 5), yielding an element in position (1, 5), which corre-
sponds to the two-edge path between n1 and n5. If we multiplied the product matrix
by the original adjacency matrix again, we would get all three edge paths, and so on.

Graph Theory for Testers ◾ 57

At this point, the pure math folks go into a long digression to determine the length
of the longest path in a graph; we will not bother. Instead, we focus our interest on
the fact that paths connect “distant” nodes in a graph.

The graph in Figure 4.1 predisposes a problem. It is not completely general,
because it does not show all the situations that might occur in a graph. In particular,
no paths exist in which a node occurs twice in the path. If it did, the path would be a
loop (or circuit). We could create a circuit by adding an edge between nodes n3 and n6.

4.1.5 Connectedness

Paths let us speak about nodes that are connected; this leads to a powerful simplifica-
tion device that is very important for testers.

Definition

Two nodes are connected if and only if they are in the same path.
“Connectedness” is an equivalence relation (see Chapter 3) on the node set of a

graph. To see this, we can check the three defining properties of equivalence relations:

 1. Connectedness is reflexive, because every node is, by default, in a path of
length 0 with itself. (Sometimes, for emphasis, an edge is shown that begins and
ends on the same node.)

 2. Connectedness is symmetric, because if nodes ni and nj are in a path, then
nodes nj and ni are in the same path.

 3. Connectedness is transitive (see the discussion of adjacency matrix multiplica-
tion for paths of length 2).

Equivalence relations induce a partition (see Chapter 3 if you need a reminder);
therefore, we are guaranteed that connectedness defines a partition on the node set
of a graph. This permits the definition of components of a graph:

Definition

A component of a graph is a maximal set of connected nodes.
Nodes in the equivalence classes are components of the graph. The classes

are maximal due to the transitivity part of the equivalence relation. The graph in
Figure 4.1 has two components: {n1, n2, n3, n4, n5, n6} and {n7}.

4.1.6 Condensation Graphs

We are finally in a position to formalize an important simplification mechanism for
testers.

Definition

Given a graph G = (V, E), its condensation graph is formed by replacing each com-
ponent by a condensing node.

Developing the condensation graph of a given graph is an unambiguous (i.e.,
algorithmic) process. We use the adjacency matrix to identify path connectivity and
then use the equivalence relation to identify components. The absolute nature of this
process is important: the condensation graph of a given graph is unique. This implies
that the resulting simplification represents an important aspect of the original graph.

58 ◾ Software Engineering

The components in our continuing example are S1 = {n1, n2, n3, n4, n5, n6} and
S2 = {n7}.

No edges can be present in a condensation graph of an ordinary (undirected)
graph. Two reasons are:

 1. Edges have individual nodes as endpoints, not sets of nodes. (Here, we can
finally use the distinction between n7 and {n7}.)

 2. Even if we fudge the definition of edge to ignore this distinction, a possible
edge would mean that nodes from two different components were connected,
thus in a path, thus in the same (maximal!) component.

The implication for testing is that components are independent in an important way,
thus they can be tested separately. For large graphs, the corresponding condensation
graphs are a way to reduce the problem(s) of size without losing and important con-
nectivity among condensation nodes.

4.1.7 Cyclomatic Number

The cyclomatic complexity property of graphs has deep implications for testing.

Definition

The cyclomatic number of a graph G is given by V(G) = e – n + p, where

e is the number of edges in G
n is the number of nodes in G
p is the number of components in G

V(G) is the number of distinct regions in a strongly connected directed graph. In
Chapter 8, we will examine a formulation of code-based testing that considers all
the paths in a program graph to be a vector space. There are V(G) elements in the
set of basis vectors for this space. The cyclomatic number of our example graph is
V(G) = 5 − 7 + 2 = 0. This is not a very good example for cyclomatic complexity.
When we use cyclomatic complexity in Chapter 8, and expand on it in Chapter 14,
we will (usually) have strongly connected graphs, which will have a larger cyclomatic
complexity than this small example.

4.2 Directed Graphs
Directed graphs are a slight refinement to ordinary graphs: edges acquire a sense
of direction. Symbolically, the unordered pairs (ni, nj) become ordered pairs <ni, nj>,
and we speak of a directed edge going from node ni to nj, instead of being between
the nodes.

Definition

A directed graph (or digraph) D = (V, E) consists of a finite set V = {n1, n2, …, nm}
of nodes, and a set E = {e1, e2, …, ep} of edges, where each edge ek = <ni, nj> is an
ordered pair of nodes ni, nj ∈V.

Graph Theory for Testers ◾ 59

In the directed edge ek = <ni, nj>, ni is the initial (or start) node, and nj is the
terminal (or finish) node. Edges in directed graphs fit naturally with many software
concepts: sequential behavior, imperative programming languages, time-ordered
events, define/reference pairings, messages, function and procedure calls, and so on.
Given this, you might ask why we spent (wasted?) so much time on ordinary graphs.
The difference between ordinary and directed graphs is very analogous to the dif-
ference between declarative and imperative programming languages. In imperative
languages (e.g., COBOL, FORTRAN, Pascal, C, Java, Ada®), the sequential order of
source language statements determines the execution time order of compiled code.
This is not true for declarative languages (such as Prolog). The most common declar-
ative situation for most software developers is Entity/Relationship modeling. In an
E/R model, we choose entities as nodes and identify relationships as edges. (If a
relationship involves three or more entities, we need the notion of a “hyper-edge”
that has three or more endpoints.) The resulting graph of an E/R model is more
properly interpreted as an ordinary graph. Good E/R modeling practice suppresses
the sequential thinking that directed graphs promote.

When testing a program written in a declarative language, the only concepts
available to the tester are those that follow from ordinary graphs. Fortunately, most
software is developed in imperative languages so testers usually have the full power
of directed graphs at their disposal.

The next series of definitions roughly parallels the ones for ordinary graphs. We
modify our now familiar continuing example to the one shown in Figure 4.3.

We have the same node set V = {n1, n2, n3, n4, n5, n6, n7}, and the edge set appears
to be the same: E = {e1, e2, e3, e4, e5}. The difference is that the edges are now ordered
pairs of nodes in V:

E = {<n1, n2>, <n1, n4>, <n3, n4>, <n2, n5>, <n4, n6>, <n6, n3>}

4.2.1 Indegrees and Outdegrees

The degree of a node in an ordinary graph is refined to reflect direction, as follows:

Definition

The indegree of a node in a directed graph is the number of distinct edges that have
the node as a terminal node. We write indeg(n) for the indegree of node n.

Figure 4.3 A directed graph.

n1 n2

n3 n4

n5

n6

n7

e2

e1

e3

e6

e4

e5

60 ◾ Software Engineering

The outdegree of a node in a directed graph is the number of distinct edges that
have the node as a start point. We write outdeg(n) for the outdegree of node n.

The nodes in the digraph in Figure 4.3 have the following indegrees and
outdegrees:

indeg(n1) = 0 outdeg(n1) = 2
indeg(n2) = 1 outdeg(n2) = 1
indeg(n3) = 0 outdeg(n3) = 1
indeg(n4) = 2 outdeg(n4) = 1
indeg(n5) = 1 outdeg(n5) = 0
indeg(n6) = 1 outdeg(n6) = 0
indeg(n7) = 0 outdeg(n7) = 0

Ordinary and directed graphs meet through definitions that relate obvious corre-
spondences, such as: deg(n) = indeg(n) + outdeg(n).

4.2.2 Types of Nodes

The added descriptive power of directed graphs lets us define different kinds of
nodes:

Definition

A node with indegree = 0 is a source node.
A node with outdegree = 0 is a sink node.
A node with indegree ≠ 0 and outdegree ≠ 0 is a transfer node.

Source and sink nodes constitute the external boundary of a graph. If we made a
directed graph of a context diagram (from a set of dataflow diagrams produced by
structured analysis), the external entities would be source and sink nodes.

In our continuing example, n1, n3, and n7 are source nodes; n5, n6, and n7 are sink
nodes; and n2 and n4 are transfer (also known as interior) nodes. A node that is both
a source and a sink node is an isolated node, e.g., n7.

4.2.3 Adjacency Matrix of a Directed Graph

As we might expect, the addition of direction to edges changes the definition of the
adjacency matrix of a directed graph. (It also changes the incidence matrix, but this
matrix is seldom used in conjunction with digraphs.)

Definition

The adjacency matrix of a directed graph D = (V, E) with m nodes is an m × m
matrix: A = (a(i, j)) where a(i, j) is a 1 if and only if there is an edge from node i to
node j; otherwise, the element is 0.

The adjacency matrix of a directed graph is not necessarily symmetric. A row sum
is the outdegree of the node; a column sum is the indegree of a node. The adjacency
matrix of our continuing example is:

Graph Theory for Testers ◾ 61

n1 n2 n3 n4 n5 n6 n7

n1 0 1 0 1 0 0 0

n2 0 0 0 0 1 0 0

n3 0 0 0 1 0 0 0

n4 0 0 0 0 0 1 0

n5 0 0 0 0 0 0 0

n6 0 0 0 0 0 0 0

n7 0 0 0 0 0 0 0

One common use of directed graphs is to record family relationships, in which sib-
lings, cousins, and so on are connected by an ancestor; and parents, grandparents,
and so on are connected by a descendant. Entries in powers of the adjacency matrix
now show existence of directed paths. As we saw with ordinary graphs, given a
directed graph, we can always find its adjacency matrix, and, given an adjacency
matrix, we can always create a member of a set of topologically equivalent directed
graphs (the placement of nodes may be different, but the connectivity will be the
same. This might seem like a trivial point but consider the two graphs in Figure
4.4. Both are cycles (to be defined later), but this is more readily apparent in the
left graph. (My undergraduate math professor always maintained that mathematics
is NOT a function of its drawings, but if our goal is communication, the difference
is clear.)

4.2.4 Paths and Semipaths

Direction permits a more precise meaning to paths that connect nodes in a directed
graph. As a handy analogy, think of edges as one-way and two-way streets.

Definition

A (directed) path is a sequence of edges such that, for any adjacent pair of edges
ei, ej, in the sequence, the terminal node of the first edge is the initial node of the
second edge.

A cycle is a directed path that begins and ends at the same node.

Figure 4.4 Two equivalent graphs.

n1 n2

n3n4

n1 n3

n2n4

e2e4 e3
e1

e2e4

e1

e3

62 ◾ Software Engineering

A chain is a sequence of nodes such that each interior node has indegree = 1 and
outdegree = 1. The initial node may have indegree = 0 or indegree >1. The terminal
node may have outdegree = 0 or outdegree >1, (we will use this concept in Chapter 8).

A (directed) semipath is a sequence of edges such that, for at least one adjacent
pair of edges ei, ej in the sequence, the initial node of the first edge is the initial node
of the second edge or the terminal node of the first edge is the terminal node of the
second edge.

Our continuing example contains the following paths and semipaths (not all are
listed):

A path from n1 to n6

A semipath between n1 and n3

A semipath between n2 and n4

A semipath between n5 and n6

4.2.5 Reachability Matrix

When we model an application with a digraph, we often ask questions that deal with
paths that let us reach (or “get to”) certain nodes. This is an extremely useful capabil-
ity and is made possible by the reachability matrix of a digraph.

Definition

The reachability matrix of a directed graph D = (V, E) with m nodes is an m × m
matrix R = (r(i, j)), where r(i, j) is a 1 if and only if there is a path from node i to node
j, otherwise the element is 0.

The reachability matrix of a directed graph D can be calculated from the adja-
cency matrix A as follows:

 R I A A A Ak� � � � ���2 3

where k is the length of the longest path in D, and I is the identity matrix. The reach-
ability matrix for our continuing example is:

n1 n2 n3 n4 n5 n6 n7

n1 1 1 0 1 1 1 0

n2 0 1 0 0 1 0 0

n3 0 0 1 1 0 1 0

n4 0 0 0 1 0 1 0

n5 0 0 0 0 1 0 0

n6 0 0 0 0 0 1 0

n7 0 0 0 0 0 0 1

Graph Theory for Testers ◾ 63

The reachability matrix tells us that nodes n2, n4, n5, and n6 can be reached from n1,
node n5 can be reached from n2, and so on.

4.2.6 n-Connectedness

Connectedness of ordinary graphs extends to a rich, highly explanatory concept for
digraphs.

Definition

Two nodes ni and nj in a directed graph are:

0-connected iff no path exists between ni and nj

1-connected iff a semi-path but no path exists between ni and nj

2-connected iff a path exists between ni and nj

3-connected iff a path exists from ni to nj and a path exists from nj to ni

No other degrees of connectedness exist.
We need to modify our continuing example to show 3-connectedness. The change

is the addition of a new edge e6 from n6 to n3, so the graph contains a cycle.
With this change, we have the following instances of n-connectivity in Figure 4.5

(not all are listed):

n1 and n7 are 0-connected
n2 and n6 are 1-connected,
n1 and n6 are 2-connected
n3 and n6 are 3-connected

4.2.7 Strong Components

The analogy continues. We get two equivalence relations from n-connectedness:
1-connectedness yields what we might call “weak connection,” and this in turn yields
weak components. (These turn out to be the same as we had for ordinary graphs,
which is what should happen, because 1-connectedness effectively ignores direction.)
The second equivalence relation, based on 3-connectedness, is more interesting. As

Figure 4.5 A directed graph with a cycle.

n3 n4

n5

n6

n7

e2

e3

e5

e1n1 e4n2

64 ◾ Software Engineering

before, the equivalence relation induces a partition on the node set of a digraph,
but the condensation graph is quite different. Nodes that previously were 0-, 1-, or
2-connected remain so. The 3-connected nodes become the strong components.

Definition

A strong component of a directed graph is a maximal set of three-connected nodes.
In our amended example, the strong components are the sets {n3, n4, n6} and {n7}.

The condensation graph for our amended example is shown in Figure 4.6.
Strong components let us simplify testing source code by removing loops and iso-

lated nodes. Although this is not as dramatic as the simplification we had in ordinary
graphs, it does solve a major testing problem. Notice that the condensation graph of
a digraph will never contain a loop. (If it did, the loop would have been condensed
by the maximal aspect of the partition.) These graphs have a special name: directed
acyclic graphs, sometimes written as DAG.

Many papers on structured testing make quite a point of showing how relatively
simple programs can have millions of distinct execution paths. The intent of these
discussions is to convince us that exhaustive testing is exactly that—exhaustive. The
large number of execution paths comes from nested loops. Condensation graphs
eliminate loops (or at least condense them down to a single node); therefore, we
can use this as a strategy to simplify situations that otherwise are computationally
untenable.

4.3 Graphs for Testing
We conclude this chapter with four special graphs that are widely used for testing.
The first of these, the program graph, is used primarily at the unit testing level. The
other three, finite state machines, statecharts, and Petri nets, are best used to describe
system-level behavior, although they can be used at lower levels of testing.

4.3.1 Program Graphs

At the beginning of this chapter, we made a point of avoiding interpretations on the
graph theory definitions to preserve flexibility in later applications. Here, we give the
most common use of graph theory in software testing—the program graph. To better
connect with existing testing literature, the traditional definition is given, followed
by an improved definition.

Figure 4.6 Condensation graph of the digraph in Figure 4.5.

n1 n2

S1

n5

S2

e2

e1 e4

Graph Theory for Testers ◾ 65

Definition

Given a program written in an imperative programming language, its program graph
is a directed graph in which:

 1. (Traditional Definition)
 Nodes are program statements, and edges represent flow of control (there is an

edge from node i to node j iff the statement corresponding to node j can be
executed immediately after the statement corresponding to node i).

 2. (Improved Definition)
Nodes are either entire statements or fragments of a statement, and edges repre-
sent flow of control (there is an edge from node i to node j iff the statement or
statement fragment corresponding to node j can be executed immediately after
the statement or statement fragment corresponding to node i).

It is cumbersome to always say “statement or statement fragment,” so we adopt the
convention that a statement fragment can be an entire statement. The directed graph
formulation of a program enables a very precise description of testing aspects of the
program. For one thing, a very satisfying connection exists between this formulation
and the precepts of structured programming. The basic structured programming con-
structs (sequence, selection, and repetition) all have the directed graphs as shown in
Figure 4.7.

When these constructs are used in a structured program, the corresponding
graphs are either nested or concatenated. The single entrance and single exit cri-
teria result in unique source and sink nodes in the program graph. In fact, the old
(non-structured) “spaghetti code” resulted in very complex program graphs. GOTO
statements, for example, introduce edges; and when these are used to branch into
or out of loops, the resulting program graphs become even more complex. One of

Figure 4.7 Digraphs of the structured programming constructs.

Case/Switch

Sequence

If-Then If-Then-Else

Pre-test Loop Post-test Loop

66 ◾ Software Engineering

the pioneering analysts of this is Thomas McCabe, who popularized the cyclomatic
number of a graph as an indicator of program complexity (McCabe, 1976). When a
program executes, the statements that execute comprise a path in the program graph.
Loops and decisions greatly increase the number of possible paths and therefore
similarly increase the need for testing.

One of the problems with program graphs is how to treat nonexecutable state-
ments such as comments and data declaration statements. The simplest answer is
to ignore them. A second problem has to do with the difference between topologi-
cally possible and semantically feasible paths. We will discuss this in more detail in
Chapter 8.

4.3.2 Finite State Machines

Finite state machines have become a widely adopted notation for requirements speci-
fication. All the real-time extensions of structured analysis use some form of finite
state machine, and nearly all forms of object-oriented analyses require them.

Definition

A finite state machine is a directed graph FSM = (S, T) in which states in S are nodes
and transitions in T are edges.

Source and sink states become initial and terminal nodes, sequences of transitions
are modeled as paths, and so on. Most finite state machine notations add information
to the edges (transitions) to indicate the cause of the transition and actions that occur
as a result of the transition.

Figure 4.8 is a finite state machine for the Garage Door Controller described in
Chapter 2. (We will revisit this finite state machine in Chapters 13 and 17.) The labels
on the transitions follow a convention that the “numerator” is the event that causes
the transition, and the “denominator” is the action that is associated with the transi-
tion. The events are mandatory—transitions do not just happen, but the actions are
optional. Finite state machines are simple ways to represent situations in which a
variety of events may occur, and their occurrences have different consequences.

Finite state machines can be executed, but a few conventions are needed first.
One is the notion of the active state. We speak of a system being “in” a certain state;
when the system is modeled as a finite state machine, the active state refers to the
state “we are in.” Another convention is that finite state machines may have an initial
state, which is the state that is active when a finite state machine is first entered.
(Initial and final states are recognized, respectively, by the absence of incoming
and outgoing transitions.) Exactly one state can be active at any time. We also think
of transitions as instantaneous occurrences, and the events that cause transitions
also occur one at a time. To execute a finite state machine, we start with an initial
state and provide a sequence of events that causes state transitions. As each event
occurs, the transition changes the active state and a new event occurs. In this way, a
sequence of events selects a path of states (or equivalently, of a sequence of transi-
tions) through the machine.

Notice that, in the definition of finite state machines, the states are never
actually defined. This is deliberate, because then they can be interpreted in

Graph Theory for Testers ◾ 67

application-dependent ways, as in Figure 4.8. One general way to think about “state”
is that a state is an interval of time in which some proposition is true. In the Garage
Door FSM, state s1 has the proposition “The door is open.” When event e1 occurs
(depress controller button), action a1 (start drive motor down) occurs and the state
s1 proposition is no longer true. Instead, the proposition for state s5 (Door is clos-
ing) is true. In a well-formed finite state machine, the state propositions are mutually
exclusive, and at any “point in time” exactly one state proposition is true. (This guar-
antees that an FSM can only be “in” one state at a time.) The second convention is
that no two events can occur simultaneously. In the Garage Door FSM, one example
is that only one of the two events that could occur in state s6 (e1 or e3) can actually
occur, thus only one of states s1 and s4 could be entered. This preserves the conven-
tion that only one state can be “active” at any point in time.

4.3.3 Petri Nets

Petri nets were the topic of Carl Adam Petri’s Ph.D. dissertation in 1963; today, they
are the accepted model for protocols and other applications involving concurrency
and distributed processing. Petri nets are a special form of directed graph: a bipartite
directed graph. (A bipartite graph has two sets of nodes, V1 and V2, and a set of edges
E, with the restriction that every edge has its initial node in one of the sets V1, V2,

Figure 4.8 Finite state machine for the Garage Door Controller.

Input events Output events (actions)
e1: depress controller button a1: start drive motor down
e2: end of down track hit a2: start drive motor up
e3: end of up track hit a3: stop drive motor
e4: obstacle hit a4. reverse motor, down to up
e5: laser beam crossed a5. door continues opening

a6. door continues closing

s1:
Door Up

s2:
Door down

s4:
Door Stopped

Going Up

s6:
Door

Opening

e1/a3e1/a2

s5:
Door

Closing

s3:
Door Stopped
Going down

e1/a3e1/a2 e1/a3e1/a2

68 ◾ Software Engineering

and its terminal node in the other set.) In a Petri net, one of the sets is referred to as
“places,” and the other is referred to as “transitions.” These sets are usually denoted
as P and T, respectively. Places are inputs to and outputs of transitions; the input and
output relationships are functions, and they are usually denoted as In and Out, as in
the following definition.

Definition

A Petri net is a bipartite directed graph (P, T, In, Out), in which P and T are disjoint
sets of nodes, and In and Out are sets of edges, where In ⊆ P × T, and Out ⊆ T × P.

For the sample Petri net in Figure 4.9, the sets P, T, In, and Out are:

P = {p1, p2, p3, p4, p5}
T = {t1, t2, t3}
In = {<p1, t1>, <p5, t1>, <p5, t3>, <p2, t3>, <p3, t2>}
Out = {<t1, p3>, <t2, p4>, <t3, p4>}

Petri nets are executable in more interesting ways than finite state machines. The
next few definitions lead us to Petri net execution.

Definition

A marked Petri net is a 5-tuple (P, T, In, Out, M) in which (P, T, In, Out) is a Petri net
and M is a set of mappings of places to positive integers.

The set M is called the marking set of the Petri net. Elements of M are n-tuples,
where n is the number of places in the set P. For the Petri net in Figure 4.10, the set M
contains elements of the form <n1, n2, n3, n4, n5>, where the n’s are the integers asso-
ciated with the respective places. The number associated with a place refers to the
number of tokens that are said to be “in” the place. Tokens are abstractions that can
be interpreted in modeling situations. For example, tokens might refer to the number
of times a place has been used, or the number of things in a place, or whether the
place is true. Figure 4.10 shows a marked Petri net.

Figure 4.9 A Petri net.

t1

p1 p5 p2

p3 p4

t2

t3

Graph Theory for Testers ◾ 69

Definition

A transition in a Petri net is enabled if at least one token is in each of its input places.
The marking tuple for the marked Petri net in Figure 4.10 is <1, 1, 0, 2, 0>. We need
the concept of tokens to make two essential definitions. No transitions in the marked
Petri net in Figure 4.10 are enabled. If we put a token in place p3, then transition t3
would be enabled.

Definition

When an enabled Petri net transition fires, one token is removed from each of its
input places and one token is added to each of its output places.

In Figure 4.11, transition t2 is enabled in the left net and has been fired in the
right net. The marking sequence for the net in Figure 4.11 contains two tuples—the
first shows the net when t2 is enabled, and the second shows the net marking after
t2 has fired:

 M , , , , , , , , ,� � � � �� �11 0 2 1 1 0 0 3 0 .

Tokens may be created or destroyed by transition firings. Under special conditions,
the total number of tokens in a net never changes; such nets are called conservative.
We usually do not worry about token conservation. Markings let us execute Petri nets

Figure 4.11 Before and after firing t2.

p1

p3

p5

t1

t3

t2

p2

p4

p1

p3

p5

t1

t3

t2

p2

p4

Figure 4.10 A marked Petri net.

t1 t2

t3

p5p1 p2

p3 p4

70 ◾ Software Engineering

in much the same way that we execute finite state machines. (It turns out that finite
state machines are a special case of Petri nets.)

Look again at the net in Figure 4.11; in left net (before firing any transition),
places p1, p2, and p5 are all marked. With such a marking, transitions t1 and t3 are
both enabled. We choose to fire transition t2, the token in place p5 is removed, and
t1 is no longer enabled. Similarly, if we choose to fire t1, we disable t2. This pattern
is known as Petri net conflict. More specifically, we say that transitions t1 and t2 are
in conflict with respect to place p5. Petri net conflict exhibits an interesting form of
interaction between two transitions; we will revisit this (and other) interactions in
Chapters 13 and 16.

4.3.4 Event-Driven Petri Nets

Basic Petri nets need two slight enhancements to become Event-Driven Petri Nets
(EDPNs). The first enables them to more closely express event-driven systems, and
the second deals with Petri net markings that express event quiescence, an important
notion in object-oriented applications. Taken together, these extensions result in an
effective, operational view of software requirements; they were originally known as
known as OSD nets (for Operational Software Development) (Jorgensen, 1989).

Definition

An Event-Driven Petri Net (abbreviated as EDPN) is a tripartite-directed graph (P, D,
S, In, Out) composed of three sets of nodes, P, D, and S, and two mappings, In and
Out, where:

P is a set of port events
D is a set of data places
S is a set of transitions

In is a set of ordered pairs from (P ∪ D) × S.
Out is a set of ordered pairs from S × (P ∪ D).

EDPNs express four of the five basic system constructs defined in Chapter 13;
only devices are missing. The set S of transitions corresponds to ordinary Petri net
transitions, which are interpreted as actions.

Two kinds of places, port events and data places, are inputs to or outputs of
transitions in S as defined by the input and output functions In and Out. A thread
is a sequence of transitions in S, so we can always construct the inputs and outputs
of a thread from the inputs and outputs of the transitions in the thread. EDPNs are
graphically represented in much the same way as ordinary Petri nets; the only differ-
ence is the use of triangles for port event places. The EDPN in Figure 4.12 has four
transitions, s7, s8, s9, and s10; two port input events, p3 and p4; and three data places,
d5, d6, and d7. It does not have port output events.

This EDPN corresponds to a finite state machine developed for the dial portion
of the windshield wiper controller. The components of this net are described in
Table 4.1.

Graph Theory for Testers ◾ 71

Markings for an EDPN are more complicated because we want to be able to deal
with event quiescence.

Definition

A marking M of an EDPN (P, D, S, In, Out) is a sequence M = <m1, m2, … > of
p-tuples, where p = k + n, and k and n are the number of elements in the sets P and
D, and individual entries in a p-tuple indicate the number of tokens in the event or
data place.

By convention, we will put the data places first, followed by the input event places
and then the output event places. An EDPN may have any number of markings; each
corresponds to an execution of the net. Table 4.2 shows a sample marking of the
EDPN in Figure 4.12.

Table 4.1 EDPN Elements in Figure 4.12

Element Type Description

p3 port input event rotate dial clockwise

p4 port input event rotate dial counterclockwise

d5 data place dial at position 1

d6 data place dial at position 2

d7 data place dial at position 3

s7 transition state transition: d5 to d6

s8 transition state transition: d6 to d7

s9 transition state transition: d7 to d6

s10 transition state transition: d6 to d5

Figure 4.12 An Event-Driven Petri Net.

d5

p3 p4

p4

s7 s10

s8

p3

s9

d6

d7

72 ◾ Software Engineering

The rules for transition enabling and firing in an EDPN are exact analogs of those
for traditional Petri nets; a transition is enabled if there is at least one token in each
input place; and when an enabled transition fires, one token is removed from each
of its input places, and one token is placed in each of its output places. Table 4.3
follows the marking sequence given in Table 4.2, showing which transitions are
enabled and fired.

The important difference between EDPNs and traditional Petri nets is that event
quiescence can be broken by creating a token in a port input event place. In tradi-
tional Petri nets, when no transition is enabled, we say that the net is deadlocked. In
EDPNs, when no transition is enabled, the net is at a point of event quiescence. (Of
course, if no event occurs, this is the same as deadlock.) Event quiescence occurs
four times in the thread in Table 4.3; at m1, m3, m5, and m7.

The individual members in a marking can be thought of as snapshots of the exe-
cuting EDPN at discrete points in time; these members are alternatively referred to
as time steps, p-tuples, or marking vectors. This lets us think of time as an ordering
that allows us to recognize “before” and “after.” If we attach instantaneous time as an
attribute of port events, data places, and transitions, we obtain a much clearer picture
of thread behavior. One awkward part to this is how to treat tokens in a port output

Table 4.2 A Marking of the EDPN in Figure 4.12

tuple (p3, p4, d5, d6, d7) Description

m1 (0, 0, 1, 0, 0) Start in state d5

m2 (1, 0, 1, 0, 0) p3 occurs

m3 (0, 0, 0, 1, 0) in state d6

m4 (1, 0, 0, 1, 0) p3 occurs

m5 (0, 0, 0, 0, 1) in state d7

m6 (0, 1, 0, 0, 1) p4 occurs

m7 (0, 0, 0, 1, 0) in state d6

Table 4.3 Enabled and Fired Transitions in Table 4.2

tuple (p3, p4, d5, d6, d7) Description

m1 (0, 0, 1, 0, 0) nothing enabled

m2 (1, 0, 1, 0, 0) s7 enabled; s7 fired

m3 (0, 0, 0, 1, 0) nothing enabled

m4 (1, 0, 0, 1, 0) s8 enabled; s8 fired

m5 (0, 0, 0, 0, 1) nothing enabled

m6 (0, 1, 0, 0, 1) s9 enabled; s9 fired

m7 (0, 0, 0, 1, 0) nothing enabled

Graph Theory for Testers ◾ 73

event place. Port output places always have outdegree = 0; in an ordinary Petri net,
tokens cannot be removed from a place with a zero outdegree. If the tokens in a port
output event place persist, this suggests that the event occurs indefinitely. Here again,
the time attributes resolve the confusion; this time we need a duration of the marked
output event. (Another possibility is to remove tokens from a marked output event
place after one-time step; this works reasonably well.)

4.3.5 Statecharts

David Harel had two goals when he developed the statechart notation: he wanted
to devise a visual notation that combined the ability of Venn diagrams to express
hierarchy and the ability of directed graphs to express connectedness (Harel, 1988).
Taken together, these capabilities provide an elegant answer to the “state explosion”
problem of ordinary finite state machines. The result is a highly sophisticated and
very precise notation that is supported by commercially available CASE tools, notably
the StateMate system. Statecharts are now the control model of choice for the uni-
fied modeling language (UML) from IBM. (See http://www-306.ibm.com/software/
rational/uml/ for more details.)

Harel uses the methodology neutral term “blob” to describe the basic building
block of a statechart. Blobs can contain other blobs in the same way that Venn dia-
grams show set containment. Blobs can also be connected to other blobs with edges
in the same way that nodes in a directed graph are connected. In Figure 4.13, blob A
contains two blobs (B and C), and they are connected by edges. Blob A is also con-
nected to blob D by an edge.

As Harel intends, we can interpret blobs as states, and edges as transitions. The
full statechart system supports an elaborate language that defines how and when
transitions occur (their training course runs for a full week, so this section is a highly
simplified introduction). Statecharts are executable in a much more elaborate way
than ordinary finite state machines. Executing a statechart requires a notion similar
to that of Petri net markings. The “initial state” of a statechart is indicated by an edge
that has no source state.

When states are nested within other states, the same indication is used to show
the lower level initial state. In Figure 4.14, state A is the initial state; and when it
is entered, state B is also entered at the lower level. When a state is entered, we
can think of it as active in a way analogous to a marked place in a Petri net. (The
statechart tool used colors to show which states are active, and this is equivalent to
marking places in a Petri net.) A subtlety exists in Figure 4.15, the transition from

Figure 4.13 Blobs in a Statechart.

B

C

D

AA

http://www-306.ibm.com
http://www-306.ibm.com

74 ◾ Software Engineering

state A to state D seems ambiguous at first because it has no apparent recognition of
states B and C. The convention is that edges must start and end on the outline (Harel
uses the term “contour”) of a state. If a state contains substates, as state A does, the
edge “refers” to all substates. Thus, the edge from A to D means that the transition
can occur either from state B or from state C. If we had an edge from state D to state
A, as in Figure 4.14, the fact that state B is indicated as the initial state means that
the transition is really from state D to state B. This convention greatly reduces the
tendency of finite state machines to look like “spaghetti code.”

The last aspect of statecharts we will discuss is the notion of concurrent stat-
echarts. The dotted line in state D (see Figure 4.16) is used to show that state D really
refers to two concurrent states, E and F. (Harel’s convention is to move the state label

Figure 4.16 Concurrent states.

A E

F

B

C

A E

D

F

Figure 4.15 Default entry into substates.

B

C

D

AAA

Figure 4.14 Initial states in a Statechart.

A

B C D

A

Graph Theory for Testers ◾ 75

of D to a rectangular tag on the perimeter of the state.) Although not shown here, we
can think of E and F as separate devices that execute concurrently. Because the edge
from state A terminates on the perimeter of state D, when that transition occurs, both
devices E and F are active (or marked, in the Petri net sense).

Exercises
 1. Propose a definition for the length of a path in a graph.
 2. What loop(s) is/are created if an edge is added between nodes n5 and n6 in the

graph in Figure 4.1?
 3. Convince yourself that 3-connectedness is an equivalence relation on the nodes

of a digraph.
 4. Compute the cyclomatic complexity for each of the structured programming

constructs in Figure 4.7.
 5. The digraphs in Figure 4.17 were obtained by adding nodes and edges to the

digraph in Figure 4.5. Compute the cyclomatic complexity of each new digraph
and explain how the changes affected the complexity.

 6. Suppose we make a graph in which nodes are people and edges correspond to
some form of social interaction, such as “talks to” or “socializes with.” Find
graph theory concepts that correspond to social concepts such as popularity,
cliques, and hermits. What implications might this have for someone who wants
to analyze Facebook friends?

 7. Discuss the popular “six degrees of separation” in terms of graph theory.
(in 2008, after examining 30 Billion electronic conversations, Microsoft research-
ers computed the degree of separation between any two people on the planet
as 6.6, which would have to be rounded to 7.)
How might an epidemiologist use directed graphs to do contact tracing a viral
epidemic?

Reference
Harel, David, On visual formalisms, Communications of the ACM, Vol. 31, No. 5, pp. 514–530,

May, 1988.

Figure 4.17 Effect of adding edges on cyclomatic complexity.

n1 n2

n3 n4

n5

n6

n5n1 n2

n3 n4

n6n7

n8

n9

e8

e7

n7

e2

e1

e3

e4

e5

e2

e3

e4

e5

e7

e8

e1

https://taylorandfrancis.com

UNIT TESTING II
The term “unit” needs explanation. There are several interpretations about exactly
what constitutes a unit. In a procedural programming language, a unit can be

	 ◾	 a single procedure,
	 ◾	 a function,
	 ◾	 a body of code that implements a single function,
	 ◾	 source code that fits on one page,
	 ◾	 a body of code that represents work done in 4 to 40 hours (as in a Work

Breakdown Structure),
	 ◾	 the smallest body of code that can be compiled and executed by itself.

In an object-oriented programming language, there is general agreement that a class
is a unit. However, methods of a class might be described by any of the above “defini-
tions” of a unit for procedural code.

The bottom line is that “unit” is probably best defined by organizations imple-
menting code. My personal definition of a unit is a body of software that is designed,
coded, and tested by either one person, or possibly a programmer pair. Chapters 5
through 10 cover unit level testing.

https://taylorandfrancis.com

79

Chapter 5

Boundary Value Testing

In Chapter 3, we saw that a function maps values from one set (its domain) to values
in another set (its range) and that the domain and range can be cross products of
other sets. Any program can be considered to be a function in the sense that program
inputs form its domain and program outputs form its range. In this and the next two
chapters, we examine how to use knowledge of the functional nature of a program
to identify test cases for the program. Input domain testing (also called “Boundary
Value Testing”) is the best-known specification-based testing technique. Historically,
this form of testing has focused on the input domain; but it is often a good supple-
ment to apply many of these techniques to develop range-based test cases.

There are two independent considerations that apply to input domain testing.
The first asks if we are concerned with invalid values of variables. Normal Boundary
Value Testing is concerned only with valid values of the input variables. Robust
Boundary Value Testing considers invalid and valid variable values. The second con-
sideration is whether we make the "single fault" assumption common to reliability
theory. This assumes that faults are due to incorrect values of a single variable. If
this is not warranted, meaning that we are concerned with interaction among two or
more variables, we need to take the cross-product of the individual variables. Taken
together, the two considerations yield four variations of boundary value testing:

	 ◾	 Normal Boundary Value Testing, sometimes abbreviated here as NBVT
	 ◾	 Robust Boundary Value Testing, RBVT
	 ◾	 Worst Case Boundary Value Testing, WCBVT and
	 ◾	 Robust Worst Case Boundary Value Testing, RWCBVT.

For the sake of comprehensible drawings, the discussion in this chapter refers to a
function, F, of two variables x1 and x2. When the function F is implemented as a pro-
gram, the input variables x1 and x2 will have some (possibly unstated) boundaries:

 a x b≤ ≤1

 c x d≤ ≤2

80 ◾ Software Testing

Unfortunately, the intervals [a, b] and [c, d] are referred to as the ranges of x1 and x2,
so right away we have an overloaded term. The intended meaning will always be clear
from its context. Strongly typed languages (such as Ada® and Pascal) permit explicit
definition of such variable ranges. In fact, part of the historical reason for strong typ-
ing was to prevent programmers from making the kinds of errors that result in faults
that are easily revealed by boundary value testing. For programs written in languages
are not strongly typed, boundary value testing is more appropriate. The input space
(domain) of our function F is shown in Figure 5.1. Any point within the shaded rect-
angle and including the boundaries is a legitimate input to the function F.

5.1 Normal Boundary Value Testing
All four forms of boundary value testing focus on the boundary of the input space to
identify test cases. The rationale behind boundary value testing is that errors tend to
occur near the extreme values of an input variable. Loop conditions, for example, may
test for < when they should test for ≤, and counters often are “off by one.” (In some
programming languages counting begins at zero, in others at one.) The basic idea of
boundary value analysis is to use input variable values at their minimum, just above the
minimum, a nominal value, just below their maximum, and at their maximum. As far
back as the early 1990s, there was a commercially available testing tool (originally named
T) that generated such test cases for a properly specified program. This tool has been
successfully integrated with two popular front-end CASE tools (Teamwork from Cadre
Systems, and Software through Pictures from Aonix (part of Atego). For more informa-
tion, see http://www.aonix.com/pdf/2140-AON.pdf). The T tool refers to these values
as min, min+, nom, max-, and max. The robust forms add two values, min- and max+.

The next part of boundary value analysis is based on a critical assumption; it is
known as the “single fault” assumption in reliability theory. This says that failures are
only rarely the result of the simultaneous occurrence of two (or more) faults. The
normal and robust cases are obtained by holding the values of all but one variable at
their nominal values, and letting that one variable assume its full set of test values.

Figure 5.1 Input domain of a function of two variables.

a b

c

d

x1

x2

http://www.aonix.com

Boundary Value Testing ◾ 81

The normal boundary value analysis test cases for our function F of two variables
(illustrated in Figure 5.2) are:

{<x1nom, x2min>, <x1nom, x2min+>, <x1nom, x2nom>, <x1nom, x2max->,<x1nom, x2max>,<x1min, x2nom>,
<x1min+, x2nom>, <x1max-, x2nom>, <x1max, x2nom>}

The All Pairs testing approach (described in Chapter 18) contradicts the single fault
assumption, with the observation that, in software-controlled medical systems, almost
all faults are the result of interaction between a pair of variables. This is the rationale
for the Worst Case variations of boundary value testing.

5.1.1 Generalizing Boundary Value Analysis

The basic boundary value analysis technique can be generalized in two ways: by the
number of variables and by the kinds of ranges. Generalizing the number of variables
is easy: if we have a function of n variables, we hold all but one at their nominal
values and let the remaining variable assume the min, min+, nom, max-, and max
values, repeating this for each variable. Thus, for a function of n variables, boundary
value analysis yields 4n + 1 unique test cases.

Generalizing ranges depends on the nature (or more precisely, the type) of the
variables themselves. In the NextDate function, for example, we have variables
for the month, the day, and the year. One implementation approach would be to
encode these, so that January would correspond to 1, February to 2, and so on. In a
language that supports user-defined types (like Pascal or Ada), we could define the
variable month as an enumerated type { Jan., Feb., …, Dec.}. Either way, the values
for min, min+, nom, max-, and max are clear from the context. When a variable
has discrete, bounded values, as the variables in the commission problem have,
the min, min+, nom, max-, and max are also easily determined. When no explicit
bounds are present, as in the triangle problem, we usually must create “artificial”
bounds. The lower bound of side lengths is clearly 1 (a negative side length is
silly); but what might we do for an upper bound? By default, the largest represent-
able integer (called MAXINT in some languages) is one possibility; or we might

Figure 5.2 Boundary value analysis test cases for a function of two variables.

b
x1

d

c

x2

a

82 ◾ Software Testing

impose an arbitrary upper limit such as 200 or 2000. For other data types, as long
as a variable supports an ordering relation (see Chapter 3 for a definition), we can
usually infer the min, min+, nominal, max-, and max values. Test values for lower
case alphabet characters, for example, would be {a, b, m, y, and z}.

Boundary value analysis does not make much sense for Boolean variables; the
extreme values are TRUE and FALSE, but no clear choice is available for the remain-
ing three. We will see in Chapter 7 that Boolean variables lend themselves to deci-
sion table-based testing. Logical variables also present a problem for boundary value
analysis. In login examples, a customer’s PIN is a logical variable, as are cell phone
directory numbers. We could go through the motions of boundary value analysis test-
ing for such variables, but the exercise is not very satisfying to the tester’s intuition.

5.1.2 Limitations of Boundary Value Analysis

Boundary value analysis works well when the program to be tested is a function of sev-
eral independent variables that represent bounded physical quantities. Mathematically,
the variables need to be described by a true ordering relation, in which, for every
pair <a, b> of values of a variable, it is possible to say that a <= b. (See Chapter 3 for
a detailed definition of ordering relations.) Sets of car colors, for example, or football
teams, do not support an ordering relation, thus no form of boundary value testing is
appropriate for such variables. The key words here are independent and physical quan-
tities. A quick look at the boundary value analysis test cases for NextDate (in Section
5.5) shows them to be inadequate. Very little stress occurs on February and on leap
years. The real problem here is that interesting dependencies exist among the month,
day, and year variables. Boundary value analysis presumes the variables to be truly
independent. Even so, boundary value analysis happens to catch end-of-month and
end-of-year faults. Boundary value analysis test cases are derived from the extrema of
bounded, independent variables that refer to physical quantities, with no consideration
of the nature of the function, nor of the semantic meaning of the variables. We see
boundary value analysis test cases to be rudimentary because they are obtained with
very little insight and imagination. As with so many things, you get what you pay for.

The physical quantity criterion is equally important. When a variable refers to a
physical quantity, such as temperature, pressure, air speed, angle of attack, load, and
so forth, physical boundaries can be extremely important. (In an interesting example
of this, Sky Harbor International Airport in Phoenix had to close on June 26, 1992,
because the air temperature was 122°F. Aircraft pilots were unable to make certain
instrument settings before take-off: the instruments could only accept a maximum air
temperature of 120°F.) In another case, a medical analysis system uses stepper motors
to position a carousel of samples to be analyzed. It turns out that the mechanics of mov-
ing the carousel back to the starting cell often causes the robot arm to miss the first cell.

5.2 Robust Boundary Value Testing
Robust boundary value testing is a simple extension of normal boundary value test-
ing: in addition to the five normal boundary value analysis values of a variable, we
see what happens when the extrema are exceeded with a value slightly greater than

Boundary Value Testing ◾ 83

the maximum (max+) and a value slightly less than the minimum (min-). Robust
boundary value test cases for our continuing example are shown in Figure 5.3.

Most of the discussion of boundary value analysis applies directly to robustness test-
ing, especially the generalizations and limitations. The most interesting part of robust-
ness testing is not with the inputs, but with the expected outputs. What happens when
a physical quantity exceeds its maximum? If it is the angle of attack of an airplane
wing, the aircraft might stall. If it is the load capacity of a public elevator, we hope
nothing special would happen. If it is a date, like May 32, we would expect an error
message. The main value of robustness testing is that it forces attention on exception
handling. With strongly typed languages, robustness testing may be very awkward. In
strongly typed languages, if a variable is defined to be within a certain range, values
outside that range result in run-time errors that abort normal execution. This raises
an interesting question of implementation philosophy: is it better to perform explicit
range checking and use exception handling to deal with “robust values,” or is it better
to stay with strong typing? The exception handling choice mandates robustness testing.

There are situations where robustness testing cannot occur, for example, water
temperature might have the boundaries 0° C<= waterTemperature <= 100° C. For
temperatures below 0° C, water is actually ice, and above 100° C, it is steam. If the
application that uses waterTemperature is dealing with liquid properties such as vis-
cosity or ability to dissolve salts, robustness testing cannot produce anything useful.

5.3 Worst Case Boundary Value Testing
Both Normal and Robust boundary value testing, as we said earlier, make the single
fault assumption of reliability theory. Due to their similarity, we treat both Normal
Worst Case Boundary Testing and Robust Worst Case Boundary Testing in this subsec-
tion. Rejecting single-fault assumption means that we are interested in what happens
when more than one variable has an extreme value. In electronic circuit analysis, this is
called “worst-case analysis”; we use that idea here to generate worst-case test cases. For

Figure 5.3 Robustness test cases for a function of two variables.

a b

c

d

x1

x2

84 ◾ Software Testing

each variable, we start with the five-element set that contains the min, min+, nom, max-,
and max values. We then take the Cartesian product (see Chapter 3) of these sets to
generate test cases. The result of the two-variable version of this is shown in Figure 5.4.

Worst-case boundary value testing is clearly more thorough in the sense that bound-
ary value analysis test cases are a proper subset of worst-case test cases. It also repre-
sents much more effort: worst-case testing for a function of n variables generates on
the order of 5n test cases, as opposed to 4n + 1 test cases for boundary value analysis.

Worst-case testing follows the generalization pattern we saw for boundary value
analysis. It also has the same limitations, particularly those related to independence.
Probably the best application for worst-case testing is where physical variables have
numerous interactions, and where failure of the function is extremely costly. In extreme
situations, we could go to robust worst-case testing. This involves the Cartesian product
of the seven-element sets we used in robustness testing resulting in nearly 7n test cases.
Figure 5.5 shows the robust worst-case test cases for our two-variable function.

Figure 5.4 Worst-case test cases for a function of two variables.

a b

c

d

x1

x2

Figure 5.5 Robust worst-case test cases for a function of two variables.

a b

c

d

x1

x2

Boundary Value Testing ◾ 85

5.4 Special Value Testing
Special value testing is probably the most widely practiced form of functional testing.
It also is the most intuitive and the least uniform. Special value testing occurs when
a tester uses domain knowledge, experience with similar programs, and informa-
tion about “soft spots” to devise test cases. We might also call this ad hoc testing. No
guidelines are used other than “best engineering judgment.” As a result, special value
testing is very dependent on the abilities of the tester.

Despite all the apparent negatives, special value testing can be very useful. In the
next section, you will find test cases generated by the methods we just discussed
for our two continuing examples. If you look carefully at these, especially for the
NextDate function, you find that none is very satisfactory. Special value test cases for
NextDate will include several test cases involving February 28, February 29, and leap
years. Even though special value testing is highly subjective, it often results in a set
of test cases that is more effective in revealing faults than the test sets generated by
boundary value methods—testimony to the craft of software testing.

5.5 Examples
Our two continuing examples are both functions of three variables. Printing all the
test cases from all the methods for each problem is very space consuming, so we just
have selected examples (values “near the corners”) for Worst Case Boundary Value
and Robust Worst Case Boundary Value testing.

5.5.1 Test Cases for the Triangle Problem

In the problem statement, no conditions are specified on the triangle sides, other
than being integers. Obviously, the lower bounds of the ranges are all 1. We arbi-
trarily take 200 as an upper bound. For each side, the test values are {1, 2, 100, 199,
200}. Robust boundary value test cases will add {0, 201}. Table 5.1 contains boundary
value test cases using these ranges. Notice that test cases 3, 8, and 13 are identical
(bold face in the table); two should be deleted. Also, notice that there is no test case
for scalene triangles.

The cross-product of test values will have 125 test cases (some of which will be
repeated)—too many to list here. (The full set is easily generated as a spreadsheet.)
Table 5.2 only lists the first 25 Worst Case boundary Value test cases for the Triangle
Problem. You can picture them as a plane slice through the cube (actually it is a rect-
angular parallelepiped) in which a = 1 and the other two variables take on their full
set of cross-product values. As we saw for Normal Boundary Value test cases, there
is no test case for scalene triangles.

5.5.2 Test Cases for the NextDate Function

All 125 worst case test cases for NextDate are listed in Table 5.3. Take some time to
examine it for gaps of untested functionality and for redundant testing. For example,
would anyone actually want to test January 1 in five different years? The end of February
is not tested sufficiently—there are no test cases for February 28, nor for February 29.

86 ◾ Software Testing

(Continued)

Table 5.2 (Selected) Worst-Case Boundary Value Test Cases

Case A B C Expected Output

1 1 1 1 Equilateral

2 1 1 2 Not a Triangle

3 1 1 100 Not a Triangle

4 1 1 199 Not a Triangle

5 1 1 200 Not a Triangle

6 1 2 1 Not a Triangle

7 1 2 2 Isosceles

8 1 2 100 Not a Triangle

9 1 2 199 Not a Triangle

10 1 2 200 Not a Triangle

11 1 100 1 Not a Triangle

Table 5.1 Normal Boundary Value Test Case

Case a b c Expected Output

1 100 100 1 Isosceles

2 100 100 2 Isosceles

3 100 100 100 Equilateral

4 100 100 199 Isosceles

5 100 100 200 Not a Triangle

6 100 1 100 Isosceles

7 100 2 100 Isosceles

8 100 100 100 Equilateral

9 100 199 100 Isosceles

10 100 200 100 Not a Triangle

11 1 100 100 Isosceles

12 2 100 100 Isosceles

13 100 100 100 Equilateral

14 199 100 100 Isosceles

15 200 100 100 Not a Triangle

Boundary Value Testing ◾ 87

(Continued)

Table 5.2 (Continued)

Table 5.3 Worst-Case Test Cases

Case Month Day Year Expected Output

1 1 1 1842 1, 2, 1842

2 1 1 1843 1, 2, 1843

3 1 1 1942 1, 2, 1942

4 1 1 2041 1, 2, 2041

5 1 1 2042 1, 2, 2042

6 1 2 1842 1, 3, 1842

7 1 2 1843 1, 3, 1843

8 1 2 1942 1, 3, 1942

9 1 2 2041 1, 3, 2041

10 1 2 2042 1, 3, 2042

11 1 15 1842 1, 16, 1842

12 1 15 1843 1, 16, 1843

Case A B C Expected Output

12 1 100 2 Not a Triangle

13 1 100 100 Isosceles

14 1 100 199 Not a Triangle

15 1 100 200 Not a Triangle

16 1 199 1 Not a Triangle

17 1 199 2 Not a Triangle

18 1 199 100 Not a Triangle

19 1 199 199 Isosceles

20 1 199 200 Not a Triangle

21 1 200 1 Not a Triangle

22 1 200 2 Not a Triangle

23 1 200 100 Not a Triangle

24 1 200 199 Not a Triangle

25 1 200 200 Isosceles

88 ◾ Software Testing

Case Month Day Year Expected Output

13 1 15 1942 1, 16, 1942

14 1 15 2041 1, 16, 2041

15 1 15 2042 1, 16, 2042

16 1 30 1842 1, 31, 1842

17 1 30 1843 1, 31, 1843

18 1 30 1942 1, 31, 1942

19 1 30 2041 1, 31, 2041

20 1 30 2042 1, 31, 2042

21 1 31 1842 2, 1, 1842

22 1 31 1843 2, 1, 1843

23 1 31 1942 2, 1, 1942

24 1 31 2041 2, 1, 2041

25 1 31 2042 2, 1, 2042

26 2 1 1842 2, 2, 1842

27 2 1 1843 2, 2, 1843

28 2 1 1942 2, 2, 1942

29 2 1 2041 2, 2, 2041

30 2 1 2042 2, 2, 2042

31 2 2 1842 2, 3, 1842

32 2 2 1843 2, 3, 1843

33 2 2 1942 2, 3, 1942

34 2 2 2041 2, 3, 2041

35 2 2 2042 2, 3, 2042

36 2 15 1842 2, 16, 1842

37 2 15 1843 2, 16, 1843

38 2 15 1942 2, 16, 1942

39 2 15 2041 2, 16, 2041

40 2 15 2042 2, 16, 2042

41 2 30 1842 Invalid date

Table 5.3 (Continued)

(Continued)

Boundary Value Testing ◾ 89

Table 5.3 (Continued)

Case Month Day Year Expected Output

42 2 30 1843 Invalid date

43 2 30 1942 Invalid date

44 2 30 2041 Invalid date

45 2 30 2042 Invalid date

46 2 31 1842 Invalid date

47 2 31 1843 Invalid date

48 2 31 1942 Invalid date

49 2 31 2041 Invalid date

50 2 31 2042 Invalid date

51 6 1 1842 6, 2, 1842

52 6 1 1843 6, 2, 1843

53 6 1 1942 6, 2, 1942

54 6 1 2041 6, 2, 2041

55 6 1 2042 6, 2, 2042

56 6 2 1842 6, 3, 1842

57 6 2 1843 6, 3, 1843

58 6 2 1942 6, 3, 1942

59 6 2 2041 6, 3, 2041

60 6 2 2042 6, 3, 2042

61 6 15 1842 6, 16, 1842

62 6 15 1843 6, 16, 1843

63 6 15 1942 6, 16, 1942

64 6 15 2041 6, 16, 2041

65 6 15 2042 6, 16, 2042

66 6 30 1842 7, 1, 1842

67 6 30 1843 7, 1, 1843

68 6 30 1942 7, 1, 1942

69 6 30 2041 7, 1, 2041

70 6 30 2042 7, 1, 2042

(Continued)

90 ◾ Software Testing

Case Month Day Year Expected Output

71 6 31 1842 Invalid date

72 6 31 1843 Invalid date

73 6 31 1942 Invalid date

74 6 31 2041 Invalid date

75 6 31 2042 Invalid date

76 11 1 1842 11, 2, 1842

77 11 1 1843 11, 2, 1843

78 11 1 1942 11, 2, 1942

79 11 1 2041 11, 2, 2041

80 11 1 2042 11, 2, 2042

81 11 2 1842 11, 3, 1842

82 11 2 1843 11, 3, 1843

83 11 2 1942 11, 3, 1942

84 11 2 2041 11, 3, 2041

85 11 2 2042 11, 3, 2042

86 11 15 1842 11, 16, 1842

87 11 15 1843 11, 16, 1843

88 11 15 1942 11, 16, 1942

89 11 15 2041 11, 16, 2041

90 11 15 2042 11, 16, 2042

91 11 30 1842 12, 1, 1842

92 11 30 1843 12, 1, 1843

93 11 30 1942 12, 1, 1942

94 11 30 2041 12, 1, 2041

95 11 30 2042 12, 1, 2042

96 11 31 1842 Invalid date

97 11 31 1843 Invalid date

98 11 31 1942 Invalid date

Table 5.3 (Continued)

(Continued)

Boundary Value Testing ◾ 91

Case Month Day Year Expected Output

99 11 31 2041 Invalid date

100 11 31 2042 Invalid date

101 12 1 1842 12, 2, 1842

102 12 1 1843 12, 2, 1843

103 12 1 1942 12, 2, 1942

104 12 1 2041 12, 2, 2041

105 12 1 2042 12, 2, 2042

106 12 2 1842 12, 3, 1842

107 12 2 1843 12, 3, 1843

108 12 2 1942 12, 3, 1942

109 12 2 2041 12, 3, 2041

110 12 2 2042 12, 3, 2042

111 12 15 1842 12, 16, 1842

112 12 15 1843 12, 16, 1843

113 12 15 1942 12, 16, 1942

114 12 15 2041 12, 16, 2041

115 12 15 2042 12, 16, 2042

116 12 30 1842 12, 31, 1842

117 12 30 1843 12, 31, 1843

118 12 30 1942 12, 31, 1942

119 12 30 2041 12, 31, 2041

120 12 30 2042 12, 31, 2042

121 12 31 1842 1, 1, 1843

122 12 31 1843 1, 1, 1844

123 12 31 1942 1, 1, 1943

124 12 31 2041 1, 1, 2042

125 12 31 2042 1, 1, 2043

Table 5.3 (Continued)

92 ◾ Software Testing

5.6 Random Testing
At least two decades of discussion of random testing are included in the literature.
Most of this interest is among academics, and in a statistical sense, it is interesting.
Our two continuing sample problems lend themselves nicely to random testing. The
basic idea is that, rather than always choose the min, min+, nom, max-, and max val-
ues of a bounded variable, use a random number generator to pick test case values.
This avoids any form of bias in testing. It also raises a serious question: How many
random test cases are sufficient? Later, when we discuss structural test coverage met-
rics, we will have an elegant answer. For now, Tables 5.4 and 5.5 show the results of
randomly generated test cases. They are derived from a Visual Basic application that
picks values for a bounded variable a ≤ x ≤ b as follows:

 x Int b a Rnd a� �� � � �� �� 1

where the function Int returns the integer part of a floating point number, and the
function Rnd generates random numbers in the interval [0, 1]. The program keeps
generating random test cases until at least one of each output occurs. In each table,
the program went through seven “cycles” that ended with the “hard-to-generate”
test case. In Tables 5.4 and 5.5, the last line shows what percentage of the random
test cases was generated for each column. In the table for NextDate, the percent-
ages are very close to the computed probability given in the last line of Table 5.5.
Even in the smallest sets of random test cases, 1289 for the Triangle Program, and
913 for NextDate, there is extensive redundancy before the “difficult” test cases are
reached randomly. Since every form of random testing only generates the input por-
tion of a test case, the expected outputs must be generated somehow. This is easy
for NextDate, but in general, this will be in enormous task. Our conclusion? Random
testing is of academic interest only.

Table 5.4 Random Test Cases for the Triangle Program

Test Cases Non-triangles Scalene Isosceles Equilateral

1289 663 593 32 1

15436 7696 7372 367 1

17091 8556 8164 367 1

2603 1284 1252 66 1

6475 3197 3122 155 1

5978 2998 2850 129 1

9008 4447 4353 207 1

Percentage 49.83% 47.87% 2.29% 0.01%

Boundary Value Testing ◾ 93

5.7 Guidelines for Boundary Value Testing
With the exception of special value testing, the test methods based on the input
domain of a function (program) are the most rudimentary of all specification-based
testing methods. They share the common assumption that the input variables are
truly independent; and when this assumption is not warranted, the methods generate
unsatisfactory test cases (such as June 31, 1942 for NextDate). Each of these methods
can be applied to the output range of a program.

Another useful form of output-based test cases is for systems that generate error
messages. The tester should devise test cases to check that error messages are gener-
ated when they are appropriate and are not falsely generated. Boundary value analy-
sis can also be used for internal variables, such as loop control variables, indices,

Table 5.5 Random Test Cases for the NextDate Program

Test Cases
Days 1–30 of
31-day months

Day 31 of
31-day months

Days 1–29 of
30-day months

Day 30 of
30-day months

913 542 17 274 10

1101 621 9 358 8

4201 2448 64 1242 46

1097 600 21 350 9

5853 3342 100 1804 82

3959 2195 73 1252 42

1436 786 22 456 13

percentage 56.76% 1.65% 30.91% 1.13%

Probability 56.45% 1.88% 31.18% 1.88%

Days 1–27
of Feb.

Feb. 28 of a
leap year

Feb. 28 of a
non-leap year

Feb. 29 of a
leap year

Impossible
days

45 1 1 1 22

83 1 1 1 19

312 1 8 3 77

92 1 4 1 19

417 1 11 2 94

310 1 6 5 75

126 1 5 1 26

7.46% 0.04% 0.19% 0.08% 1.79%

7.26% 0.07% 0.20% 0.07% 1.01%

94 ◾ Software Testing

and pointers. Strictly speaking, these are not input variables; but errors in the use
of these variables are quite common. Robustness testing is a good choice for testing
internal variables.

There is a discussion in Chapter 10 about “the testing pendulum”—it refers to the
problem of syntactic versus semantic approaches to developing test cases. Here is a
short example given both ways. Consider a function F of three variables, a, b, and c.
The boundaries are: 0 <= a <10,000; 0 <= b <10,000, and 0 <= c <18.8. The function
F is: F = (a − b)/c; Table 5.6 shows the normal boundary value test cases. Absent
semantic knowledge, the test cases in Table 5.6 are what a boundary value testing
tool would generate (a tool would not generate the expected output values). Even
just the syntactic version is problematic—it does not avoid the division by zero pos-
sibility in test case 11. (Note: the redundant test cases are in bold font.)

When we add the semantic information that F calculates the miles per gallon of
an automobile, where a and b are end and start trip odometer values, and c is the gas
tank capacity, we see more severe problems:

 1. We must always have a >= b. this will avoid the negative values of F (test cases
1, 2, 9, and 10).

Table 5.6 Normal Boundary Value Test Cases for F = (a − b)/c

Test Case a b c F

1 0 5000 9.4 −531.9

2 1 5000 9.4 −531.8

3 5000 5000 9.4 0.0

4 9998 5000 9.4 531.7

5 9999 5000 9.4 531.8

6 5000 0 9.4 531.9

7 5000 1 9.4 531.8

8 5000 5000 9.4 0.0

9 5000 9998 9.4 −531.7

10 5000 9999 9.4 −531.8

11 5000 5000 0 #DIV/0!

12 5000 5000 1 0.0

13 5000 5000 9.4 0.0

14 5000 5000 18.7 0.0

15 5000 5000 18.8 0.0

Boundary Value Testing ◾ 95

 2. Test cases 3, 8, and 12 - 15 all refer to trips of length 0, so they could be col-
lapsed into one test case, probably test case 8.

 3. Division by zero is an obvious problem, thereby eliminating test case 11.
Applying the semantic knowledge will − result in the better set of case cases in
Table 5.8.

 4. Table 5.7 is still problematic—we never see the effect of boundary values on the
tank capacity.

Exercises

 1. Make a Venn diagram showing the relationships among test cases from bound-
ary value analysis, robustness testing, worst-case testing, and robust worst-case
testing.

 2. Apply Special Value Testing to the miles per gallon example in Tables 5.8 and
5.9. Provide reasons for your chosen test cases.

 3. What would we learn from Robust Normal Boundary Value test cases for the
Quadrilateral Program? The values are:
 c1. 0 ≤ a ≤ 201 (top)
 c2. 0 ≤ b ≤ 201 (left side)
 c3. 0 ≤ c ≤ 201 (bottom)
 c4. 0 ≤ d ≤ 201 (right side)

 4. Discuss the extent to which any form of boundary value testing would be help-
ful/appropriate for the Quadrilateral Program.

 5. Repeat questions 3 and 4 for the NextWeek function. Use these range values:
 c1. 0 ≤ month ≤ 13
 c2. 0 ≤ day ≤ 32
 c3. 1841 ≤ year ≤ 2043

Table 5.7 Semantic Boundary Value Test Cases for F = (a − b)/c

Test Case End Odometer Start Odometer Tank Capacity Miles Per Gallon

4 9998 5000 9.4 531.7

5 9999 5000 9.4 531.8

6 5000 0 9.4 531.9

7 5000 1 9.4 531.8

8 5000 5000 9.4 0.0

https://taylorandfrancis.com

97

Chapter 6

Equivalence Class Testing

The use of equivalence classes as the basis for functional testing has two motivations:
we would like to have a sense of complete testing; and, at the same time, we would
hope to avoid redundancy. Neither of these hopes is realized by boundary value
testing—looking at the tables of test cases, it is easy to see massive redundancy, and
looking more closely, serious gaps exist. Equivalence class testing echoes the two
deciding factors of boundary value testing, robustness, and the single/multiple fault
assumption. This chapter presents the traditional view of equivalence class testing,
followed by a coherent treatment of four distinct forms based on the two assump-
tions. The single versus multiple fault assumption yields the weak/strong distinction
and the focus on invalid data yields second distinction: normal versus robust. Taken
together, these two assumptions result in Weak Normal, Strong Normal, Weak Robust,
and Strong Robust Equivalence Class testing.

Two problems occur with robust forms. The first is that, very often, the speci-
fication does not define what the expected output for an invalid input should be.
(We could argue that this is a deficiency of the specification, but that does not get
us anywhere.) Thus, testers spend a lot of time defining expected outputs for these
cases. The second problem is that strongly typed languages eliminate the need for
the consideration of invalid inputs. Traditional equivalence testing is a product of the
time when languages such as FORTRAN and COBOL were dominant; thus, this type
of error was common. In fact, it was the high incidence of such errors that led to the
implementation of strongly typed languages.

6.1 Equivalence Classes
In Chapter 3, we noted that the important aspect of equivalence classes is that they
form a partition of a set, where partition refers to a collection of mutually disjoint
subsets, the union of which is the entire set. This has two important implications for
testing—the fact that the entire set is represented provides a form of completeness,
and the disjointedness ensures a form of non-redundancy. Because the subsets are
determined by an equivalence relation, the elements of a subset have something in

98 ◾ Software Testing

common. The idea of equivalence class testing is to identify test cases by using one
element from each equivalence class. If the equivalence classes are chosen wisely,
this greatly reduces the potential redundancy among test cases. In the Triangle
Problem, for example, we would certainly have a test case for an equilateral triangle,
and we might pick the triple (5, 5, 5) as inputs for a test case. If we did this, we
would not expect to learn much from test cases such as (6, 6, 6) and (100, 100, 100).
Our intuition tells us that these would be “treated the same” as the first test case;
thus, they would be redundant. When we consider code-based testing in Chapter 8,
we shall see that “treated the same” maps onto “traversing the same execution path.”
The four forms of equivalence class testing all address the problems of gaps and
redundancies that are common to the four forms of boundary value testing. Since the
assumptions align, the four forms of boundary value testing also align with the four
forms of equivalence class testing. There will be one point of overlap—this occurs
when equivalence classes are defined by bounded variables. In such cases, a hybrid
of boundary value and equivalence class testing is appropriate. The ISTQB syllabi
refer to this as “edge testing.” We will see this in the discussion in Section 6.3.

6.2 Traditional Equivalence Class Testing
Most of the standard testing texts (e.g., Myers, 1979; Mosley, 1993) discuss equivalence
classes based on valid and invalid variable values. Traditional equivalence class testing
is nearly identical to weak robust equivalence class testing (see Section 6.3.3). This tradi-
tional form focuses on invalid data values, and it is/was a consequence of the dominant
style of programming in the 1960s and 1970s. Input data validation was an important
issue at the time, and “Garbage In, Garbage Out” was the programmer’s watchword.
In the early years, it was the program user's responsibility to provide valid data. There
was no guarantee about results based on invalid data. The term soon became known
as GIGO. The usual response to GIGO was extensive input validation sections of a pro-
gram. Authors and seminar leaders frequently commented that the afferent portion in
the classic afferent/central/efferent architecture of structured programming often rep-
resented 80% of the total source code. In this context, it is natural to emphasize input
data validation. The early defense against GIGO was to have extensive testing to assure
data validity. The gradual shift to modern programming languages, especially those that
feature strong data typing, and then to graphical user interfaces (GUIs) obviated much
of the need for input data validation. Indeed, good use of user interface devices such as
drop-down lists and slider bars reduces the likelihood of bad input data.

Traditional equivalence class testing echoes the process of boundary value test-
ing. Figure 6.1 shows test cases for a function F of two variables x1 and x2., as we had
in Chapter 5. The extension to more realistic cases of n variables proceeds as follows:

 1. Test F for valid values of all variables. If this is successful, then
 2. Test F for invalid values of x1 with valid values of the remaining variables. Any

failure will be due to a problem with an invalid value of x1.
 3. Repeat step 2 for the remaining variables.

One clear advantage of this process is that it focuses on finding faults due to invalid
data. Since the GIGO concern was on invalid data, the kinds of combinations that we

Equivalence Class Testing ◾ 99

saw in the worst case variations of boundary value testing were ignored. Figure 6.1
shows the five test cases for this process for our continuing function F of two variables.

6.3 Improved Equivalence Class Testing
The key (and the craft!) of equivalence class testing is the choice of the equivalence
relation that determines the classes. Very often, we make this choice by second-guess-
ing the likely implementation and thinking about the functional manipulations that
must somehow be present in the implementation. We will illustrate this with our con-
tinuing examples. We need to enrich the function we used in boundary value testing.
Again, for the sake of comprehensible drawings, the discussion relates to a function,
F, of two variables x1 and x2. When F is implemented as a program, the input variables
x1 and x2 will have the following boundaries, and intervals within the boundaries:

a ≤ x1 ≤ d, with intervals [a, b), [b, c), [c, d]
e ≤ x2 ≤ g, with intervals [e, f), [f, g]

where square brackets and parentheses denote, respectively, closed and open inter-
val endpoints. The intervals presumably correspond to some distinction in the pro-
gram being tested. These ranges are equivalence classes. Invalid values of x1 and x2
are: x1 < a, x1 > d, and x2 < e, x2 > g. The equivalence classes of valid values are:

V1={x1 : a <= x1 < b}, V2={x1 : b <= x1 < c},V3={x1 : c <= x1 <= d},
V4={x2 : e <= x2 < f}, V5={x2 : f <= x2 <= g}

The equivalence classes of invalid values are:

NV1={x1 : x1 < a}, NV2={x1 : d < x1}, NV3={x2 : x2 < e}, NV4 ={x2 : g < x2 }

The equivalence classes V1, V2, V3, V4, V5, NV1, NV2, NV3, and NV4 are disjoint,
and their union is the entire plane. In the following discussions, we will just use the
interval notation rather than the full formal set definition.

Figure 6.1 Traditional equivalence class test cases.

a b

c

d

x1

x2

Valid values of x

Valid values of x

Invalid values of x

Invalid values of x

Invalid values of x Invalid values of xValid values of x1

Valid values of x2

Invalid values of x2

Invalid values of x2

Invalid values of x1 Invalid values of x1

100 ◾ Software Testing

6.3.1 Weak Normal Equivalence Class Testing

With the notation as given previously, weak normal equivalence class testing is
accomplished by using one variable from each equivalence class (interval) in a test
case. (Note the effect of the single fault assumption.) For the running example, we
would end up with the three weak equivalence class test cases shown in Figure 6.2.
This figure will be repeated for the remaining forms of equivalence class testing, but,
for clarity, without the indication of valid and invalid ranges. These three test cases
use one value from each equivalence class. The test case in the lower left rectangle
corresponds to a value of x1 in the class [a, b), and to a value of x2 in the class [e, f).
The test case in the upper center rectangle corresponds to a value of x1 in the class [b,
c) and to a value of x2 in the class [f, g). The third test case could be in either rectangle
on the right side of the valid values. We identified these in a systematic way, thus the
apparent pattern. In fact, we will always have the same number of weak equivalence
class test cases as classes in the partition with the largest number of subsets.

What can we learn from a weak normal equivalence class test case that fails, i.e.,
one for which the expected and actual outputs are inconsistent? There could be a
problem with x1, or a problem with x2, or maybe an interaction among the two. This
ambiguity is the reason for the “weak” designation. If the expectation of failure is
low, as it is for regression testing, this can be an acceptable choice. When more fault
isolation is required, the stronger forms, discussed next, are indicated.

6.3.2 Strong Normal Equivalence Class Testing

Strong equivalence class testing is based on the multiple fault assumption, so we need
test cases from each element of the Cartesian product of the equivalence classes, as
shown in Figure 6.3. Notice the similarity between the pattern of these test cases
and the construction of a truth table in propositional logic. The Cartesian product
guarantees that we have a notion of “completeness” in two senses: we cover all the
equivalence classes, and we have one of each possible combination of inputs. As we
shall see from our continuing examples, the key to “good” equivalence class test-
ing is the selection of the equivalence relation. Watch for the notion of inputs being
“treated the same.” Most of the time, equivalence class testing defines classes of the

Figure 6.2 Weak normal equivalence class test cases.

a bb c d

e

f

g

x2

x2

Equivalence Class Testing ◾ 101

input domain. There is no reason why we could not define equivalence relations on
the output range of the program function being tested; in fact, this is the simplest
approach for the Triangle Problem.

6.3.3 Weak Robust Equivalence Class Testing

The name for this form is admittedly counterintuitive and oxymoronic. How can
something be both weak and robust? The robust part comes from consideration of
invalid values, and the weak part refers to the single fault assumption. The process of
weak robust equivalence class testing is a simple extension of that for weak normal
equivalence class testing—pick test cases such that each equivalence class is repre-
sented. In Figure 6.4, the test cases for valid classes are as they were in Figure 6.2.
The two additional test cases cover all four classes of invalid values. The process is
similar to that for boundary value testing:

 1. For valid inputs, use one value from each valid class (as in what we have called
weak normal equivalence class testing. Note that each input in these test cases
will be valid.)

Figure 6.3 Strong normal equivalence class test cases.

d
x1

x2

a b c

e

f

g

Figure 6.4 Weak robust equivalence class test cases.

e

f

g

a b c d
x1

x2

102 ◾ Software Testing

 2. For invalid inputs, a test case will have one invalid value and the remaining val-
ues will all be valid. (Thus, a “single failure” should cause the test case to fail.)

The test cases resulting from this strategy are shown in Figure 6.4. There is a poten-
tial problem with these test cases. Consider the test cases in the upper left and lower
right corners. Each of the test cases represents values from two invalid equivalence
classes. Failure of either of these could be due to the interaction of two variables.
Figure 6.5 presents a compromise between "pure" weak normal equivalence class
testing and its robust extension.

6.3.4 Strong Robust Equivalence Class Testing

At least the name for this form is neither counterintuitive nor oxymoronic, just redun-
dant. As before, the robust part comes from consideration of invalid values, and
the strong part refers to the multiple fault assumption. We obtain test cases from
each element of the Cartesian product of all the equivalence classes, both valid and
invalid, as shown in Figure 6.6.

Figure 6.5 Revised weak robust equivalence class test cases.

e

f

g

a b c d
x1

x2

Figure 6.6 Strong robust equivalence class test cases.

e

f

g

a b c d
x1

x2

Equivalence Class Testing ◾ 103

6.4 Equivalence Class Test Cases for the Triangle Problem
In the problem statement, we note that four possible outputs can occur: NotATriangle,
Scalene, Isosceles, and Equilateral. We can use these to identify output (range) equiv-
alence classes as follows.

R1 = {<a, b, c>: the triangle with sides a, b, and c is equilateral}
R2 = {<a, b, c>: the triangle with sides a, b, and c is isosceles}
R3 = {<a, b, c>: the triangle with sides a, b, and c is scalene}
R4 = {<a, b, c>: sides a, b, and c do not form a triangle}

Four weak normal equivalence class test cases, chosen arbitrarily from each class are:

Test Case a b c

WN1 5 5 5 Equilateral

WN2 2 2 3 Isosceles

WN3 3 4 5 Scalene

WN4 4 1 2 Not a Triangle

Because no valid subintervals of variables a, b, and c exist, the strong normal equiv-
alence class test cases are identical to the weak normal equivalence class test cases.

Considering the invalid values for a, b, and c yields the following additional weak
robust equivalence class test cases. (The invalid values could be zero, any negative
number, or any number greater than 200.)

Test Case a B c Expected Output

WR1 –1 5 5 Value of a is not in the range of permitted values

WR2 5 –1 5 Value of b is not in the range of permitted values

WR3 5 5 –1 Value of c is not in the range of permitted values

WR4 201 5 5 Value of a is not in the range of permitted values

WR5 5 201 5 Value of b is not in the range of permitted values

WR6 5 5 201 Value of c is not in the range of permitted values

Here is one “corner” of the cube in 3-space of the additional strong robust equiva-
lence class test cases:

Test Case a b c Expected Output

SR1 –1 5 5 Value of a is not in the range of permitted values

SR2 5 –1 5 Value of b is not in the range of permitted values

SR3 5 5 –1 Value of c is not in the range of permitted values

(Continued)

104 ◾ Software Testing

Test Case a b c Expected Output

SR4 –1 –1 5 Values of a, b are not in the range of permitted values

SR5 5 –1 –1 Values of b, c are not in the range of permitted values

SR6 –1 5 –1 Values of a, c are not in the range of permitted values

SR7 –1 –1 –1 Values of a, b, c are not in the range of permitted values

Notice how thoroughly the expected outputs describe the invalid input values.
Equivalence class testing is clearly sensitive to the equivalence relation used to

define classes. Here is another instance of craftsmanship. If we base equivalence
classes on the input domain, we obtain a richer set of test cases. What are some of
the possibilities for the three integers, a, b, and c? They can all be equal, exactly one
pair can be equal (this can happen in three ways), or none can be equal.

D1 = {<a, b, c>: a = b = c}
D2 = {<a, b, c>: a = b, a ≠ c}
D3 = {<a, b, c>: a = c, a ≠ b}
D4 = {<a, b, c>: b = c, a ≠ b}
D5 = {<a, b, c>: a ≠ b, a ≠ c, b ≠ c}

As a separate question, we can apply the triangle property to see if they even consti-
tute a triangle. (For example, the triplet <1, 4, 1> has exactly one pair of equal sides,
but these sides do not form a triangle.)

D6 = {<a, b, c>: a ≥ b + c}
D7 = {<a, b, c>: b ≥ a + c}
D8 = {<a, b, c>: c ≥ a + b}

If we wanted to be still more thorough, we could separate the “greater than or equal
to” into the two distinct cases; thus, the set D6 would become:

D6' = {<a, b, c>: a = b + c}
D6" = {<a, b, c>: a > b + c}

and similarly for D7 and D8.

6.5 Equivalence Class Test Cases for the NextDate Function
The NextDate function illustrates very well the craft of choosing the underlying
equivalence relation. Recall that NextDate is a function of three variables: month, day,
and year, and these have intervals of valid values defined as follows:

M1 = {month: 1 ≤ month ≤ 12}
D1 = {day: 1 ≤ day ≤ 31}
Y1 = {year: 1842 ≤ year ≤ 2042}

Equivalence Class Testing ◾ 105

The invalid equivalence classes are:

M2 = {month: month < 1}
M3 = {month: month > 12}
D2 = {day: day < 1}
D3 = {day: day > 31}
Y2 = {year: year < 1842}
Y3 = {year: year > 2042}

Because the number of valid classes equals the number of independent variables,
only one weak normal equivalence class test case occurs, and it is identical to the
strong normal equivalence class test case:

Case ID Month Day Year Expected Output

WN1, SN1 6 15 1942 6/16/1942

Here is the full set of weak robust test cases:

Case ID Month Day Year Expected Output

WR1 6 15 1942 6/16/1942

WR2 –1 15 1942 Value of month not in the range 1..12

WR3 13 15 1942 Value of month not in the range 1..12

WR4 6 –1 1942 Value of day not in the range 1..31

WR5 6 32 1942 Value of day not in the range 1..31

WR6 6 15 1841 Value of year not in the range 1842..2042

WR7 6 15 2043 Value of year not in the range 1842..2042

As with the Triangle Problem, here is one “corner” of the cube in 3-space of the
additional strong robust equivalence class test cases:

Case ID Month Day Year Expected Output

SR1 –1 15 1942 Value of month not in the range 1..12

SR2 6 –1 1942 Value of day not in the range 1..31

SR3 6 15 1841 Value of year not in the range 1842..2042

SR4 –1 –1 1942 Value of month not in the range 1..12
Value of day not in the range 1..31

SR5 6 –1 1841 Value of day not in therange 1..31
Value of year not in the range 1842..2042

SR6 –1 15 1841 Value of month not in the range 1..12
Value of year not in the range 1842..2042

(Continued)

106 ◾ Software Testing

Case ID Month Day Year Expected Output

SR7 –1 –1 1841 Value of month not in the range 1..12
Value of day not in the range 1..31
Value of year not in the range 1842..2042

If we more carefully choose the equivalence relation, the resulting equivalence
classes will be more useful. Recall that earlier we said that the gist of the equivalence
relation is that elements in a class are “treated the same way.” One way to see the
deficiency of the traditional approach is that the “treatment” is at the valid/invalid
level. We next reduce the granularity by focusing on more specific treatment.

What must be done to an input date? If it is not the last day of a month, the
NextDate function will simply increment the day value. At the end of a month, the
next day is 1 and the month is incremented. At the end of a year, both the day and
the month are reset to 1, and the year is incremented. Finally, the problem of leap
year makes determining the last day of a month interesting. With all this in mind, we
might postulate the following equivalence classes:

M1 = {month: month has 30 days}
M2 = {month: month has 31 days}
M3 = {month: month is February}
D1 = {day: 1 ≤ day ≤ 28}
D2 = {day: day = 29}
D3 = {day: day = 30}
D4 = {day: day = 31}
Y1 = {year: year = 2000}
Y2 = {year: year is a non-century leap year}
Y3 = {year: year is a common year}

By choosing separate classes for 30- and 31-day months, we simplify the question of
the last day of the month. By taking February as a separate class, we can give more
attention to leap year questions. We also give special attention to day values: days in
D1 are (nearly) always incremented, while days in D4 only have meaning for months
in M2. Finally, we have three classes of years, the special case of the year 2000, leap
years, and non-leap years. This is not a perfect set of equivalence classes, but its use
will reveal many potential errors.

These classes yield the following weak equivalence class test cases. As before, the
inputs are mechanically selected from the approximate middle of the corresponding
class:

Case ID Month Day Year Expected Output

WN1 6 14 2000 6/15/2000

WN2 7 29 1996 7/30/1996

WN3 2 30 2002 Invalid Input Date

WN4 6 31 2000 Invalid Input Date

Equivalence Class Testing ◾ 107

Mechanical selection of input values makes no consideration of our domain
knowledge, thus the two impossible dates. This will always be a problem with “auto-
matic” test case generation because all of our domain knowledge is not captured in
the choice of equivalence classes. The strong normal equivalence class test cases for
the revised classes are:

Case ID Month Day Year Expected Output

SN1 6 14 2000 6/15/2000

SN2 6 14 1996 6/15/1996

SN3 6 14 2002 6/15/2002

SN4 6 29 2000 6/30/2000

SN5 6 29 1996 6/30/1996

SN6 6 29 2002 6/30/2002

SN7 6 30 2000 7/1/2000

SN8 6 30 1996 7/1/1996

SN9 6 30 2002 7/2002

SN10 6 31 2000 Invalid Input Date

SN11 6 31 1996 Invalid Input Date

SN12 6 31 2002 Invalid Input Date

SN13 7 14 2000 7/15/2000

SN14 7 14 1996 7/15/1996

SN15 7 14 2002 7/15/2002

SN16 7 29 2000 7/30/2000

SN17 7 29 1996 7/30/1996

SN18 7 29 2002 7/30/2002

SN19 7 30 2000 7/31/2000

SN20 7 30 1996 7/31/1996

SN21 7 30 2002 7/31/2002

SN22 7 31 2000 8/1/2000

SN23 7 31 1996 8/1/1996

SN24 7 31 2002 8/1/2002

SN25 2 14 2000 2/15/2000

SN26 2 14 1996 2/15/1996

SN27 2 14 2002 2/15/2002

(Continued)

108 ◾ Software Testing

Case ID Month Day Year Expected Output

SN28 2 29 2000 3/1/2000

SN29 2 29 1996 3/1/1996

SN30 2 29 2002 Invalid Input Date

SN31 2 30 2000 Invalid Input Date

SN32 2 30 1996 Invalid Input Date

SN33 2 30 2002 Invalid Input Date

SN34 2 31 2000 Invalid Input Date

SN35 2 31 1996 Invalid Input Date

SN36 2 31 2002 Invalid Input Date

Moving from weak to strong normal testing raises some of the issues of redun-
dancy that we saw with boundary value testing. The move from weak to strong,
whether with normal or robust classes, always makes the presumption of indepen-
dence; and this is reflected in the cross-product of the equivalence classes. Three
month classes, four day classes, and three year classes result in 36 strong normal
equivalence class test cases. Adding two invalid classes for each variable will result
in 150 strong robust equivalence class test cases (too many to show here!).

We could also streamline our set of test cases by taking a closer look at the year
classes. If we merge Y1 and Y2, and call the result the set of leap years, our 36 test
cases would drop down to 24. This change suppresses special attention to consid-
erations in the year 2000, and it also adds some complexity to the determination of
which years are leap years. Balance this against how much might be learned from
the present test cases.

6.6 Equivalence Class Test Cases for the completeOrder Method
In Chapter 2, the Behavior-Driven Development of the completeOrder method
resulted in a decision table with three conditions and seven actions. Since the condi-
tion (c3) regarding the “Finish” option is not needed, we are left with the following
decision table (Table 6.1).

Conditions c1 and c2 define equivalence classes on the Source of an order
(Member or Guest) and the Price ranges:

S1 = {Member}, S2 = {Guest}, P1 = {<$200}, P2 = {$200 to $800}, and P3 = {>$800}

We have an identical set of equivalence classes to those in the discussion in
Section 6.3. Figures 6.7 and 6.8 show the equivalence classes of the normal forms of
Equivalence Class test cases.

The shaded cells in Tables 6.2 and 6.3 show the coverage of the normal forms of
Equivalence Class test cases for the completeOrder method.

Equivalence Class Testing ◾ 109

Table 6.1 Reduced Decision Table for the completeOrder Method

c1. Order by Member Guest

c2. Order price is < $200 $200 to $800 > $800 —

a1. no discount x — — x

a2. 10% discount — x — —

a3. 15% discount — — x —

a4. apply any taxes x x x x

a5. apply shipping charges x — — x

a6. open Payment Screen x x x x

Figure 6.7 Weak Normal Equivalence Classes for completeOrder.

Source

Price

Member

Guest

<$200 $200 to $800 > $800

Figure 6.8 Strong Normal Equivalence Classes for completeOrder.

Source

Price

Member

Guest

<$200 $200 to $800 > $800

110 ◾ Software Testing

The robust forms of equivalence class testing do not apply well to the completeOr-
der method because the classes Member and Guest span the full set of Foodies-Wish-
List users, and the three price ranges span all possible order prices. We could revise
the < $200 class to a “normal price ($0 < orderPrice < $ 200) and negative prices,
thereby creating some robustness.

6.7 “Edge Testing”
The ISTQB Advanced Level Syllabus [ISTQB 2012] describes a hybrid of boundary
value analysis and equivalence class testing and gives it the name "edge testing." This
need for this occurs when contiguous ranges of a particular variable constitute equiv-
alence classes. Figure 6.2 shows three equivalence classes of valid values for x1 and
two classes for x2. Presumably, these classes refer to variables that are "treated the
same" in some application. This suggests that there may be faults near the boundaries
of the classes, and edge testing will exercise these potential faults. For the example
in Figure 6.2, a full set of edge testing test values are as follows:

Normal test values for x1: {a, a+, b-, b, b+, c-, c, c+, d-, d}
Robust test values for x1: {a-, a, a+, b-, b, b+, c-, c, c+, d-, d, d+}
Normal test values for x2: {e, e+, f-, f, f+, g-, g}
Robust test values for x2: {e-, e, e+, f-, f, f+, g-, g, g+}

One subtle difference is that edge test values do not include the nominal values that
we had with boundary value testing. Once the sets of edge values are determined,
edge testing can follow any of the four forms of equivalence class testing. The num-
bers of test cases obviously increase.

The set of edge testing test case values for orderPrice is:

{$0, $1, $199, $200, $201, $799, $800, $801}

Combining these edge test case values with the two types of users will yield 8 Weak
Normal edge test cases and 16 Strong Normal edge test cases.

Table 6.2 Coverage of Weak Normal Equivalence Classes for completeOrder

c1. Order by Member Member Member Guest Guest Guest

c2. Order
price is

< $200
$200 to
$800

> $800 < $200
$200 to
$800

> $800

Table 6.3 Coverage of Strong Normal Equivalence Classes for completeOrder

c1. Order by Member Member Member Guest Guest Guest

c2. Order
price is

< $200
$200 to
$800

> $800 < $200
$200 to
$800

> $800

Equivalence Class Testing ◾ 111

6.8 Reflections on Invalid Classes
When the set on which an equivalence relation holds is clearly defined, it is relatively
easy to identify invalid equivalence classes. This is particularly true for the abstract
example of a bounded function of two variables in Section 6.3. In the NextDate
example, if we use numbers for days and months, it is similarly easy to identify
invalid equivalence classes. Sets that do not conform to the definition of the set in
question are good candidates for invalid equivalence classes.

More generally, the input domain (X) of some function-under-test (X->Y) may
either cover the entire set of possible inputs or not. The datatype (D) used to describe
X may include values outside of X, that is D is not a subset of X, thus some value d
in D is not in X. Just as there may be some values in D that aren’t in X for continuous
functions (e.g., -1 is in D but not in X for a square root function without imaginary
numbers). The opposite is true as well. Some continuous functions exist where D = X
(e.g., addition has no inputs that are invalid). Robustness testing would cover invalid
values inputs iff some d exists in D but not in X.

What about discrete sets that are defined by enumeration, rather than by a rule?
Suppose we have a set C of colors:

C = {red, orange, yellow, green, blue, indigo, violet}

We might recognize this as the set of rainbow colors and then decide that Infra-red
and Ultra-violet are members of an invalid equivalence class. But consider the set F:

 F = {red, white, green}

Now we have little, if any, insight as to invalid equivalence classes. All Non-F? That
would include Lewis Carroll’s “shoes and ships - and sealing wax and cabbages and
kings.” There can be no general rule for this question, but we can return to the idea
of craftsmanship. Even for sets defined by enumeration, there is an underlying uni-
verse of discourse and the testing craftsperson could use that insight to define useful
invalid equivalence classes.

6.9 Guidelines and Observations
Now that we have gone through our two continuing examples, we conclude with
some observations about, and guidelines for, equivalence class testing.

 1. Obviously, the weak forms of equivalence class testing (normal or robust) are
not as comprehensive as the corresponding strong forms.

 2. If the implementation language is strongly typed (and invalid values cause run-
time errors), it makes no sense to use the robust forms.

 3. If error conditions are a high priority, the robust forms are appropriate.
 4. Equivalence class testing is appropriate when input data is defined in terms of

intervals and sets of discrete values. This is certainly the case when system mal-
functions can occur for out-of-limit variable values.

112 ◾ Software Testing

 5. Equivalence class testing is strengthened by a hybrid approach with boundary
value testing, i.e., edge testing. (We can “reuse” the effort made in defining the
equivalence classes.)

 6. Equivalence class testing is indicated when the program function is complex. In
such cases, the complexity of the function can help identify useful equivalence
classes, as in the NextDate function.

 7. Strong equivalence class testing makes a presumption that the variables are
independent, and the corresponding multiplication of test cases raises issues of
redundancy. If any dependencies occur, they will often generate “error” test
cases, as they did in the NextDate function. (The decision table technique in
Chapter 7 resolves this problem.)

 8. Several tries may be needed before the “right” equivalence relation is discov-
ered, as we saw in the NextDate example. In other cases, there is an “obvious”
or “natural” equivalence relation. When in doubt, the best bet is to try to second-
guess aspects of any reasonable implementation.

 9. The difference between the strong and weak forms of equivalence class testing
is helpful in the distinction between progression and regression testing.

Exercises
 1. Starting with the 36 strong normal equivalence class test cases for the NextDate

function, revise the day classes as discussed, and then find the other nine test
cases.

 2. If you use a compiler for a strongly typed language, discuss how it would react
to robust equivalence class test cases.

 3. Compare and contrast the single/multiple fault assumption with boundary value
and equivalence class testing.

 4. In the completeOrder method, revise the “< $200” class to a “normal price ($0 <
orderPrice < $ 200) and negative prices, and generate the corresponding Robust
equivalence Class test cases. Compare and contrast this to the Edge Testing test
cases of Section 6.7.

 5. The spring and fall changes between standard and daylight savings time create
an interesting problem for telephone bills. In the spring, this switch occurs at
2:00 a.m. on a Sunday morning (early March,) when clocks are reset to 3:00 a.m.
The symmetric change takes place usually on the first Sunday in November,
when the clock changes from 2:59:59 back to 2:00:00.

 6. Develop equivalence classes for a long-distance telephone service function that
bills calls using the following rate structure:
 ▪ Call Duration < = 20 minutes charged at $0.05 per each minute or fraction of

a minute
 ▪ Call Duration > 20 minutes charged at $1.00 plus $0.10 per each minute or

fraction of a minute in excess of 20 minutes.
 ▪ Make these assumptions:

	–	Chargeable time of a call begins when the called party answers and ends
when the calling party disconnects.

	–	Call durations of seconds are rounded up to the next larger minute.
	–	No call lasts more than +30 hours.

Equivalence Class Testing ◾ 113

 7. Develop a set of equivalence classes for the NextWeek function. Are they signifi-
cantly different from the NextDate equivalence classes?

 8. Use the seven definitions of quadrilateral types (see Figure 2.1) to develop a set
of equivalence classes for the Quadrilateral Program. Does it make any sense to
consider the four variations of equivalence class testing? Or would it be suffi-
cient just to test based on your equivalence classes?

References
Mosley, Daniel J., The Handbook of MIS Application Software Testing, Yourdon Press, Prentice

Hall, Englewood Cliffs, NJ, 1993.
Myers, Glenford J., The Art of Software Testing, Wiley Interscience, New York, 1979.
ISTQB Advanced Level Working Party, ISTQB Advanced Level Syllabus, 2012

https://taylorandfrancis.com

115

Chapter 7

Decision Table-Based Testing

Of all the functional testing methods, those based on decision tables are the most
rigorous because of their strong logical basis. Two closely related methods are used:
Cause and Effect Graphing (Elmendorf, 1973; Myers, 1979) and the decision tableau
method (Mosley, 1993). These are more cumbersome to use and are fully redundant
with decision tables; both are covered in Mosley (1993). For the curious, or for the sake
of completeness, section 7.5 offers a short discussion of Cause and Effect Graphing.

7.1 Decision Tables
Decision tables have been used to represent and analyze complex logical relation-
ships since the early 1960s. They are ideal for describing situations in which various
combinations of actions are taken under varying sets of conditions. Some of the basic
decision table terms are illustrated in Decision Table 7.1.

A decision table has four portions: the part to the left of the bold vertical line is
the stub portion; to the right is the entry portion. The part above the bold horizontal

Decision Table 7.1 Sample Decision Table

Rules Rules

1 2 3 4 5 6 7 8 1 2 3,4 5 6 7,8

c1 T T T T F F F F c1 T T T F F F

c2 T T F F T T F F c2 T T F T T F

c3 T F T F T F T F c3 T F — T F —

a1 X X X a1 X X X

a2 X X a2 X X

a3 X X a3 X X

a4 X X X X a4 X X

116 ◾ Software Engineering

line is the condition portion, and below is the action portion. Thus, we can refer to
the condition stub, the condition entries, the action stub, and the action entries. A
column in the entry portion is a rule. Rules indicate which actions, if any, are taken
for the circumstances indicated in the condition portion of the rule. In the decision
tables in 7.1, when conditions c1, c2, and c3 are all true, actions a1 and a2 occur.
When c1 and c2 are both true and c3 is false, then actions a1 and a3 occur. The right
decision table is derived from the left one as follows: notice that the action entries for
rules 3 and 4 are identical. We conclude that condition c3 has no effect on the actions
to be performed. The “—” entry for c3 is called a “don’t care” entry. The don’t care
entry has two major interpretations: the condition is irrelevant, or the condition does
not apply. Sometimes people will enter the “n/a” symbol for this latter interpretation.

When we have binary conditions (true/false, yes/no, 0/1), the condition portion of
a decision table is a truth table (from propositional logic) that has been rotated 90°.
This structure guarantees that we consider every possible combination of condition
truth values. When we use decision tables for test case identification, the completeness
property of a decision table guarantees a form of complete testing. Decision tables in
which all the conditions are binary are called limited entry decision tables (LEDT). If
conditions have several values, the resulting tables are called extended entry decision
tables (MEDT). When both limited entry and mixed entry conditions are present, we
have a mixed entry decision table (MEDT). These distinctions will become important
when we use rule counting to identify complete decision tables. Decision tables are
deliberately declarative (as opposed to imperative); no particular order is implied by
the conditions, and selected actions do not occur in any particular order.

7.2 Decision Table Techniques
To identify test cases with decision tables, we interpret conditions as inputs and
actions as outputs. Sometimes conditions end up referring to equivalence classes of
inputs, and actions refer to major functional processing portions of the item tested.
The rules are then interpreted as test cases. Because the decision table can mechani-
cally be forced to be complete, we have some assurance that we will have a compre-
hensive set of test cases. Several techniques that produce decision tables are more
useful to testers. One helpful style is to add an action to show when a rule is logically
impossible. In the decision table in 7.2, we see examples of don’t care entries and
impossible rule usage. If the integers a, b, and c do not constitute a triangle, we do
not even care about possible equalities, as indicated in the first rule. In rules 3, 4,
and6, if two pairs of integers are equal, by transitivity, the third pair must be equal so
these rules impossible. Rules 2 and 9 describe equilateral and scalene triangles, and
rules 5, 7, and 8 describe three ways a triangle can be isosceles.

The Decision Table 7.3 illustrates another consideration: the choice of conditions
can greatly expand the size of a decision table. Here, we have expanded the old con-
dition (c1: a, b, c form a triangle?) to a more detailed view of the three inequalities
of the triangle property. If any one of these fails, the three integers do not constitute
sides of a triangle.

We could expand this still further because there are two ways an inequality could
fail: one side could equal the sum of the other two, or it could be strictly greater.

When conditions refer to equivalence classes, decision tables have a characteristic
appearance. Conditions in the decision table in 7.4 are from the NextDate Problem;

Decision Table-Based Testing ◾ 117

they refer to the mutually exclusive possibilities for the month variable. Because a
month is in exactly one equivalence class, we cannot ever have a rule in which two
entries are true. In this case, the don’t care entries (—) really mean “must be false.”

Use of don’t care entries has a subtle effect on the way in which complete decision
tables are recognized. For limited entry decision table with n conditions exist, there
must be 2n independent rules. When don’t care entries really indicate that the condi-
tion is irrelevant, we can develop a rule count as follows: rules in which no don’t care
entries occur count as one rule, and each don’t care entry in a rule doubles the count
of that rule. The rule counts for the decision table in Decision Table 7.3 are shown
in Decision Table 7.4. Notice that the sum of the rule counts is 64 (as it should be).

If we applied this simplistic algorithm to the decision table in 7.5, we get the rule
counts shown in Decision Table 7.6. We should only have eight rules, so we clearly

Decision Table 7.3 Refined Decision Table for the Triangle Problem

c1: a<b+c? F T T T T T T T T T T

c2: b<a+c? — F T T T T T T T T T

c3: c<a+b? — — F T T T T T T T T

c4: a = b? — — — T T T T F F F F

c5: a = c? — — — T T F F T T F F

c6: b = c? — — — T F T F T F T F

a1: Not a triangle X X X

a2: Scalene X

a3: Isosceles X X X

a4: Equilateral X

a5: Impossible X X X

Decision Table 7.2 Decision Table for the Triangle Problem

1 2 3 4 5 6 7 8 9

c1: a, b, c form a triangle? F T T T T T T T T

c2: a = b? — T T T T F F F F

c3: a = c? — T T F F T T F F

c4: b = c? — T F T F T F T F

a1: Not a triangle X

a2: Scalene X

a3: Isosceles X X X

a4: Equilateral X

a5: Impossible X X X

118 ◾ Software Engineering

have a problem. To see where the problem lies, we expand each of the three rules,
replacing the “—” entries with the T and F possibilities, as shown in Decision Table 7.7.

If we applied this simplistic algorithm to the Decision Table in 7.5, we get the rule
counts shown in Decision Table 7.6. We should only have eight rules, so we clearly
have a problem. To see where the problem lies, we expand each of the three rules,
replacing the “—” entries with the T and F possibilities, as shown in Decision Table 7.7.

Decision Table 7.4 Decision Table for Decision Table 7.3 with Rule Counts

c1: a<b+c? F T T T T T T T T T T

c2: b<a+c? — F T T T T T T T T T

c3: c<a+b? — — F T T T T T T T T

c4: a = b? — — — T T T T F F F F

c5: a = c? — — — T T F F T T F F

c6: b = c? — — — T F T F T F T F

Rule count 32 16 8 1 1 1 1 1 1 1 1

a1: Not a triangle X X X

a2: Scalene X

a3: Isosceles X X X

a4: Equilateral X

a5: Impossible X X X

Decision Table 7.5 Decision Table with Mutually
Exclusive Conditions

R1 R2 R3

c1: month in M1? T — —

c2: month in M2? — T —

c3: month in M3? — — T

a1

Decision Table 7.6 Rule Counts for a Decision Table
with Mutually Exclusive Conditions

R1 R2 R3

c1: month in M1? T — —

c2: month in M2? — T —

c3: month in M3? — — T

Rule count 4 4 4

a1

Decision Table-Based Testing ◾ 119

Notice that we have three rules in which all entries are T: rules 1.1, 2.1, and 3.1.
We also have two rules with T, T, F entries: rules 1.2 and 2.2. Similarly, rules 1.3 and
3.2 are identical; so are rules 2.3 and 3.3. If we delete the repetitions, we end up with
seven rules; the missing rule is the one in which all conditions are false. The result
of this process is shown in Decision Table 7.8. The impossible rules are also shown.

The ability to recognize (and develop) complete decision tables puts us in a
powerful position with respect to redundancy and inconsistency. The decision table
in Decision Table 7.9 is redundant—three conditions and nine rules exist. (Rule 9 is
identical to rule 4.) Notice that the action entries in rule 9 are identical to those in
rules 1 – 4. If the actions in a redundant rule are identical to the corresponding part

Decision Table 7.7 Expanded rules in Decision Table 7.6

Conditions Rule 1 Rule 2 Rule 3

expanded a b c d e f g h i j k l

c1: in M1 T T T T T T F F T T F F

c2: in M2 T T F F T T T T T F T F

c3: in M3 T F T F T F T F T T T T

Rules 1 1 1 1 1 1 1 1 1 1 1 1

a1. X X X — X X X — X X X —

Decision Table 7.8 Mutually Exclusive Conditions with Impossible Rules

Rules a b c d g h l

c1: in M1 T T T T F F F F

c2: in M2 T T F F T T F F

c3: in M3 T F T F T F T F

Rule count 1 1 1 1 1 1 1 1

a1. X X X — X — — X

Decision Table 7.9 A Redundant Decision Table

Rules 1–4 5 6 7 8 9

c1 T F F F F T

c2 — T T F F F

c3 — T F T F F

a1 X X X — — X

a2 — X X X — —

a3 X — X X X X

120 ◾ Software Engineering

of the decision table, we do not have much of a problem. If the action entries are
different, as in Decision Table 7.10, we have a bigger problem.

The ability to recognize (and develop) complete decision tables puts us in a
powerful position with respect to redundancy and inconsistency. The decision table
in Decision Table 7.9 is redundant—three conditions and nine rules exist. (Rule 9 is
identical to what would be rule 4.) Notice that the action entries in rule 9 are identi-
cal to those in rule 4. If the actions in a redundant rule are identical to the corre-
sponding part of the decision table, we do not have much of a problem. If the action
entries are different, as in Decision Table 7.10, we have a bigger problem.

If the decision table in Decision Table 7.10 were to process a transaction in which
c1 is true and both c2 and c3 are false, both rules 4 and 9 apply. We can make two
observations:

 1. Rules 4 and 9 are inconsistent.
 2. The decision table is nondeterministic.

Rules 4 and 9 are inconsistent because the action sets are different. The whole table
is nondeterministic because there is no way to decide whether to apply rule 4 or
rule 9. The bottom line for testers is that care should be taken when don’t care entries
are used in a decision table.

7.3 Test Cases for the Triangle Problem
Using the decision table for the Triangle Problem in Decision Table 7.3, we obtain 11
functional test cases: three impossible cases, three ways to fail the triangle property,
one way to get an equilateral triangle, one way to get a scalene triangle, and three ways
to get an isosceles triangle (see Decision Table 7.11). We still need to provide actual
values for the variables in the conditions, but we cannot do this for the impossible rules.
If we extended the decision table to show both ways to fail an inequality, we would
pick up three more test cases (where one side is exactly the sum of the other two).
Some judgment is required in this because of the exponential growth of rules. In this
case, we would end up with many more don’t care entries and more impossible rules.

Decision Table 7.10 An Inconsistent Decision Table

Rules 1–4 5 6 7 8 9

c1 T F F F F T

c2 — T T F F F

c3 — T F T F F

a1 X X X — — —

a2 — X X X — X

a3 X — X X X —

Decision Table-Based Testing ◾ 121

7.4 Test Cases for the NextDate Function
The NextDate function was chosen because it illustrates the problem of dependen-
cies in the input domain. This makes it a perfect example for decision table-based
testing, because decision tables can highlight such dependencies. Recall that, in
Chapter 6, we identified equivalence classes in the input domain of the NextDate
function. One of the limitations we found in Chapter 6 was that indiscriminate selec-
tion of input values from the equivalence classes resulted in impossible test cases,
such as finding the next date to June 31, 1842. The problem stems from the pre-
sumption that the variables are independent. If they are, a Cartesian product of the
classes makes sense. When logical dependencies exist among variables in the input
domain, these dependencies are lost (suppressed is better) in a Cartesian product.
The decision table format lets us emphasize such dependencies using the notion of
the “impossible” action to denote impossible combinations of conditions (which are
actually impossible rules). In this section, we will make three tries at a decision table
formulation of the NextDate function.

7.4.1 First Try

Identifying appropriate conditions and actions presents an opportunity for crafts-
manship. In Decision Table 7.12 we start with a set of equivalence classes close to
the one we used in Chapter 6.

M1 = {month : month has 30 days}
M2 = {month : month has 31 days}
M3 = {month : month is February}

Decision Table 7.11 Test Cases from Decision Table 7.3

Case ID a b c Expected Output

DT1 4 1 2 Not a Triangle

DT2 1 4 2 Not a Triangle

DT3 1 2 4 Not a Triangle

DT4 5 5 5 Equilateral

DT5 ? ? ? Impossible

DT6 ? ? ? Impossible

DT7 2 2 3 Isosceles

DT8 ? ? ? Impossible

DT9 2 3 2 Isosceles

DT10 3 2 2 Isosceles

DT11 3 4 5 Scalene

122 ◾ Software Engineering

D1 = {day : 1 ≤ day ≤ 28}
D2 = {day : day = 29}
D3 = {day : day = 30}
D4 = {day : day = 31}
Y1 = {year : year is a leap year}
Y2 = {year : year is not a leap year}

The corresponding limited entry decision table will have 256 rules (we can use T, F
entries for condition c8: year in Y1?). There will be 24 useful rules; the first eight are
shown in Decision Table 7.12.

7.4.2 Second Try

If we focus on the leap year aspect of the NextDate function, we could use the set of
equivalence classes as they were in Chapter 6. These classes have a Cartesian product
that contains 36 triples, with several that are impossible.

To illustrate another decision table technique, this time we will develop an
extended entry decision table, and we will take a closer look at the action stub.
In making an extended entry decision table, we must ensure that the equivalence
classes form a true partition of the input domain. (Recall from Chapter 3 that a parti-
tion is a set of disjoint subsets where the union is the entire set.) If there were any
“overlaps” among the rule entries, we would have a redundant case in which more
than one rule could be satisfied. Here, Y2 is the set of years between 1842 and 2042,
evenly divisible by four excluding the year 2000.

M1 = {month : month has 30 days}
M2 = {month : month has 31 days}
M3 = {month : month is February}

Decision Table 7.12 First Try Decision Table with 256 Rules (232 impossible rules)

Conditions/Rules 1 2 3 4 5 6 7 8

c1: month in M1? T T T T T T T T

c2: month in M2? — — — — — — — —

c3: month in M3? — — — — — — — —

c4: day in D1? T T — — — — — —

c5: day in D2? — — T T — — — —

c6: day in D3? — — — — T T — —

c7: day in D4? — — — — — — T T

c8: year in Y1? T F T F T F T F

a1: impossible — — — — — — — —

a2: next date X X X X X X X X

Decision Table-Based Testing ◾ 123

D1 = {day : 1 ≤ day ≤ 28}
D2 = {day : day = 29}
D3 = {day : day = 30}
D4 = {day : day = 31}
Y1 = {year : year = 2000}
Y2 = {year : year is a non-century leap year}
Y3 = {year : year is a common year}

In a sense, we could argue that we have a “gray box” technique, because we take a
closer look at the NextDate problem statement. In order to produce the next date
of a given date, only five possible actions are needed: incrementing and resetting
the day (day++ and day = 1), incrementing and resetting the month (month++ and
month = 1), and incrementing the year (year++). (We will not let time go back-
ward by resetting the year.) To follow the metaphor, we still cannot see inside the
implementation box—the implementation could be a table look-up. (See Decision
Tables 7.13a and 7.13b)

These conditions would result in a decision table with 36 rules that correspond
to the Cartesian product of the equivalence classes. Combining rules with don’t care
entries yields the two-part decision table in Decision Table 7.13, which has 16 rules.
We still have the problem with five logically impossible rules, but this formulation
helps us identify the expected outputs of a test case. If you complete the action
entries in this table, you will find some cumbersome problems with December (in
rule 8) and other problems with Feb. 28 in rules 8, 9, and 11. We need more precise
information about the day classes.

Decision Table 7.13a Second Try Decision Table with 36 Rules (first half)

1 2 3 4 5 6 7 8

c1: month in M1 M1 M1 M1 M2 M2 M2 M2

c2: day in D1 D2 D3 D4 D1 D2 D3 D4

c3: year in — — — — — — — —

Rule count 3 3 3 3 3 3 3 3

a1: impossible X

a2: day++ X X X X X

a3: day = 1 X X

a4: month++ X ?

a5: month = 1 ?

a6: year++ ?

124 ◾ Software Engineering

7.4.3 Third Try

We can clear up the end-of-year considerations with a third set of equivalence classes.
This time, we are very specific about days and months, and we revert to the simpler
leap year or common year condition of the first try—so the year 2000 gets no special
attention. (We could do a fourth try, showing year equivalence classes as in the sec-
ond try, but by now you get the point.)

M1 = {month : month has 30 days}
M2 = {month : month has 31 days except December}
M3 = {month : month is December}
M4 = {month : month is February}
D1 = {day : 1 ≤ day ≤ 27}
D2 = {day : day = 28}
D3 = {day : day = 29}
D4 = {day : day = 30}
D5 = {day : day = 31}
Y1 = {year : year is a leap year}
Y2 = {year : year is a common year}

The Cartesian product of these contains 40 elements. The result of combining rules
with don’t care entries is given in Decision Table 7.14; it has 22 rules, compared with
the 36 of the second try. Recall from Chapter 1 the question of whether a large set
of test cases is necessarily better than a smaller set. Here, we have a 22-rule deci-
sion table that gives a clearer picture of the NextDate function than does the 36-rule
decision table. The first five rules deal with 30-day months; notice that the leap year
considerations are irrelevant. The next two sets of rules (6 – 15) deal with 31-day

Decision Table 7.13b Second Try Decision Table with 36 Rules (second half)

9 10 11 12 13 14 15 16

c1: month in M3 M3 M3 M3 M3 M3 M3 M3

c2: day in D1 D1 D1 D2 D2 D2 D3 D4

c3: year in Y1 Y2 Y3 Y1 Y2 Y3 — —

Rule count 1 1 1 1 1 1 3 3

a1: impossible X X X X

a2: day++ X X ?

a3: day = 1 ? X

a4: month++ ? ? X

a5: month = 1

a6: year++

Decision Table-Based Testing ◾ 125

months, where rules 6 – 10 deal with months other than December and rules 11 – 15
deal with December. No impossible rules are listed in this portion of the decision
table, although there is some redundancy that an efficient tester might question.
Eight of the ten rules simply increment the day. Would we really require eight sepa-
rate test cases for this subfunction? Probably not; but note the insights we can get
from the decision table. Finally, the last seven rules focus on February in common
and leap years.

The decision table in Decision Table 7.14 is the basis for the source code for the
NextDate function in Chapter 2. As an aside, this example shows how good testing
can improve programming. All the decision table analysis could have been done dur-
ing the detailed design of the NextDate function.

Decision Table 7.14a Decision Table for the NextDate Function (Rules 1 – 10)

1 2 3 4 5 6 7 8 9 10

c1: month in M1 M1 M1 M1 M1 M2 M2 M2 M2 M2

c2: day in D1 D2 D3 D4 D5 D1 D2 D3 D4 D5

c3: year in — — — — — — — — — —

a1: impossible X

a2: day++ X X X X X X X

a3: day = 1 X X

a4: month++ X X

a5: month = 1

a6: year++

Decision Table 7.14b Decision Table for the NextDate Function (Rules 11 – 22)

11 12 13 14 15 16 17 18 19 20 21 22

c1: month in M3 M3 M3 M3 M3 M4 M4 M4 M4 M4 M4 M4

c2: day in D1 D2 D3 D4 D5 D1 D2 D2 D3 D3 D4 D5

c3: year in — — — — — — Y1 Y2 Y1 Y2 — —

a1: impossible X X X

a2: day++ X X X X X X

a3: day = 1 X X X

a4: month++ X X

a5: month = 1 X

a6: year++ X

126 ◾ Software Engineering

We can use the algebra of decision tables to further simplify these 22 test cases.
If the action sets of two rules in a limited entry decision table are identical, there
must be at least one condition that allows two rules to be combined with a don’t care
entry. This is the decision table equivalent of the “treated the same” guideline that
we used to identify equivalence classes. In a sense, we are identifying equivalence
classes of rules. For example, rules 1, 2, and 3 involve day classes D1, D2, and D3 for
30-day months (call this class D6). These can be combined similarly for day classes
D1, D2, D3, and D4 (call this class D7) in the 31-day month rules, and D4 and D5 for
February. The result is in Decision Table 7.15.

The corresponding test cases are shown in Decision Table 7.16. The progres-
sion across our three tries is exactly how decision table based testing should work.

Decision Table 7.15b Reduced Decision Table for the NextDate Function

16 17 18 19 20 21 22

c1: month in M4 M4 M4 M4 M4 M4 M4

c2: day in D1 D2 D2 D3 D3 D4 D5

c3: year in — Y1 Y2 Y1 Y2 — —

a1: impossible X X X

a2: day++ X X

a3: day = 1 X X

a4: month++ X X

a5: month = 1

a6: year++

Decision Table 7.15a Reduced Decision Table for the NextDate Function

1–3 4 5 6–9 10 11–14 15

c1: month in M1 M1 M1 M2 M2 M3 M3

c2: day in D6 D4 D5 D7 D5 D7 D5

c3: year in — — — — — — —

a1: impossible X

a2: day++ X X X

a3: day = 1 X X X

a4: month++ X X

a5: month = 1 X

a6: year++ X

Decision Table-Based Testing ◾ 127

We seldom get thigs right on our first attempt. Going from the First Try (256 Rules of
which 232 are impossible) to the Second Try (36 rules of which 10 are impossible),
we arrive at the Third Try, with 22 rules of which 4 are impossible. By the third try, we
are left with a very small set of test cases and we are confident of their completeness.

7.5 Cause and Effect Graphing
In the early years of computing, the software community borrowed many ideas from
the hardware community. Sometimes this worked well, but other times, the problems
of software just did not fit well with established hardware techniques. Cause and
Effect Graphing is a good example of this. The base hardware concept was the prac-
tice of describing circuits composed of discrete components with AND, OR, and NOT
gates. There was usually an input side of a circuit diagram, and the flow of inputs
through the various components could be generally traced from left to right. With
this, the effects of hardware faults such as stuck-at-one/zero could be traced to the
output side. This greatly facilitated circuit testing.

Cause and effect graphs attempt to follow this pattern, by showing unit inputs on
the left side of a drawing, and using AND, OR, Exclusive OR (EOR) and NOT “gates”
to express the flow of data across processing stages of a unit. Figure 7.1 shows the
basic Cause and Effect Graph structures. They can be augmented by less used opera-
tions: Identity, Masks, Requires, and Only One.

Decision Table 7.16 Test Cases for NextDate

Test Case Columns Month Day Year Expected Output

1 1– 3 4 15 2018 4/16/2018

2 4 4 30 2018 5/1/2018

3 5 4 31 2018 Invalid Date

4 6–9 1 15 2018 1/16/2018

5 10 1 31 2018 2/1/2018

6 11–14 12 15 2018 12/16/2018

7 15 12 31 2018 1/1/2019

8 16 2 15 2018 2/16/2018

9 17 2 28 2020 2/29/2020

10 18 2 28 2018 3/1/2018

11 19 2 29 2020 3/1/2020

12 20 2 29 2018 Invalid Date

13 21 2 30 2018 Invalid Date

14 22 2 31 2018 Invalid Date

128 ◾ Software Engineering

The most that can be learned from a Cause and Effect Graph is that, if there is a
problem at an output, the path(s) back to the inputs that affected the output can be
retraced. There is little support for actually identifying test cases.

7.6 Guidelines and Observations
As with the other testing techniques, decision table-based testing works well for
some applications (such as NextDate) and is not worth the trouble for others. Not
surprisingly, the situations in which it works well are those in which a lot of decision
making takes place (such as the Triangle Problem), and those in which important
logical relationships exist among input variables (the NextDate function).

 1. The decision table technique is indicated for applications characterized by any
of the following:
 ◾ Prominent if-then-else logic
 ◾ Logical relationships among input variables
 ◾ Calculations involving subsets of the input variables
 ◾ Cause-and-effect relationships between inputs and outputs
 ◾ High cyclomatic complexity (see Chapter 9)

 2. Decision tables do not scale up very well (a limited entry table with n condi-
tions has 2n rules.) There are several ways to deal with this — use extended
entry decision tables, algebraically simplify tables, “factor” large tables into
smaller ones, and look for repeating patterns of condition entries. Try factoring
the extended entry table for NextDate (Decision Table 7.14).

 3. As with other techniques, iteration helps. The first set of conditions and actions
you identify may be unsatisfactory. Use it as a stepping-stone, and gradually
improve on it until you are satisfied with a decision table.

Exercises
 1. Develop a decision table for the NextWeek function. Compare the results with

those for boundary value testing in the Chapter 5 exercises, and with those for
equivalence class testing in the chapter 6 exercises.

 2. Develop a decision table for the Quadrilateral Problem. Compare the results
with those for boundary value testing in the Chapter 5 exercises, and with those
for equivalence class testing in the chapter 6 exercises.

Figure 7.1 Cause and effect graphing operations.

Input 1

Input 2

Input 3

Stage

Input 1

˄Input 2

Input 3

Stage ~ Input 2 Stage

Input 1

Input 2

Input 3

Stage

Inclusive OR Exclusive OR

NOT

v

~
AND

EORv

Decision Table-Based Testing ◾ 129

 3. Develop a decision table for the Windshield Wiper Controller (see Chapter 2
exercises).

 4. Discuss how well decision table testing deals with the multiple fault
assumption.

 5. Develop decision table test cases for the time change problem (Chapter 6,
Problem 6.)

 6. In 2010, the Michigan state legislature changed the retirement plan for public
school teachers. Retirement pension salary of a Michigan public school teacher
is a percentage of the average of their salary for last three years of teaching.
Normally, the number of years of teaching service is the percentage multiplier.
To encourage senior teachers to retire early, the Michigan legislature enacted
the following incentive structure:
 ◾ Teachers must apply for the incentive before June 11, 2010.
 ◾ Teachers who are currently eligible to retire (age >= 63) shall have a multi-

plier of 1.6% on their salary up to, and including $90,000, and 1.5% on com-
pensation in excess of $90,000.

 ◾ Teachers who meet the 80 total years of age plus years of teaching shall have
a multiplier of 1.55% on their salary up to and including $90,000 and 1.5% on
compensation in excess of $90,000.

Make a decision table to describe the retirement pension policy, be sure to
consider the retirement eligibility criteria carefully. What are the compensation
multipliers for a person who is currently 64 with 20 years of teaching whose
salary is $95,000?

References
Elmendorf, William R., Cause–Effect Graphs in Functional Testing, IBM System Development

Division, Poughkeepsie, NY, TR-00.2487, 1973.
Mosley, Daniel J., The Handbook of MIS Application Software Testing, Yourdon Press, Prentice

Hall, Englewood Cliffs, NJ, 1993.
Myers, Glenford J., The Art of Software Testing, Wiley Interscience, New York, 1979.

https://taylorandfrancis.com

131

Chapter 8

Code-Based Testing

The distinguishing characteristic of code-based testing methods is that, as the name
implies, they are all based on the source code of the program tested, and not on the
specification. Because of this absolute basis, code-based testing methods are very
amenable to rigorous definitions, mathematical analysis, and useful measurement. In
this chapter, we examine the two most common forms of path testing. The technol-
ogy behind these has been available since the mid-1970s, and the originators of these
methods now have companies that market very successful tools that implement the
techniques. Both techniques start with the program graph; we repeat the improved
definition from Chapter 4 here.

8.1 Program Graphs
Definition

Given a program written in an imperative programming language, its program graph
is a directed graph in which nodes are statement fragments, and edges represent
flow of control. (A complete statement is a “default” statement fragment.)

If i and j are nodes in the program graph, an edge exists from node i to node j if
and only if the statement fragment corresponding to node j can be executed imme-
diately after the statement fragment corresponding to node i.

Deriving a program graph from a given program is an easy process. It is illus-
trated here with four of the basic structured programming constructs (Figure 8.1),
and also with our Java implementation of the triangle program from Chapter 2. Line
numbers refer to statements and statement fragments. An element of judgment can
be used here: sometimes it is convenient to keep a fragment as a separate node,
other times it seems better to include this with another portion of a statement. For
example: it is visually useful to use an end brace (}) as a node.

We also need to decide whether to associate nodes with non-executable state-
ments such as variable and type declarations; here we do not. Figure 8.1 shows pro-
gram graph possibilities for the basic constructs of structured programming.

132 ◾ Software Engineering

A program graph of the third version of the Triangle Problem (see Chapter 2) is
given in Figure 8.2.

Nodes 1 through 5 are a sequence, nodes 6 through 23 contain several nested
if-then-else constructs. Nodes 1 and 24 are the program source and sink nodes, cor-
responding to the single entry, single-exit criteria. No loops exist, so this is a directed
acyclic graph. The importance of program graphs is that program executions cor-
respond to paths from the source to the sink nodes. Because test cases force the
execution of some such program path, we now have a very explicit description of
the relationship between a test case and the part of the program it exercises. We also
have an elegant, theoretically respectable way to deal with the potentially large num-
ber of execution paths in a program.

There are detractors of code-based testing. Figure 8.3 is a graph of a simple (but
unstructured!) program; it is typical of the kind of example detractors use to show the
computational difficulty of completely testing even simple programs. (This example
first appeared in [Schach, 1993].) In this program, five paths lead from node B to node
F in the interior of the loop. If the loop may have up to 18 repetitions, some 4.77 tril-
lion distinct program execution paths exist. (Actually, it is 4,768,371,582,030 paths.)
The detractor’s argument is a good example of the logical Fallacy of Extension—take
a situation, extend it to an extreme, show that the extreme supports your point, and
then apply it back to the original question. The detractors miss the point of code-
based testing—later in this chapter, we will see how this enormous number can be
reduced, with good reasons, to a more manageable size.

8.2 DD-Paths
The best-known form of code-based testing is based on a construct known as a
decision-to-decision path (DD-Path) (Miller, 1977). For “modern” programming lan-
guages, Miller’s DD-Paths are similar to “blocks” with no internal decisions. In Java, a
multi-line block of code is surrounded by curly braces ({}) and is indented. The name

Figure 8.1 Program graphs of four structured pseudo-code programming constructs.

Case/Switch

1 Case n Of 3
2 n=1:
3 <case 1 statements>
4 n=2:
5 <case 2 statements>
6 n=3:
7 <case 3 statements>
8 End Case

1

2

3

64

5 7

8

Post-test Loop

1 Do
2 <repeated body>
3 Until <condition>
4 <next statement>

1

2

3

4

If-Then-Else

1 If <condition>
2 Then
3 <then statements>
4 Else
5 <else statements>
6 End If
7 <next statement>

1

2

3

6

4

5

7

Pre-test Loop

1 While <condition>
2 <repeated body>
3 End While
4 <next statement>

1

2

3

4

Code-Based Testing ◾ 133

refers to a sequence of statements that, in Miller’s words, begins with the “outway”
of a decision statement and ends with the “inway” of the next decision statement.
Miller’s original definition works well for languages like COBOL and FORTRAN,
because decision-making statements use statement labels to refer to target state-
ments. With modern languages (e.g., Pascal, Ada®, C, Visual Basic, Java), the notion
of statement fragments resolves the difficulty of applying Miller’s original definition.
Otherwise we end up with program graphs in which some statements are members
of more than one DD-Path. In the ISTQB literature, and also in Great Britain, the
DD-Path concept is known as a “Linear Code Sequence And Jump” and is abbreviated
by the acronym LCSAJ. Same idea, longer name, hard to pronounce.

Figure 8.2 Program graph of the triangle program.

1 public static int triangle3(int a, int b, int c) {
1
1 boolean c1, c2, c3, isATriangle;
1
1 // Step 1: Validate Input
2 c1 = (1 <= a) && (a <= 300);
3 c2 = (1 <= b) && (b <= 300);
4 c3 = (1 <= c) && (c <= 300);
5
5 int triangleType = INVALID;
6 if(!c1 || !c2 || !c3)
7 triangleType = OUT_OF_RANGE;
8 else {
8
8 // Step 2: Is A Triangle?
9 if((a < b + c) && (b < a + c) && (c < a + b))
10 isATriangle = true;
11 else
12 isATriangle = false;
12
12 // Step 3: Determine Triangle Type
13 if(isATriangle) {
14 if((a == b) && (b == c))
15 triangleType = EQUILATERAL;
16 else if((a != b) && (a != c) && (b != c))
17 triangleType = SCALENE;
18 else
19 triangleType = ISOSELES;
20 } else
21 triangleType = INVALID;
22 }
23
23 return triangleType;
24 }

1

7

4

10

2

3

5

6

8

9

11

12

13

1415

17 16

19 18

21 20

23 22

24

134 ◾ Software Engineering

Definition

A chain in a directed graph is a sequence of nodes in which the initial node has an.
indegree > = 0, and the final node has an outdegree > = 0. Every internal node has

indegree = outdegree = 1. In a degenerate case, a chain could consist of a single node.
No internal branches occur in such a sequence, so the corresponding code is like

a row of dominoes lined up so that when the first falls, all the rest in the sequence
fall. (See Figure 8.4.)

Definition

A DD-Path is a chain of statement fragments.

Definition

Given a program written in an imperative language, its DD-Path graph is the directed
graph in which nodes are DD-Paths of its program graph, and edges represent con-
trol flow between successor DD-Paths.

In effect, a DD-Path graph is a form of condensation graph (see Chapter 4); in this
condensation, 2-connected components are collapsed into individual nodes. DD-Path

Figure 8.3 Trillions of paths.

first

A

B

C D E

F

G

last

Figure 8.4 A chain of nodes in a directed graph.

Initial
Node

Final
Node

Interior
Nodes

Code-Based Testing ◾ 135

graphs are most useful for computation intensive programs. Since the DD-Paths in
Figure 8.5 are very short (only one or two actual program nodes), Figure 8.5 is not
much of a condensation of Figure 8.2.

8.3 Code Coverage Metrics
The raison d’être of DD-Paths is that they enable very precise descriptions of the
extent to which a set of test cases covers the corresponding source code. Recall (from
Chapters 5, 6, and 7) that one of the fundamental limitations of specification-based
testing is that it is impossible to know either the extent of redundancy or the pos-
sibility of gaps corresponding to the way a set of functional test cases exercises a
program. Back in Chapter 1, we had a Venn diagram showing relationships among
specified, programmed, and tested behaviors. Code coverage metrics express the
extent to which a set of test cases covers (or exercises) the code of a program.

8.3.1 Program Graph-Based Coverage Metrics

Given a program graph, we can define the following set of test coverage metrics. We
will use them to relate to other published sets of coverage metrics.

Definition

Given a set of test cases for a program, they constitute node coverage if, when exe-
cuted on the program, every node in the program graph is traversed. Denote this
level of coverage as Gnode, where the G stands for program graph.

Since nodes correspond to statement fragments, this guarantees that every state-
ment fragment is executed by some test case. If we are careful about defining state-
ment fragment nodes, this also guarantees that statement fragments that are outcomes
of a decision-making statement are executed.

Figure 8.5 DD-Path graph of the triangle program in Figure 8.2.

Figure 8.2 DD-Path
1 - 6 A
7 B
8, 9 C
10 D
11, 12 E
13 F
14, 15 G
16 H
17 I
18 J
19 K
20 L
21 M
22 N
23 P
24 Q P

H
I

L

K

F

M

G

N

J

Q

A

B

C

D E

136 ◾ Software Engineering

Definition

Given a set of test cases for a program, they constitute edge coverage if, when exe-
cuted on the program, every edge in the program graph is traversed. Denote this
level of coverage as Gedge.

The difference between Gnode and Gedge is that, in the latter, we are assured that
all outcomes of a decision-making statement are executed. In our Triangle Problem
(see Figure 8.2), nodes 9, 10, 11, 12, and 13 are a complete if-then-else statement. If
we required nodes to correspond to full statements, we could execute just one of the
decision alternatives and satisfy the statement coverage criterion. Because we allow
statement fragments, it is natural to divide such a statement into separate nodes (the
condition test, the True outcome, and the False outcome. Doing so results in predi-
cate outcome coverage. Whether or not our convention is followed, these coverage
metrics require that we find a set of test cases such that, when executed, every node
of the program graph is traversed at least once.

Definition

Given a set of test cases for a program, they constitute chain coverage if, when exe-
cuted on the program, every chain of length greater than or equal to 2 in the program
graph is traversed. Denote this level of coverage as Gchain.

The Gchain coverage is the same as node coverage in the DD-Path graph that cor-
responds to the given program graph. Since DD-Paths are important in E. F. Miller’s
original formulation of test covers (defined in Section 8.3.2), we now have a clear con-
nection between purely program graph constructs and Miller’s test coverage metrics.

Definition

Given a set of test cases for a program, they constitute path coverage if, when
executed on the program, every path from the source node to the sink node in the
program graph is traversed. Denote this level of coverage as Gpath.

This coverage is open to severe limitations when there are loops in a program (as
in Figure 8.3). E. F. Miller partially anticipated this when he postulated metrics for
loop coverage that covered a subset of paths from source to sink nodes. Referring to
Chapter 4, observe that every loop in a program graph represents a set of strongly
connected (i.,e., 3-connected) nodes. To deal with the size implications of loops, we
simply exercise every loop with two test cases—one to traverse the loop, and the
other to exit the loop, and then form the condensation graph of the original program
graph, which must be a directed acyclic graph.

8.3.2 E. F. Miller’s Coverage Metrics

Several widely accepted test/code coverage metrics are used; most of those in Table 8.1
are due to the early work of E.F. Miller who used the term “test coverage” (Miller, 1977).
Having an organized view of the extent to which a program is tested makes it possible
to sensibly manage the testing process. Most quality organizations now expect the C1
metric (DD-Path coverage) as the minimum acceptable level of test coverage.

These coverage metrics form a lattice in which some are equivalent, and some are
implied by others. The importance of the lattice is that there are always fault types

Code-Based Testing ◾ 137

that can be revealed at one level and can escape detection by less thorough levels of
testing. E. F. Miller observes that when DD-Path coverage is attained by a set of test
cases, roughly 85% of all faults are revealed (Miller, 1991). The test coverage metrics
in Table 8.1 tell us what to test but not how to test it. In this section, we take a closer
look at techniques that exercise source code. We must keep an important distinction
in mind: Miller’s test coverage metrics are based on program graphs in which nodes
are full statements, whereas our formulation allows statement fragments (which can
be entire statements to be nodes).

8.3.2.1 Statement Testing

Because our formulation of program graphs allows statement fragments to be indi-
vidual nodes, Miller’s C0 metric is subsumed by our Gnode metric.

Statement coverage is generally viewed as the bare minimum. If some statements
have not been executed by the set of test cases, there is clearly a gap in the test cov-
erage. Although less adequate than DD-Path coverage, the statement coverage metric
(C0) is still widely accepted: it is mandated by ANSI Standard 187B and has been used
successfully throughout IBM since the mid-1970s.

8.3.2.2 DD-Path Testing

When every DD-Path is traversed (the C1 metric), we know that each predicate out-
come has been executed; that is, traversing every edge in the DD-Path graph (or
program graph). Therefore, the C1 metric is exactly our Gchain metric.

For if-then and if-then-else statements, this means that both the true and the
false branches are covered (C1p coverage). For CASE/Switch statements, each clause
is covered. Beyond this, it is useful to ask how we might test a DD-Path. Longer
DD-Paths generally represent complex computations, which we can rightly consider
as individual functions. For such DD-Paths, it may be appropriate to apply a number
of functional tests, especially those for boundary and special values.

Table 8.1 Miller’s Test Coverage Metrics

Metric Description of Coverage

C0 Every statement

C1 Every DD-Path

C1p Every predicate to each outcome

C2 C1 coverage + loop coverage

Cd C1 coverage + Every dependent pair of DD-Paths

CMCC Multiple condition coverage

Cik Every program path that contains up to k repetitions of a loop (usually k = 2)

Cstat “Statistically significant” fraction of paths

C∞ All possible execution paths

138 ◾ Software Engineering

8.3.2.3 Simple Loop Coverage

The C2 metric requires DD-Path coverage (the C1 metric) plus loop testing.
The simple view of loop testing is that every loop involves a decision, and we

need to test both outcomes of the decision: one is to traverse the loop, and the other
is to exit (or not enter) the loop. This is carefully proved in [Huang 1979]. Notice that
this is equivalent to Gedge test coverage, where an edge exists to repeat the loop and
another exists to exit the loop.

8.3.2.4 Predicate Outcome Testing

This level of testing requires that every outcome of a decision (predicate) must be
exercised. Because our formulation of program graphs allows statement fragments
to be individual nodes, Miller’s C1p metric is subsumed by our Gedge metric. Neither
E. F. Miller’s test covers, nor the graph-based covers, deal with decisions that are
made on compound conditions. They are the subjects of Section 8.3.3.

8.3.2.5 Dependent Pairs of DD-Paths

Identification of dependencies must be made at the code level. This cannot be
done just by considering program graphs. The Cd metric foreshadows the topic
of Chapter 9—dataflow testing. The most common dependency among pairs of
DD-Paths is the define/reference relationship, in which a variable is defined
(receives a value) in one DD-Path and is referenced in another DD-Path. The
importance of these dependencies is that they are closely related to the problem
of infeasible paths. We have good examples of dependent pairs of nodes in Figure
8.2. The variable IsATriangle is set to TRUE at node 10 (DD-Path D), and FALSE at
node 12 (DD-Path D). Node 14 (DD-Path D) is the branch taken when IsATriangle
is TRUE in the condition at node 13 (DD-Path F). Any path containing nodes 10
and 21 (DD-Path M) is infeasible. Simple DD-Path coverage might not exercise
these dependencies, thus a deeper class of faults would not be revealed.

8.3.2.6 Complex Loop Coverage

Miller’s Cik metric extends the loop coverage metric to include full paths from source
to sink nodes that contain loops.

The condensation graphs we studied in Chapter 4 provide us with an elegant res-
olution to the problems of testing loops. Loop testing has been studied extensively,
and with good reason — loops are a highly fault-prone portion of source code. To
start, an amusing taxonomy of loops occurs (Beizer, 1984): concatenated, nested, and
knotted, shown in Figure 8.6.

Concatenated loops are simply a sequence of disjoint loops, while nested loops
are such that one is contained inside another. Knotted (Beizer calls them “horrible”)
loops cannot occur when the structured programming precepts are followed, but
they can occur in languages like Java with try/catch. When it is possible to branch
into (or out from) the middle of a loop, and these branches are internal to other
loops, the result is Beizer’s knotted loop. We can also take a modified boundary value
approach, where the loop index is given its minimum, nominal, and maximum values

Code-Based Testing ◾ 139

(see Chapter 5). We can push this further to full boundary value testing and even
robustness testing. If the body of a simple loop is a DD-Path that performs a complex
calculation, this should also be tested, as discussed previously. Once a loop has been
tested, the tester condenses it into a single node. If loops are nested, this process is
repeated starting with the innermost loop and working outward. This results in the
same multiplicity of test cases we found with boundary value analysis, which makes
sense, because each loop index variable acts like an input variable. If loops are knot-
ted, it will be necessary to carefully analyze them in terms of the dataflow methods
discussed in Chapter 9. As a preview, consider the infinite loop that could occur if
one loop tampers with the value of the other loop’s index.

8.3.2.7 Multiple Condition Coverage

Miller’s CMCC metric addresses the question of testing decisions made by compound
conditions. Look closely at the compound conditions in DD-Paths B and H. Instead of
simply traversing such predicates to their true and false outcomes, we should inves-
tigate the different ways that each outcome can occur. One possibility is to make
a decision table; a compound condition of three simple conditions will have eight
rules (see Table 8.2), yielding eight test cases. Another possibility is to reprogram

Figure 8.6 Concatenated, nested, and knotted loops.

first

A

B

C

D

last

first

A

B

C

D

last

first

A

B

C

D

last

Table 8.2 Decision Table for the Program Fragment in Figure 8.7

Conditions rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Rule 8

a T T T T F F F F

b T T F F T T F F

c T F T F T F T F

a AND (b OR c) True True True False False False False False

Actions

y = 1 x x X — — — — —

y = 2 — — — x x x x x

140 ◾ Software Engineering

compound predicates into nested simple if-then-else logic, which will result in more
DD-Paths to cover. We see an interesting trade-off: statement complexity versus path
complexity. Multiple condition coverage assures that this complexity is not swept
under the DD-Path coverage rug. This metric has been refined to Modified Condition
Decision Coverage, as we will see in Section 8.3.3.

8.3.2.8 “Statistically Significant” Coverage

The Cstat metric is awkward—what constitutes a statistically significant set of full
program paths? Maybe this refers to a comfort level on the part of the customer/user.

8.3.2.9 All Possible Paths Coverage

The subscript in Miller’s C∞ metric says it all—this can be enormous for programs
with loops, a la Figure 8.3. This can make sense for programs without loops, and also
for programs for which loop testing reduces the program graph to its condensation
graph, which is always acyclic.

8.3.3 A Closer Look at Compound Conditions

There is an excellent reference [Chilenski] that is 214 pages long and is available. on
the web. The definitions in this subsection are derived from this reference. They will
be related to the definitions in Sections 8.3.1 and 8.3.2.

8.3.3.1 Boolean Expression (per Chilenski)

A boolean expression evaluates to one of two possible (Boolean) outcomes tradition-
ally known as False and True.

A Boolean expression may be a simple Boolean variable, or a compound expres-
sion containing one or more Boolean operators. Chilenski clarifies Boolean operators
into four categories:

Operator Type Boolean Operators

Unary (single operand) NOT (~,!)

Binary (two operands) AND(∧, &), OR(∨, |), XOR(⊕)

Short circuit operators AND (AND-THEN), OR (OR-ELSE)

Relational operators =, ≠, <, ≤, >, ≥

In mathematical logic, Boolean expressions are known as Logical Expressions,
where a logical expression can be:

 1. a simple proposition that contains no logical connective, or
 2. a compound proposition that contains at least one logical connective.

Synonyms: predicate, proposition, condition.

Code-Based Testing ◾ 141

In programming languages, Chilenski’s Boolean expressions appear as condi-
tions in decision-making statements: If-Then, If-Then-Else, If-ElseIf, Case/Switch, For,
While, and Until loops. This subsection is concerned with the testing needed for com-
pound conditions. Compound conditions are shown as single nodes in a program
graph, hence the complexity they introduce is obscured.

8.3.3.2 Condition (per Chilenski)

A condition is an operand of a Boolean operator (Boolean functions, objects, and
operators).

Generally, this refers to the lowest level conditions (i.e., those operands that are
not Boolean operators themselves), which are normally the leaves of an expression
tree. Note that a condition is a Boolean (sub)expression.

In mathematical logic, Chilenski’s conditions are known as simple, or atomic,
propositions. Propositions can be simple or compound, where a compound proposi-
tion contains at least one logical connective. Propositions are also called predicates,
the term that E. F. Miller uses.

8.3.3.3 Coupled Conditions (per Chilenski)

Two (or more) conditions are coupled if changing one also changes the other(s).
When conditions are coupled, it may not be possible to vary individual con-

ditions, because the coupled condition(s) might also change. Chelinski notes that
conditions can be strongly or weakly coupled. In a strongly coupled pair, changing
one condition always changes the other. In a weakly coupled triplet, changing one
condition may change one other coupled condition, but not the third one. Chelinski
offers these examples:

In (((x = 0) AND A) OR ((x ≠ 0) AND B)), the conditions (x = 0) and (x ≠ 0) are
strongly coupled.

In ((x = 1) OR (x = 2) OR (x = 3)), the three conditions are weakly coupled.

8.3.3.4 Masking Conditions (per Chilenski)

“The process masking conditions involves of setting the one operand of an operator
to a value such that changing the other operand of that operator does not change
the value of the operator.

Referring to Chapter 3.4.3, masking uses the Domination Laws. For an AND oper-
ator, masking of one operand can be achieved by holding the other operand False.

(X AND False = False AND X = False no matter what the value of X is.)

For an OR operator, masking of one operand can be achieved by holding the
other operand True.

(X OR True = True OR X = True no matter what the value of X is.)

142 ◾ Software Engineering

8.3.3.5 Modified Condition Decision Coverage

Modified Condition Decision Coverage (MCDC) is required for “Level A” software
by testing standard DO-178B. Modified Condition Decision Coverage (MCDC) has
three variations: Masking MCDC, Unique-Cause MCDC, and Unique-Cause + Masking
MCDC. These are explained in exhaustive detail in [Chilenski], which concludes that
Masking MCDC, while demonstrably the weakest form of the three, is recommended
for compliance with DO-178B. The definitions below are quoted from [Chilenski].

Definition

Modified Condition Decision Coverage (MCDC) requires:

 1. Every statement must be executed at least once,
 2. Every program entry point and exit point must be invoked at least once,
 3. All possible outcomes of every control statement are taken at least once,
 4. Every non-constant Boolean expression has been evaluated to both True and

False outcomes,
 5. Every non-constant condition in a Boolean expression has been evaluated to

both True and False outcomes, and
 6. Every non-constant condition in a Boolean expression has been shown to inde-

pendently affect the outcomes (of the expression).

The basic definition of MCDC needs some explanation. Control statements are those
that make decisions, such as If statements, Case/Switch statements, and looping state-
ments. In a program graph, control statements have an outdegree greater than 1.
Constant Boolean expressions are those that always evaluate to the same end value. For
example, the Boolean expression (p∨ ~ p) always evaluates to True, as does the condi-
tion (a = a). Similarly, (p∧ ~ p) and (a ≠ a) are constant expressions (that evaluate to
False). In terms of program graphs, MCDC requirements 1 and 2 translate to node cov-
erage, and MCDC requirements 3 and 4 translate to edge coverage. MCDC requirements
5 and 6 get to the complex part of MCDC testing. In the following, the three variations
discussed by Chilenski are intended to clarify the meaning of point 6 of the general
definition, namely, the exact meaning of “independence.”Definition (per Chilenski)

“Unique-Cause MCDC [requires] a unique cause (toggle a single condition and
change the expression result) for all possible (uncoupled) conditions.”

Definition (per Chilenski)

“Unique-Cause + Masking MCDC [requires] a unique cause (toggle a single condition
and change the expression result) for all possible (uncoupled) conditions. In the case
of strongly coupled conditions, masking [is allowed} for that condition only, i.e., all
other (uncoupled) conditions will remain fixed.”

Definition (per Chilenski)

“Masking MCDC allows masking for all conditions, coupled and uncoupled. (toggle
a single condition and change the expression result) for all possible (uncoupled)
conditions. In the case of strongly coupled conditions, masking [is allowed] for that
condition only (i.e., all other (uncoupled) conditions will remain fixed.”

Code-Based Testing ◾ 143

Chilenski comments: “In the case of strongly coupled conditions, no coverage set is
possible as DO-178B provides no guidance on how such conditions should be covered.”

8.3.4 Examples

The examples in this section are directed at the variations of testing code with com-
pound conditions.

8.3.4.1 Condition with Two Simple Conditions

Consider the program fragment in Figure 8.7. It is deceptively simple, with a cyclo-
matic complexity of 2.

The decision table (see Chapter 7) for the condition (a AND (b OR c)) is in
Table 8.2. Decision Coverage is attained by exercising any pair of rules such that each
action is executed at least once. Test cases corresponding to Rules 3 and 4 provide
Decision Coverage, as do Rules 1 and 8. Condition coverage is attained by exercising
a set of rules such that each condition is evaluated to both True and False. Test cases
corresponding to Rules 1 and 8 provide Decision Coverage, as do Rules 4 and 5.

To attain Modified Condition Decision Coverage, each condition must be evalu-
ated to both True and False while holding the other conditions constant, and the
change must be visible at the outcome. Rules 1 and 5 toggle condition a; rules 2 and
4 toggle condition b, and rules 3 and 4 toggle condition c.

In its expanded form, (a AND b) OR (a AND c), the Boolean variable “a” can-
not be subjected to unique cause MCDC testing, because it appears in both AND
expressions.

Given all the complexities here (see the Chelinski for much, much more), the best
practical solution is to just make a decision table of the actual code, and look for
impossible rules. Any dependencies will typically generate an impossible rule.

8.3.4.2 Example: Compound Condition from NextDate

Tolstoy’s novel, Anna Karenina, begins with the line “Happy families are all alike;
every unhappy family is unhappy in its own way.” This pattern has become known
as the “Anna Karenina Principle”: success requires the conjunction of several factors,
while the lack of any one of them leads to failure. We see this in hospital medical
monitors that check factors like pulse rate, systolic and diastolic blood pressure,
and so on. If all the factors are within acceptable ranges, there is no problem. When
any factor slips out of range, an alarm is sounded. It is easy to imagine similar

Figure 8.7 A compound condition and its program graph.

1. if ((a && (b || c)) {
2. y = 1;
3. else
4. y = 2;
5. }

1

2 3

4

5

1

2 3

4

5

144 ◾ Software Engineering

requirements for nuclear reactors, where factors such as reactor temperature, cool-
ing liquid temperature, and pump power are used to monitor the nuclear reaction
in order to prevent a meltdown. Indeed, this pattern is common to many control
systems, and there is a corresponding need to test such situations.

Here we use a portion of our continuing NextDate problem that does range check-
ing for valid inputs of the day, month, and year variables. A Java fragment for this and
its program graph are in Figure 8.8 and one possible decision table is Table 8.3. Since
the day, month, and year variables are all independent, each can be either True or False.

If we used Table 8.3 to define Multiple Condition Coverage, we could use the
eight test cases in Table 8.4.

The test cases in Table 8.4 only test one way that the dayOK, monthOK, and
yearOK variables can be false. We should really have the more complete decision

Figure 8.8 NextDate fragment and its program graph.

1. int day, int month, int year;
1. boolean dayOK, monthOK, yearOK, rangesOK;
1. java.util.Scanner inputScanner = new java.util.Scanner(System.in);

2. rangesOK = false;

3. do
3. {
4. month = inputScanner.nextInt();
4. day = inputScanner.nextInt();
4. year = inputScanner.nextInt();
4. inputScanner.close();

5. if ((day > 0) &&(day < 32))
6. dayOK = true;
7. else {
8. dayOK = false;
9. }

10. if ((month > 0) &&(month < 13))
11. monthOK = true;
12. else {
13. monthOK = false;
14. }

15. if ((year > 1841) &&(year < 2043))
16. yearOK = true;
17. else {
18. yearOK = false;
19. }
20. }

21. while (!(dayOK && monthOK && yearOK));

22. rangesOK = true;

4

21

5

6
7

9

20

10

11
12

13

14

16
17

19

1

2

3

8

15

22

18

4

21

5

6
7

9

20

10

11
12

13

14

16
17

19

1

2

3

8

15

22

18

Code-Based Testing ◾ 145

table with known boundary conditions (i.e., day >0, day <32, month >0, month <13,
year >1841, and year <2043). If we include all combinations of True and False results
for these six conditions, the result is a decision table of 26 = 64 rules; of these, 37 are
impossible, and dayOK, monthOK and yearOK are each true nine times. In Table 8.5
we take a closer look at the portion of the decision table for conditions day >0 and
day <32. and the resulting impossible rules.

The rule in which both conditions are False requires the value of day to be
both less than 0 and greater than 32. This nicely illustrates the masking aspect of
the Modified Condition Decision Coverage (MCDC) code coverage standard. Full
Multiple Condition Coverage presumes that the conditions are truly independent (as
they are in Table 8.3).

Decision Coverage is attained by exercising any pair of rules such that each action
is executed at least once. Test cases corresponding to rule 1 and any one of rules
2–8 provide Decision Coverage. Multiple condition coverage requires exercising a set

Table 8.4 Test Cases Derived from Table 8.3

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8

Day 3 3 3 3 32 32 32 32

Month 8 8 13 13 8 8 13 13

Year 2019 1819 2019 1819 2019 1819 2019 1819

Exit loop x — — — — — — —

Repeat loop — x x x x x x x

Table 8.5 Closer Look at Part of Table 8.3

day >0 T T F F

day <32 T F T F

Impossible — — — x

dayOK is true false false —

Table 8.3 Decision Table for the NextDate Fragment

Conditions Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Rule 8

DayOK T T T T F F F F

monthOK T T F F T T F F

YearOK T F T F T F T F

Until condition True False False False False False False False

Actions

Exit loop x — — — — — — —

Repeat loop — x x x x x x x

146 ◾ Software Engineering

of rules such that each condition is evaluated to both True and False. The eight test
cases corresponding to all eight rules are necessary to provide Decision Coverage.

The decision table in Table 8.6 was reduced from the full decision table with 64
rules by eliminating the impossible rules. We will use the test case numbers to refer

Table 8.6 Reduced Decision Table for Range Check

Original rule numbers

1 2 3 5 6 7 9 10 11 17 18 19 21 22 23

day >0 T T T T T T T T T T T T T T T

day <32 T T T T T T T T T F F F F F F

month >0 T T T T T T F F F T T T T T T

month <13 T T T F F F T T T T T T F F F

year >1841 T T F T T F T T F T T F T T F

year <2043 T F T T F T T F T T F T T F T

Impossible

dayOK is T x x x x x x x x x

monthOK is T x x x x x x

yearOK is T x x x x x

Test Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Original rule numbers

25 26 27 33 34 35 37 38 39 41 42 43

day >0 T T T F F F F F F F F F

day <32 F F F T T T T T T T T T

month >0 F F F T T T T T T F F F

month <13 T T T T T T F F F T T T

year >1841 T T F T T F T T F T T F

year <2043 T F T T F T T F T T F T

Impossible

dayOK is T

monthOK is T x x x

yearOK is T x x x x x

Test Case 16 17 18 19 20 21 22 23 24 25 26 27

Code-Based Testing ◾ 147

to test cases derived from the corresponding rule to describe various levels of test
coverage in the code fragment in Figure 8.8.

We can follow the nodes in Figure 8.8 to describe the path traversed by test cases
derived from Table 8.6. Since this is a little tedious, we will only do this for a few
test cases.

Test Case 1 traverses nodes 1, 2, 3, 4, 5, 6, 9, 10, 11, 14, 15, 16, 19, 20, 21, 22
Test case 14 traverses nodes 1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 19,

20, 21, 3
Test cases 15, 19, 23, 25, 26, and 28 traverse the same nodes as test case 14.

8.3.4.2.1 Program Graph-Based Coverage Metrics
Taken together, test cases 1 and any one of test cases 14, 15, 19, 23, 25, 26, and 27
provide the following levels of code coverage:

node (statement fragment),
edge (decision outcome),
loop coverage (run one of test cases 14, 15, 19, 23, 25, 26, and 27 first, followed by

test
case 1), and
path coverage.

Nodes 5, 10, 15, and 21 each refer to a compound condition and this is not visible in
a program graph. This is a limitation of program graphs, and compound conditions
are the point at which graph theory-based coverage criteria must be replaced by
code-based criteria. Fortunately, the decision table formulation permits the recogni-
tion and analysis of the complexities due to compound conditions as expressed in
the decision table rules.

8.3.4.2.2 Model-Based (Decision Table) Code Coverage Metrics
First, note that test case 1 (the “happy path”) exercises each of the four compound
conditions in which every simple condition is true. We first look at the compound
condition at node 21 (dayOK && monthOK && yearOK). Examining the decision
table (Table 8.6) yields the following “toggles”:

	 ◾	 rule 17 (aka test case 10) together with the happy path is a toggle for day <32
	 ◾	 rule 33 (aka test case 20) is a toggle for day >0. Similarly,
	 ◾	 rule 9 (aka test case 7) is a toggle for month >0, and
	 ◾	 rule 5 (aka test case 4) is a toggle for month <13.
	 ◾	 Finally, rule 2 (aka test case 2) is a toggle for year <2043, and
	 ◾	 rule 3 (aka test case 3) is a toggle for year >1841.

The six test cases (2, 3, 4, 7, 10, and 20), together with the happy path test case
1, constitute complete tests for the compound conditions ((day >0) &&(day <32)),
((month >0) &&(month <13)), and ((year >1841) &&(year <2043)). These seven

148 ◾ Software Engineering

test cases (1, 2, 3, 4, 7, 10, and 20) provide Modified Condition Decision Coverage
(MCDC). The full set of 27 test cases from Table 8.6 provides full Compound Condition
Coverage (aka Multiple Condition Coverage). See next page.

Test Case Values from Table 8.6.

Test Rule day month year dayOK monthOK yearOK Loop

1 1 9 8 2019 T T T Exit

2 2 9 8 2044 T T F Repeat

3 3 9 8 1840 T T F Repeat

4 5 9 14 2019 T F T Repeat

5 6 9 14 2044 T F F Repeat

6 7 9 14 1840 T F F Repeat

7 9 9 0 2019 T F T Repeat

8 10 9 0 2044 T F F Repeat

9 11 9 0 1840 T F F Repeat

10 17 33 9 2019 F T T Repeat

11 18 33 9 2044 F T F Repeat

12 19 33 9 1840 F T F Repeat

13 21 33 14 2019 F F T Repeat

14 22 33 14 2044 F F F Repeat

15 23 33 14 1840 F F F Repeat

16 25 33 0 2019 F F T Repeat

17 26 33 0 2044 F F F Repeat

18 27 33 0 1840 F F F Repeat

19 33 0 9 2019 F T T Repeat

20 34 0 9 2044 F T F Repeat

21 35 0 9 1840 F T F Repeat

22 37 0 14 2019 F F T Repeat

23 38 0 14 2044 F F F Repeat

24 39 0 14 1840 F F F Repeat

25 41 0 0 2019 F F T Repeat

26 42 0 0 2044 F F F Repeat

27 43 0 0 1840 F F F Repeat

Code-Based Testing ◾ 149

8.3.4.2.3 Compound Condition from the Triangle Program
This example is included to show important differences between it and the first two
examples. The code fragment in Figure 8.9 is the part of the Triangle Program that
checks to see of the values of sides a, b, and c constitute a triangle. The test incor-
porates the definition that each side must be strictly less than the sum of the other
two sides. Notice that the program graphs in Figures 8.7 and 8.9 are identical. The
NextDate fragment and the Triangle Program fragment are both functions of three
variables. The second difference is that a, b, and c in the Triangle Program are depen-
dent, whereas dayOK, monthOK, and yearOK in the NextDate fragment are truly
independent variables.

The dependence among a, b, and c is the cause of the four impossible rules in the
decision table for the fragment in Table 8.7; this is proved next.

Fact: It is numerically impossible to have two of the conditions false.
Proof (by contradiction): Assume any pair of conditions can both be true. Arbitrarily

choosing the first two conditions that could both be true, we can write the two
inequalities:

 a b c� �� �

 b a c� �� �

Adding them together, we have.

 a b b c a c�� � � �� � � �� �

and rearranging the right side, we have.

 a b a b 2c�� � � �� � �

But a, b, and c are all >0, so we have a contradiction. QED.
Decision Coverage is attained by exercising any pair of rules such that each action

is executed at least once. Test cases corresponding to rules 1 and 2 provide Decision
Coverage, as do rules 1 and 3, and rules 1 and 5. Rules, 4, 6, 7, and 8 cannot be used
due to their numerical impossibility.

Condition coverage is attained by exercising a set of rules such that each condi-
tion is evaluated to both True and False. Test cases corresponding to rules 1 and 2
toggle the (c < a + b) condition, rules 1 and 3 toggle the (b < a + c) condition, and 1
and 5 toggle the (a < b + c) condition.

Figure 8.9 Triangle Program fragment and its program graph.

9. if ((a < b + c) && (b < a + c) && (c < a + b)) {
10. IsA Triangle = true;
11. else
12. IsA Triangle = false;
13. }

9

10 11

12

4

9

10 11

12

4

150 ◾ Software Engineering

Modified Condition Decision Coverage is complicated by the numerical (and hence
logical) impossibilities among the three conditions. The four of pairs (rules 1 and 2,
rules 1 and 3, and rules 1 and 5 constitute Modified Condition Decision Coverage.

In complex situations such as these examples, falling back on decision tables is
an answer that will always work. Rewriting the compound condition with nested-If
logic, we will have (preserving the original statement numbers):

 9.1 if (a < b + c) {
 9.2 if (b < a + c) {
 9.3 if (c <a + b) {
 10. IsATriangle = true;
 11.1 else
 12.1 IsATriangle =false;
 11.2 }
 11.3 else
 12.2 IsATriangle =false;
 11.4 }
 11.5 else
 12.3 IsATriangle =false;
 11.6 }

This code fragment avoids the numerically impossible combinations of a, b, and c.
there are four distinct paths through its program graph, and these correspond to
rules 1, 2, 3, and 5 in the decision Table.

8.3.4.3 Test Coverage Analyzers

Coverage analyzers are a class of test tools that offer automated support for this
approach to testing management. With a coverage analyzer, the tester runs a set of
test cases on a program that has been “instrumented” by the coverage analyzer. The
analyzer then uses information produced by the instrumentation code to generate a
coverage report. In the common case of DD-Path coverage, for example, the instru-
mentation identifies and labels all DD-Paths in an original program. When the instru-
mented program is executed with test cases, the analyzer tabulates the DD-Paths
traversed by each test case. In this way, the tester can experiment with different sets
of test cases to determine the coverage of each set.

Table 8.7 Decision Table for the Triangle Program Fragment

Conditions rule 1 rule 2 rule 3 rule 4 rule 5 rule 6 rule 7 rule 8

(a < b + c) T T T T F F F F

(b < a + c) T T F F T T F F

(c < a + b) T F T F T F T F

IsATriangle = True x — — — — — — —

IsATriangle = False — x x — x — — —

impossible — — — x x x x

Code-Based Testing ◾ 151

8.3.4.4 Java Code for Tests in Table 8.8

import static org.junit.Assert.*;
import org.junit.Test;

public class SimpleDateTest {

 @Test
 public void testInvalidDates() {

 SimpleDate simpleDate = new SimpleDate(1, 1, 2000);

 assertFalse(simpleDate.rangesOK(8, 9, 2044)); // Invalid
 assertFalse(simpleDate.rangesOK(8, 9, 1840)); // Invalid
 assertFalse(simpleDate.rangesOK(14, 9, 2019)); // Invalid
 assertFalse(simpleDate.rangesOK(14, 9, 2044)); // Invalid
 assertFalse(simpleDate.rangesOK(14, 9, 1840)); // Invalid
 assertFalse(simpleDate.rangesOK(0, 9, 2019)); // Invalid
 assertFalse(simpleDate.rangesOK(0, 9, 2044)); // Invalid
 assertFalse(simpleDate.rangesOK(0, 9, 1840)); // Invalid
 assertFalse(simpleDate.rangesOK(9, 33, 2019)); // Invalid
 assertFalse(simpleDate.rangesOK(9, 33, 2044)); // Invalid
 assertFalse(simpleDate.rangesOK(9, 33, 1840)); // Invalid
 assertFalse(simpleDate.rangesOK(14, 33, 2019)); // Invalid
 assertFalse(simpleDate.rangesOK(14, 33, 2044)); // Invalid
 assertFalse(simpleDate.rangesOK(14, 33, 1840)); // Invalid
 assertFalse(simpleDate.rangesOK(0, 33, 2019)); // Invalid
 assertFalse(simpleDate.rangesOK(0, 33, 2044)); // Invalid
 assertFalse(simpleDate.rangesOK(0, 33, 1840)); // Invalid
 assertFalse(simpleDate.rangesOK(9, 0, 2019)); // Invalid
 assertFalse(simpleDate.rangesOK(9, 0, 2044)); // Invalid
 assertFalse(simpleDate.rangesOK(9, 0, 1840)); // Invalid
 assertFalse(simpleDate.rangesOK(14, 0, 2019)); // Invalid
 assertFalse(simpleDate.rangesOK(14, 0, 2044)); // Invalid
 }

 @Test
 public void testValidDates() {
 SimpleDate simpleDate = new SimpleDate(1, 1, 2000);
 assertTrue(simpleDate.rangesOK(8, 9, 2019)); // Invalid
 }

 @Test
 public void testValidDateConstructor() {
 new SimpleDate(8, 9, 2019);
 }

 @Test(expected = IllegalArgumentException.class)
 public void testInvalidDateConstructor1() {
 new SimpleDate(8, 9, 2044);
 }

 @Test(expected = IllegalArgumentException.class)
 public void testInvalidDateConstructor2() {
 new SimpleDate(8, 9, 1840);

152 ◾ Software Engineering

 }

 @Test(expected = IllegalArgumentException.class)
 public void testInvalidDateConstructor3() {
 new SimpleDate(14, 9, 2019);
 }

 @Test(expected = IllegalArgumentException.class)
 public void testInvalidDateConstructor4() {
 new SimpleDate(14, 9, 2044);
 }

 @Test(expected = IllegalArgumentException.class)
 public void testInvalidDateConstructor5() {
 new SimpleDate(14, 9, 1840);
 }

 @Test(expected = IllegalArgumentException.class)
 public void testInvalidDateConstructor6() {
 new SimpleDate(0, 9, 2019);
 }

 @Test(expected = IllegalArgumentException.class)
 public void testInvalidDateConstructor7() {
 new SimpleDate(0, 9, 2044);
 }

 @Test(expected = IllegalArgumentException.class)
 public void testInvalidDateConstructor8() {
 new SimpleDate(0, 9, 1840);
 }

 @Test(expected = IllegalArgumentException.class)
 public void testInvalidDateConstructor9() {
 new SimpleDate(9, 33, 2019);
 }

 @Test(expected = IllegalArgumentException.class)
 public void testInvalidDateConstructor10() {
 new SimpleDate(9, 33, 2044);
 }

 @Test(expected = IllegalArgumentException.class)
 public void testInvalidDateConstructor11() {
 new SimpleDate(9, 33, 1840);
 }

 @Test(expected = IllegalArgumentException.class)
 public void testInvalidDateConstructor12() {
 new SimpleDate(14, 33, 2019);
 }

 @Test(expected = IllegalArgumentException.class)
 public void testInvalidDateConstructor13() {
 new SimpleDate(14, 33, 2044);

Code-Based Testing ◾ 153

 }

 @Test(expected = IllegalArgumentException.class)
 public void testInvalidDateConstructor14() {
 new SimpleDate(9, 33, 1840);
 }

 @Test(expected = IllegalArgumentException.class)
 public void testInvalidDateConstructor15() {
 new SimpleDate(14, 33, 2019);
 }

 @Test(expected = IllegalArgumentException.class)
 public void testInvalidDateConstructor16() {
 new SimpleDate(14, 33, 2044);
 }

 @Test(expected = IllegalArgumentException.class)
 public void testInvalidDateConstructor17() {
 new SimpleDate(14, 33, 1840);
 }

 @Test(expected = IllegalArgumentException.class)
 public void testInvalidDateConstructor18() {
 new SimpleDate(0, 33, 2019);
 }

 @Test(expected = IllegalArgumentException.class)
 public void testInvalidDateConstructor19() {
 new SimpleDate(0, 33, 2044);
 }

 @Test(expected = IllegalArgumentException.class)
 public void testInvalidDateConstructor20() {
 new SimpleDate(0, 33, 1840);
 }

 @Test(expected = IllegalArgumentException.class)
 public void testInvalidDateConstructor21() {
 new SimpleDate(9, 0, 2019);
 }

 @Test(expected = IllegalArgumentException.class)
 public void testInvalidDateConstructor22() {
 new SimpleDate(9, 0, 2044);
 }

 @Test(expected = IllegalArgumentException.class)
 public void testInvalidDateConstructor23() {
 new SimpleDate(9, 0, 1840);
 }

 @Test(expected = IllegalArgumentException.class)
 public void testInvalidDateConstructor24() {
 new SimpleDate(14, 0, 2019);

154 ◾ Software Engineering

 }

 @Test(expected = IllegalArgumentException.class)
 public void testInvalidDateConstructor25() {
 new SimpleDate(14, 0, 2044);
 }

 @Test
 public void testEqual() {
 assertTrue(new SimpleDate(8, 9, 2019).equals(new
SimpleDate(8, 9, 2019)));
 }

 @Test
 public void testUnequal() {
 assertFalse(new SimpleDate(8, 9, 2019).equals(new
SimpleDate(8, 10, 2019)));
 }

}

public class SimpleDate {

 int month;
 int day;
 int year;

 public SimpleDate(int month, int day, int year) {

 if(!rangesOK(month, day, year))
 throw new IllegalArgumentException("Invalid Date");

 this.month = month;
 this.day = day;
 this.year = year;
 }

 public int getMonth() {
 return month;
 }
 public void setMonth(int month) {
 this.month = month;
 }
 public int getDay() {
 return day;
 }
 public void setDay(int day) {
 this.day = day;
 }
 public int getYear() {
 return year;
 }
 public void setYear(int year) {
 this.year = year;
 }

Code-Based Testing ◾ 155

 boolean rangesOK(int month, int day, int year) {

 boolean dateOK = true;

 dateOK &= (year > 1841) && (year < 2043); // Year OK?
 dateOK &= (month > 0) && (month < 13); // Month OK?
 dateOK &= (day > 0) && (
 ((month == 1 || month == 3 || month == 5 || month == 7 ||

month == 8
 || month == 10 || month == 12) && day < 32)
 || ((month == 4 || month == 6 || month == 9 || month == 11)

&& day < 31)
 || ((month == 2 && isLeap(year)) && day < 30)
 || ((month == 2 && !isLeap(year)) && day < 29));

 return dateOK;
 }
 private boolean isLeap(int year) {

 boolean isLeapYear = true;

 if(year % 4 != 0)
 isLeapYear = false;
 else if(year % 100 != 0)
 isLeapYear = true;
 else if(year % 400 != 0)
 isLeapYear = false;

 return isLeapYear;
 }

 public boolean isLeap() {

 return isLeap(year);
 }

 @Override
 public boolean equals(Object obj) {

 boolean areEqual = false;
 if(obj instanceof SimpleDate) {
 SimpleDate simpleDate = (SimpleDate) obj;
 areEqual = simpleDate.getDay() == getDay() &&
 simpleDate.getMonth() == getMonth() &&
 simpleDate.getYear() == getYear();
 }
 return areEqual;
 }

}

8.3.4.5 Junit Test Results

Test run finished after 147 ms.
 [3 containers found].
 [0 containers skipped]

156 ◾ Software Engineering

 [3 containers started]
 [0 containers aborted]
 [3 containers successful]
 [0 containers failed]
 [30 tests found]
 [0 tests skipped]
 [30 tests started]
 [0 tests aborted]
 [30 tests successful]
 [0 tests failed]

8.3.4.6 Capabilities of Selected Code Coverage Tools

Tool name Line/
Statement

Block Untouched
Code

Decision Condition MCDC Path

Clover x x x x

JaCoCo x x x

McCabeIQ x x x x x x x

Parasoft Jtest x x x x x x x

squish coco x x x x x

Testwell x x x x x x

8.4 Basis Path Testing
The mathematical notion of a “basis” has attractive possibilities for code-based test-
ing. Every vector space has a basis and the basis has very important properties with
respect to the entire set.

Definition

For a set V to be a vector space, two operations (addition and scalar multiplication)
must be defined for elements in the set. In addition, the following criteria must hold
for all vectors x, y, and z ∈ V, and for all scalars k, l, 0, and 1:

 1. if x, y ∈ V, the vector x + y ∈ V.
 2. x + y = y + x.
 3. (x + y) + z = x + (y + z).
 4. there is a vector 0 ∈ V such that x + 0 = x.
 5. for any x ∈ V, there is a vector -x ∈ V such that x + (−x) = 0.
 6. for any x ∈ V, the vector kx ∈ V, where k is a scalar constant.
 7. k(x + y) = kx + ky.
 8. (k + l)x = kx + lx.
 9. k(lx) = (kl)x.
 10. 1x = x.

Code-Based Testing ◾ 157

The basis of a vector space is a set of vectors that are independent of each other and
“span” the entire vector space in the sense that any other vector in the space can be
expressed in terms of the basis vectors.

Definition

Given a vector space V, a set B of vectors in V is a basis of the vector set V if Bis a
maximal set of vectors such that

 1. the elements of B are independent, and
 2. Every vector v ∈ V can be written as a linear combination of the elements in B.

A set of basis vectors somehow represents “the essence” of the full vector space:
everything else in the space can be expressed in terms of the basis vectors, and if
one basis element is deleted, this spanning property is lost. The hope for this theory
for testing was that, if we can view a program as a vector space, then the basis for
such a space would be a very interesting set of elements to test. If the basis elements
are all correct, we could hope that everything that can be expressed in terms of the
basis is also correct.

Consider the set P of all paths in a given program. Unfortunately, this set P is not
a vector space:

	 ◾	 there is no meaning to an “addition operation” that adds two elements of P,
	 ◾	 there is also no meaning to the notion of scalar multiplication of a program

path,
	 ◾	 there is no “identity element” O such that for any p ∈ P, p + O = p,
	 ◾	 we can imagine a 0 ∈ P, possibly an empty path, or a path of length 0,
	 ◾	 given an element p ∈ P, there is no such “inverse element -p” such that p + −p = 0

Given all this, the set of paths in a program is not a vector space. In this section, we
examine the early work of Thomas McCabe (McCabe 1982).

8.4.1 McCabe’s Basis Path Method

McCabe’s basis path method centers on a major result from graph theory, which
states that the cyclomatic number (see Chapter 4) of a strongly connected graph is
the number of linearly independent circuits in the graph. While program graphs are
not strongly connected, the program graph of a program that conforms to the pre-
cepts of Structured Programming can be turned onto a strongly connected directed
graph by adding an edge from the (unique) sink node to the unique start node.
Notice that, if the single-entry, single-exit precept is violated, we greatly increase
the cyclomatic number, because we need to add edges from each sink node to each
source node. This bears directly on the use of Return statements in object-oriented
programs. We first look at the Triangle Program in Figure 8.2 (repeated here as
Figure 8.10 for convenience).

With this change, a given program graph must have its cyclomatic number of
independent circuits. If we ignore the added edge from sink to source node, we have

158 ◾ Software Engineering

independent program paths. Some confusion exists in the literature about the correct
formula for cyclomatic complexity. Some sources give the formula as.

V(G) = e – n + p, while others use the formula V(G) = e – n + 2p; everyone agrees
that e is the number of edges, n is the number of nodes, and p is the number of
connected regions. The confusion apparently comes from the transformation of a
program graph into a strongly connected directed graph. The added edge clearly
affects value computed by the formula, but it should not affect the number of circuits.
Counting or not counting the added edge accounts for the change to the coefficient
of p, the number of connected regions. Since p is usually 1, adding the extra edge
means we move from 2p to p.

McCabe next develops an algorithmic procedure (called the baseline method) to
determine a set of basis paths. The method begins with the selection of a baseline
path, which should correspond to some “normal case” program execution. This can
be somewhat arbitrary; McCabe advises choosing a path with as many decision
nodes as possible. Next the baseline path is retraced, and in turn each decision is
“flipped”; that is, when a node of outdegree ≥2 is reached, a different edge must
be taken. Each new path is clearly independent of the previous path. The flipping
process continues until we have the cyclomatic number of paths. Table 8.8 contains
the result of this process for the Java program in Figure 8.2 (repeated here for
convenience).

The cyclomatic complexity of the Java program graph in Figure 8.2 is V(G) =
29–24 + 2 = 7, so the basis path agorithm results in the correct number of basis paths.
It is awkward to think of an infeasible path as a basis path, but this is a consequence
of the way program graphs obscure semantic information of the statements that cor-
respond to nodes.

Next we look at a portion of the NextDate Program that verifies that day,
month, and year are all in the appropirate ranges. The Javecode and program
graph are in Figure 8.8 (also repeated here for convenience). This example has
cyclomatic complexity V(G) = 5. Table 8.9 echoes the analysis done on Figure 8.2
for Figure 8.8.

The basis path algorithm works pretty well in this example. There is a little prob-
lem with the loop control decision. Normally, path p1 (the happy path) would exit

Table 8.8 Basis Paths in Figure 8.2

Path Node Sequence triangleType

p1 1–6, 8, 9, 11, 12, 13, 16, 18, 20, 22, 23, 24 (infeasible path)

p2 flip 9 1–6, 8, 9, 10, 13, 16, 18, 20, 22, 23, 24 (infeasible path)

p3 flip 13 1–6, 8, 9, 11, 12, 13, 14, 15, 23, 24 EQUILATERAL

p4 flip 16 1–6, 8, 9, 11, 12, 13, 16, 17, 23, 24 SCALENE

p5 flip 18 1–6, 8, 9, 11, 12, 13, 16, 18, 19, 23, 24 ISOSCELES

p6 flip 20 1–6, 8, 9, 11, 12, 13, 16, 18, 20, 21, 23, 24 NOT A TRIANGLE

p7 flip 6 1–6, 7, 23, 24 OUT OF RANGE

Code-Based Testing ◾ 159

Table 8.9 Basis Paths in Figure 8.8

Path Node Sequence Result

p1 1, 2, 3, 4, 5, 6, 9, 10, 11, 14, 15, 16, 19, 20, 21 rangesOK = True

p2 flip 5 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15, 16, 19, 20, 21, 3 dayOK = False

p3 flip 10 1, 2, 3, 4, 5, 6, 9, 10, 12, 13, 14, 15, 16, 19, 20, 21, 3 monthOK = False

p4 flip 15 1, 2, 3, 4, 5, 6, 9, 10, 11, 14, 15, 17, 18, 19, 20, 21, 3 yearOK = False

p5 flip 21 1, 2, 3, 4, 5, 6, 9, 10, 11, 14, 15, 16, 19, 20, 21, 22 Exit loop

Figure 8.10 Figure 8.2 repeated here for convenience

1 public static int triangle3(int a, int b, int c) {
1
1 boolean c1, c2, c3, isATriangle;
1
1 // Step 1: Validate Input
2 c1 = (1 <= a) && (a <= 300);
3 c2 = (1 <= b) && (b <= 300);
4 c3 = (1 <= c) && (c <= 300);
5
5 int triangleType = INVALID;
6 if(!c1 || !c2 || !c3)
7 triangleType = OUT_OF_RANGE;
8 else {
8
8 // Step 2: Is A Triangle?
9 if((a < b + c) && (b < a + c) && (c < a + b))
10 isATriangle = true;
11 else
12 isATriangle = false;
12
12 // Step 3: Determine Triangle Type
13 if(isATriangle) {
14 if((a == b) && (b == c))
15 triangleType = EQUILATERAL;
16 else if((a != b) && (a != c) && (b != c))
17 triangleType = SCALENE;
18 else
19 triangleType = ISOSELES;
20 } else
21 triangleType = INVALID;
22 }
23
23 return triangleType;
24 }

23

1617

20

19

13

21

1415

22

18

24

4

5

6

1

2

3

7 8

9

10 11

12

23

1617

20

19

13

21

1415

22

18

24

4

5

6

1

2

3

7 8

9

10 11

12

1 public static int triangle3(int a, int b, int c) {
1
1 boolean c1, c2, c3, isATriangle;
1
1 // Step 1: Validate Input
2 c1 = (1 <= a) && (a <= 300);
3 c2 = (1 <= b) && (b <= 300);
4 c3 = (1 <= c) && (c <= 300);
5
5 int triangleType = INVALID;
6 if(!c1 || !c2 || !c3)
7 triangleType = OUT_OF_RANGE;
8 else {
8
8 // Step 2: Is A Triangle?
9 if((a < b + c) && (b < a + c) && (c < a + b))
10 isATriangle = true;
11 else
12 isATriangle = false;
12
12 // Step 3: Determine Triangle Type
13 if(isATriangle) {
14 if((a == b) && (b == c))
15 triangleType = EQUILATERAL;
16 else if((a != b) && (a != c) && (b != c))
17 triangleType = SCALENE;
18 else
19 triangleType = ISOSELES;
20 } else
21 triangleType = INVALID;
22 }
23
23 return triangleType;
24 }

23

1617

20

19

13

21

1415

22

18

24

4

5

6

1

2

3

7 8

9

10 11

12

160 ◾ Software Engineering

the loop, but we know (semantically) that paths p2, p3, and p4 all must repeat the
loop. Once again, the semantically clear dependence interferes with the algorithm.

8.4.2 Observations on McCabe’s Basis Path Method

Even though paths in a program graph are not a vector space, the basis path algo-
rithm correctly identifies a set of independent paths, and the set has the correct (cyc-
lomatic number) of elements. Some confusion will always be unavoidable because a
program graph does not contain semantic information in the code (see the Testing
Pendulum discussion in Chapter 10). A bigger problem—there is nothing in the basis
path algorithm that prevents the identification of an infeasible path as a basis path.
Finally, the suggestion that a set of basis paths is a sufficient test of the ecorrespond-
ing code is an oversimplification. It happened to work well on the two decision-
intensive examples in the previous section, but that is no guarantee with repsect to
higher levels of code coverage.

8.4.3 Essential Complexity

Part of McCabe’s work on cyclomatic complexity does more to improve programming
than testing. In this section, we take a quick look at this elegant blend of graph the-
ory, structured programming, and the implications these have for testing. This whole
package centers on the notion of essential complexity (McCabe, 1982), which is only
the cyclomatic complexity of yet another form of condensation graph. Recall that
condensation graphs are a way of simplifying an existing graph; so far, our simplifi-
cations have been based on removing either strong components or DD-Paths. Here,
we condense around the structured programming constructs, which are repeated as
Figure 8.11.

Figure 8.11 Structured programming constructs.

Case/Switch

Sequence Pre-test Loop Post-test Loop

If-Then If-Then-Else

Code-Based Testing ◾ 161

Identifying essential complexity begins with the program graph of interest. The
basic idea is to look for the graph of one of the structured programming constructs,
collapse it into a single node, and repeat until no more structured programming con-
structs can be found. The cyclomatic complexity of such a condensed program graph
is McCabe’s “essential complexity.” This process is followed in Figure 8.12, which
starts with the graph of the Java range check code in Figure 8.8. The if-else construct
involving nodes 5, 6, 7, and 8 is condensed into node a. Similarly, the other two if-
else constructs are condensed into nodes b and c. The sequence of nodes 4, a, b, c, 20
is condensed into node d. Next, the do-while loop of nodes 3, d, and 21 is condensed
to e. Finally, the sequence of nodes 2, e, and 22 is condensed to node f, resulting in
a condensed graph with essential cyclomatic complexity EV(G) = 1. In general, when

Figure 8.12 Condensing with respect to the structured programming constructs.

d
4

21

a

20

b

c

1

2

3

22

d
4

21

a

20

b

c

1

2

3

22

c

4

21

a

20

b

16
17

19

1

2

3

15

22

18

c

4

21

a

20

b

16
17

19

1

2

3

15

22

18

b

4

21

a

20

10

11
12

13

14

16
17

19

1

2

3

15

22

18

b

4

21

a

20

10

11
12

13

14

16
17

19

1

2

3

15

22

18

a

4

21

5

6
7

9

20

10

11
12

13

14

16
17

19

1

2

3

8

15

22

18

a

4

21

5

6
7

9

20

10

11
12

13

14

16
17

19

1

2

3

8

15

22

18

e

1

2

22

f

e

1

2

22

f

e

21

d

1

2

3

22

21

d

1

2

3

22

e

21

d

1

2

3

22

1

f

1

f

162 ◾ Software Engineering

a program is well structured (i.e., is composed solely of the structured programming
constructs), it can always be reduced to a graph with one path, i.e., a program graph
of cyclomatic complexity 1.

McCabe went on to find elemental “unstructures” that violate the precepts of
structured programming (McCabe, 1976). These are shown in Figure 8.13. Each of
these violations contains three distinct paths, as opposed to the two paths present in
the corresponding structured programming constructs; one conclusion is that such
violations increase cyclomatic complexity. The pièce de resistance of McCabe’s analy-
sis is that these violations cannot occur by themselves: if one occurs in a program,
there must be at least one more, so a program cannot be only slightly unstructured.
Because these increase cyclomatic complexity, the minimum number of test cases is
thereby increased. In the next chapter, we will see that the violations have interesting
implications for dataflow testing.

The bottom line for testers is this: programs with high cyclomatic complexity
require more testing. Of the organizations that use the cyclomatic complexity metric,
most set some guideline for maximum acceptable complexity; V(G) = 10 is a com-
mon choice. What happens if a unit has a higher complexity? Two possibilities: either
simplify the unit or plan to do more testing. If the unit is well structured, its essential
complexity is 1; so it can be simplified easily. If the unit has an essential complexity
greater than 1, often the best choice is to eliminate the violations.

Figure 8.13 Violations of structured programming constructs.

Branching out of a decision

1

2

3

6

4

5

7

8

1

2

3

6

4

5

7

8

Branching out of a decision

1

2

3

6

4

5

7

8

Branching into a decision

1

2

3

6

4

5

7

8

1

2

3

6

4

5

7

8

Branching into a decision

1

2

3

6

4

5

7

8

Branching out of a decision

1

2

3

6

4

5

7

8

Branching into a decision

1

2

3

6

4

5

7

8

Branching out of a loop

5

1

2

3

4

1

2

3

4

5

1

2

3

4

Branching out of a loop

5

1

2

3

4

Branching into a loop

1

2

3

4

1

2

3

4

5 1

2

3

4

5

Branching into a loop

1

2

3

4

5

Branching out of a loop

5

1

2

3

4

Branching into a loop

1

2

3

4

5

Branching out of a decision

1

2

3

6

4

5

7

8

Branching into a decision

1

2

3

6

4

5

7

8

Branching out of a loop

5

1

2

3

4

Branching into a loop

1

2

3

4

5

Code-Based Testing ◾ 163

8.5 Guidelines and Observations
In our study of specification-based testing, we observed that gaps and redundan-
cies can both exist and, at the same time, cannot be recognized. The problem was
that specification-based testing removes us too far from the code. The path testing
approaches to code-based testing represent the case where the pendulum has swung
too far the other way: moving from code to directed graph representations and pro-
gram path formulations obscures important information that is present in the code,
in particular the distinction between feasible and infeasible paths. Also, no form of
code-based testing can reveal missing functionality that is specified in the require-
ments. In the next chapter, we look at dataflow-based testing. These techniques move
closer to the code, so the pendulum will swing back from the path analysis extreme.

McCabe was partly right when he observed, “It is important to understand that
these are purely criteria that measure the quality of testing, and not a procedure to
identify test cases” (McCabe, 1982). He was referring to the DD-Path coverage metric
and his basis path heuristic based on cyclomatic complexity metric. Basis path testing
therefore gives us a lower boundary on how much testing is necessary.

Code-based testing also provides us with a set of metrics that act as crosschecks
on specification-based testing. We can use these metrics to resolve the gaps and
redundancies question. When we find that the same program path is traversed by
several functional test cases, we suspect that this redundancy is not revealing new
faults. When we fail to attain DD-Path coverage, we know that there are gaps in the
functional test cases. As an example, suppose we have a program that contains exten-
sive error handling, and we test it with boundary value test cases (min, min+, nom,
max-, and max). Because these are all permissible values, DD-Paths corresponding
to the error-handling code will not be traversed. If we add test cases derived from
robustness testing or traditional equivalence class testing, the DD-Path coverage will
improve. Beyond this rather obvious use of coverage metrics, an opportunity exists
for real testing craftsmanship. Any of the coverage metrics in Section 8.3 can operate
in two ways: either as a blanket-mandated standard (e.g., all units shall be tested to
attain full DD-Path coverage) or as a mechanism to selectively test portions of code
more rigorously than others. We might choose multiple-condition coverage for mod-
ules with complex logic, while those with extensive iteration might be tested in terms
of the loop coverage techniques. This is probably the best view of structural testing:
use the properties of the source code to identify appropriate coverage metrics, and
then use these as a crosscheck on functional test cases. When the desired coverage is
not attained, follow interesting paths to identify additional (special value) test cases.

Exercises
 1. Find the cyclomatic complexity of the graph in Figure 8.3.
 2. Identify a set of basis paths for the graph in Figure 8.3.
 3. Discuss McCabe’s concept of “flipping” for nodes with outdegree ≥3.
 4. Develop multiple-condition coverage test cases for statement 21 in Figure 8.8:

Until (dayOK && monthOK && yearOK).

164 ◾ Software Engineering

 5. In Chapter 2, you were asked to develop a program for NextWeek (Exercise 6).
Apply your boundary value test cases from the exercises in Chapter 5 to your
NextWeek program. What test coverage is attained?

 6. Apply your equivalence class test cases from the exercises in Chapter 6 to your
NextWeek program. What test coverage is attained?

 7. (For mathematicians only.) For a set V to be a vector space, two operations
(addition and scalar multiplication) must be defined for elements in the set. In
addition, the following criteria must hold for all vectors x, y, and z ∈ V, and for
all scalars k, l, 0, and 1:
 a. if x, y ∈ V, the vector x + y ∈ V.
 b. x + y = y + x.
 c. (x + y) + z = x + (y + z).
 d. there is a vector 0 ∈ V such that x + 0 = x.
 e. for any x ∈ V, there is a vector −x ∈ V such that x + (−x) = 0.
 f. for any x ∈ V, the vector kx ∈ V, where k is a scalar constant.
 g. k(x + y) = kx + ky.
 h. (k + l)x = kx + lx.
 i. k(lx) = (kl)x.
 j. 1x = x.

 How many of these 10 criteria hold for the “vector space” of paths in a
program?

References
Beizer, Boris, Software Testing Techniques, Van Nostrand, New York, 1984.
Chilenski, John Joseph, “An Investigation of Three Forms of the Modified Condition Decision

Coverage (MCDC) Criterion,” DOT/FAA/AR-01/18, April 2001 [http://www.faa.gov/about/
office_org/headquarters_offices/ang/offices/tc/library/, see actlibrary.tc.faa.gov]

Huang, J.C., Detection of dataflow anomaly through program instrumentation, IEEE
Transactions on Software Engineering, SE-5, 226–236, 1979.

Miller, Edward F. Jr., Tutorial: program testing techniques, COMPSAC ‘77 IEEE Computer
Society, 1977.

Miller, Edward F. Jr., Automated software testing: a technical perspective, Amer. Programmer,
Vol. 4, No. 4, April 1991, 38–43.

McCabe, Thomas J., A complexity metric, IEEE Transactions on Software Engineering, Vol. SE-
2, No. 4, December 1976, 308–320.

McCabe, Thomas J., Structural Testing: A Software Testing Methodology Using the Cyclomatic
Complexity Metric, National Bureau of Standards (Now NIST), Special Publication 500–
599, Washington, D.C., 1982.

McCabe, Thomas J., Structural Testing: A Software Testing Methodology Using the Cyclomatic
Complexity Metric, McCabe and Associates, Baltimore, 1987.

Perry, William E., A Structured Approach to Systems Testing, QED Information Systems, Inc.,
Wellesley, MA, 1987.

Schach, Stephen R., Software Engineering, 2nd ed., Richard D. Irwin, Inc., and Aksen
Associates, Inc., 1993.

http://www.faa.gov
http://www.faa.gov
http://actlibrary.tc.faa.gov

165

Chapter 9

Testing Object-Oriented
Software

Die Grenzen meiner Sprache bedeuten die Grenzen meiner Welt.

Ludvig Wittgenstein

Wittgenstein observes that the limits (boundaries) of his language are the limits of his
world. In this chapter, we introduce two concepts—Define/Use paths and program
slices. With this improved vocabulary, we can more accurately describe software
testing issues. Define/Use paths are particularly appropriate for object-oriented soft-
ware; Slices are appropriate primarily at the unit level, but they can be extended to
object-oriented software.

Both theoretical and practical work on the testing of object-oriented software has
flourished since the second half of the 1990s, leading to the clear dominance of the
paradigm in 2013. One of the original hopes for object-oriented software was that
objects could be reused without modification or additional testing. This was based on
the assumption that well-conceived objects encapsulate functions and data “that belong
together,” and once such objects are developed and tested, they become reusable com-
ponents. The new consensus is that there is little reason for this optimism—object-ori-
ented software has potentially more severe testing problems than those for traditional
software. In this chapter, we cover two methods useful in combatting the additional
difficulties of testing object-oriented software: unit testing and dataflow analysis.

9.1 Unit Testing Frameworks
The origins of unit testing can be traced back to Kent Beck’s work with Smalltalk and his
creation of SUnit [Beck 1994]. While SUnit was designed for OO software, and a precur-
sor (and vital component of) extreme programming and the agile manifesto, unit test-
ing works and has been adapted for other software lifecycles and language paradigms,
respectively. In fact, the ideas of unit testing were used well before the origins of SUnit in

166 ◾ Software Engineering

the form of small executables that would run tests on a module of software. The advent
of SUnit spurred on the formalization and popularization of automatically executing
unit tests. JUnit for Java, perhaps the most popularized unit testing framework, leads to
the XUnit format and spurred on the creation of unit testing frameworks for a plethora
of languages [https://martinfowler.com/bliki/Xunit.html]. Importantly, unit testing does
not guarantee correct code, even if every line of code is tested [Gaffney 2004].

9.1.1 Common Unit Testing Frameworks

There are close to 100 languages with unit testing support [https://en.wikipedia.org/
wiki/List_of_unit_testing_frameworks] in addition to roughly a dozen languages that
directly support unit testing [https://en.wikipedia.org/wiki/Unit_testing]. Following
the XUnit format, a selected set of widely used unit testing frameworks are as follows:

	 ◾	 JUnit for Java
	 ◾	 NUnit for C#
	 ◾	 CPPUnit for C++

In order to match the Java source code listings in this text, we illustrate several
examples using JUnit.

9.1.2 JUnit Examples

The SimpleDate class below (Listing 9.1) is an implementation of a calendar day (e.g.,
month, day, year) along with appropriate getters/setters and a constructor. The imple-
mentation depends on the function rangesOK to ensure that the provided month,
day, and year are valid for some calendar day. The rangesOK function depends upon
the isLeap function to determine if the provided year is a leap year (e.g., includes
February 29th) or is not a leap year.

LISTING 9.1 JAVA CODE FOR A SIMPLEDATE CLASS

1 public class SimpleDate {

2 int month;
3 int day;
4 int year;

5 public SimpleDate(int month, int day, int year) {

6 if(!rangesOK(month, day, year))
7 throw new IllegalArgumentException("Invalid Date");

8 this.month = month;
9 this.day = day;
10 this.year = year;
11 }

12 public int getMonth() {
13 return month;
14 }

https://martinfowler.com
https://en.wikipedia.org
https://en.wikipedia.org
https://en.wikipedia.org

Testing Object-Oriented Software ◾ 167

15 public void setMonth(int month) {
16 this.month = month;
17 }
18 public int getDay() {
19 return day;
20 }
21 public void setDay(int day) {
22 this.day = day;
23 }
24 public int getYear() {
25 return year;
26 }
27 public void setYear(int year) {
28 this.year = year;
29 }

30 boolean rangesOK(int month, int day, int year) {

31 boolean dateOK = true;

32 dateOK &= (year > 1841) && (year < 2043); // Year OK?
33 dateOK &= (month > 0) && (month < 13); // Month OK?
34 dateOK &= (day > 0) && (
35 ((month == 1 || month == 3 || month == 5 || month == 7

|| month == 8
36 || month == 10 || month == 12) && day < 32)
37 || ((month == 4 || month == 6 || month == 9 ||

month == 11) && day < 31)
38 || ((month == 2 && isLeap(year)) && day < 30)
39 || ((month == 2 && !isLeap(year)) && day < 29));

40 return dateOK;
41 }

42 protected boolean isLeap(int year) {

43 boolean isLeapYear = true;

44 if(year % 4 != 0)
45 isLeapYear = false;
46 else if(year % 100 != 0)
47 isLeapYear = true;
48 else if(year % 400 != 0)
49 isLeapYear = false;

50 return isLeapYear;
51 }

52 public boolean isLeap() {

53 return isLeap(year);
54 }

55 @Override
56 public boolean equals(Object obj) {

57 boolean areEqual = false;

168 ◾ Software Engineering

Typically, if we wanted to unit test the rangesOK function, we would create a JUnit
test case like the one in the listing below (Listing 9.2), where the test case is the
function that starts on line 5 as indicated by the annotation (i.e., “@Test”) on line 4.
This unit test ensures that a valid February 29th date on a leap year returns true from
rangesOK while an invalid February 29th date on a non-leap year returns false.

The problem with Listing 9.2 is that each individual date tested requires an entire
line of code, despite minimal changes from any of the previous lines. Via JUnitParams
[https://github.com/Pragmatists/JUnitParams], it is possible to simply list out each
set of test data and pass it to your test case as a function. For example, in the listing
below (Listing 9.3), an annotation indicates a test on line 9 while the parameters of
the test (i.e., test data) are defined via the “@Parameters” annotation on line 10 and
11. The actual JUnit test function that starts on line 12 includes parameters for the
data identified in the parameters annotation. In this case, we know we are testing for
the correct response for February 29th in each test so all that needs to change is the
year and the result we expect. One last minor change is the JUnit test class needs
to be run with the JUnitParams test runner, rather than the standard running. This
simple change is indicated on line 6 via the “@RunWith” annotation.

58 if(obj instanceof SimpleDate) {

59 SimpleDate simpleDate = (SimpleDate) obj;

60 areEqual = simpleDate.getDay() == getDay() &&
61 simpleDate.getMonth() == getMonth() &&
62 simpleDate.getYear() == getYear();
63 }

64 return areEqual;
65 }
66 }

LISTING 9.2 JUNIT TEST CASE FOR LEAP YEAR AND NON-LEAP YEAR
FEBRUARY 29TH

1 import org.junit.Test;
2 import static org.junit.Assert.*;

3 public class SimpleDateTest {

4 @Test
5 public void testWithDependency() {
6 // This test has a dependency on SimpleDate.isLeap
7 SimpleDate simpleDate = new SimpleDate(1, 1, 2000);

8 assertTrue(simpleDate.rangesOK(2, 29, 2000)); // Valid due
to leap year

9 assertFalse(simpleDate.rangesOK(2, 29, 2001)); // Invalid
due to leap year

10 }
11 }

https://github.com

Testing Object-Oriented Software ◾ 169

Using JUnit, as with any other unit testing framework, it is simple to add tests to
the publicly available functions within the class. Problematically, testing the rangesOK
function still depends on the protected isLeap, meaning we cannot directly tell which
function causes a failure when one occurs. The next section explores a solution.

9.2 Mock Objects and Automated Object Mocking
Unit testing, as we have seen throughout Part II, focuses on testing individual pieces
or modules of software rather than testing the whole application. However, not all
software is written as individual components that can be tested, some is written to
integrate those individual components or modules together. Unit testing software
requires either mock objects or adherence to testing individual modules, synthesiz-
ing those modules into additional modules, and repeating (additional integration
testing information, including this bottom-up, technique is covered in Chapter 12).

Mock objects take the place of code dependencies to allow for testing a module
independently of those dependencies. As previously mentioned, some dependencies
come from normal integration of software and errors can be differentiated if those
dependencies are tested elsewhere. However, there are also dependencies that, regard-
less of their test status, should not be included in testing. For example, modules that
write to a database are often dependencies that should be replaced with mock objects
that simulate the interactions with the dependency without performing the actions.

Mock objects can be injected manually. For example, the listing below (Listing 9.4)
includes a function that could be included in the JUnit test class in Listing 9.1 that
replaces the isLeap function within an inherited mock object.

Just as before, the “@Test” annotation on line 1 indicates a JUnit test in the func-
tion on line 2. However, rather than creating a SimpleDate object, we create an
anonymous child and override the isLeap function by providing another version. This

LISTING 9.3 JUNIT PARAMETERIZED TEST CASE FOR LEAP YEAR
AND NON-LEAP YEAR FEBRUARY 29TH

1 import junitparams.JUnitParamsRunner;
2 import junitparams.Parameters;
3 import org.junit.Test;
4 import org.junit.runner.RunWith;
5 import static org.junit.Assert.assertEquals;

6 @RunWith(JUnitParamsRunner.class)
7 public class SimpleDataParamTest {

8 SimpleDate simpleDate = new SimpleDate(1, 1, 2000);

9 @Test
10 @Parameters({"2000, true",
11 "2001, false" })
12 public void daysInFebruary(int year, boolean expected) throws

Exception {

13 assertEquals(expected, simpleDate.rangesOK(2, 29, year))
14 }
15 }

170 ◾ Software Engineering

version has pre-set, or canned, data for our expected test cases and throws an excep-
tion to indicate any other value was used.

While the version in Listing 9.4 removes the dependency the rangesOK func-
tion has on isLeap, it adds complexity to the test. Fortunately, several frameworks
exist for automatically mocking objects and functions. For example, the listing below
(Listing 9.5) includes a function that could be included in the JUnit test class in
Listing 9.1 (with the addition of “import static org.mockito.Mockito.*;”) that replaces
the isLeap function automatically for two specific inputs using the Mockito frame-
work [https://site.mockito.org/].

LISTING 9.5 AUTOMATIC DEPENDENCY REMOVAL FROM JUNIT TEST
CASE FOR LEAP YEAR AND NON-LEAP YEAR FEBRUARY 29TH

1 @Test
2 public void testWithoutDependencyAutomatic() {
3 // This test removes a dependency on SimpleDate.isLeap
4 SimpleDate simpleDate = mock(SimpleDate.class,

CALLS_REAL_METHODS);

5 when(simpleDate.isLeap(2000)).thenReturn(true);
6 when(simpleDate.isLeap(2001)).thenReturn(false);

7 assertTrue(simpleDate.rangesOK(2, 29, 2000)); // Valid due to
leap year

8 assertFalse(simpleDate.rangesOK(2, 29, 2001)); // Invalid due to
leap year

9 }

LISTING 9.4 MANUAL DEPENDENCY REMOVAL FROM JUNIT TEST
CASE FOR LEAP YEAR AND NON-LEAP YEAR FEBRUARY 29TH

1 @Test
2 public void testWithoutDependencyManual() {
3 // This test has no dependency on SimpleDate.isLeap
4 SimpleDate simpleDate = new SimpleDate(1, 1, 2000) {
5 @Override
6 protected boolean isLeap(int year) {
7 if(2000 == year)
8 return true;
9 else if(2001 == year)
10 return false;
11 else
12 throw new IllegalArgumentException("No Mock for year " +

year);
13 }
14 };

15 assertTrue(simpleDate.rangesOK(2, 29, 2000)); // Valid due to
leap year

16 assertFalse(simpleDate.rangesOK(2, 29, 2001)); // Valid due to
leap year

17 }

https://site.mockito.org

Testing Object-Oriented Software ◾ 171

Much of Listing 9.5 looks identical to the first test we created in Listing 9.2. In
fact, only lines 4, 5, and 6 differ. Line 4 automatically creates a mock object where,
by default, all functions allow calls to the methods in the original SimpleDate object.
Lines 5 and 6 specify specific return values for the isLeap function when specific val-
ues are passed to the function. In this case we hard-code the responses for the years
2000 and 2001. Importantly, the remainder (i.e., lines 7 and 8) are unchanged from
test code where the dependency has not been mocked.

9.3 Dataflow Testing
Dataflow testing is an unfortunate term because it suggests some connection with
dataflow diagrams; no connection exists. Dataflow testing refers to forms of structural
testing that focus on the points at which variables receive values and the points at
which these values are used (or referenced). We will see that dataflow testing serves
as a “reality check” on path testing; indeed, many of the dataflow testing proponents
(and researchers) see this approach as a form of path testing. Most programs deliver
functionality in terms of data. Variables that represent data somehow receive values,
and these values are used to compute values for other variables. Since the early
1960s, programmers have analyzed source code in terms of the points (statements
and statement fragments) at which variables receive values and points at which
these values are used. Many times, their analyses were based on concordances that
list statement numbers in which variable names occur. Concordances were popular
features of second-generation language compilers (they are still popular with COBOL
programmers). Early dataflow analyses often centered on a set of faults that are now
known as define/reference anomalies:

A variable that is defined but never used (referenced)
A variable that is used before it is defined

A variable that is defined twice before it is used

Each of these anomalies can be recognized from the concordance of a program.
Because the concordance information is compiler generated, these anomalies can be
discovered by what is known as static analysis: finding faults in source code without
executing it.

9.3.1 Define/Use Testing Definition

Much of the formalization of define/use testing was done in the early 1980s [Rapps,
1985]; the definitions in this section are compatible with those in [Clarke et al. 1989],
which summarizes most define/use testing theory. This body of research is very
compatible with the formulation we developed in Chapters 4 and 8. It presumes a
program graph in which nodes are statement fragments (a fragment may be an entire
statement) and programs that follow the structured programming precepts.

The following definitions refer to a program P that has a program graph G(P) and
a set of program variables V. The program graph G(P) is constructed as in Chapter 4,
with statement fragments as nodes and edges that represent node sequences. G(P)

172 ◾ Software Engineering

has a single-entry node and a single-exit node. We also disallow edges from a node
to itself. Paths, subpaths, and cycles are as they were in Chapter 4. The set of all paths
in P is PATHS(P).

Definition

Node n ϵ G(P) is a defining node of the variable v ϵ V, written as DEF(v, n), if and
only if the value of the variable v is defined at the statement fragment corresponding
to node n.

Input statements, assignment statements, loop control statements, and procedure
calls are all examples of statements that are defining nodes. When the code corre-
sponding to such statements executes, the contents of the memory location(s) associ-
ated with the variables are changed.

Definition

Node n ϵ G(P) is a usage node of the variable v ϵ V, written as USE(v, n), if and only if
the value of the variable v is used at the statement fragment corresponding to node n.

Output statements, assignment statements, conditional statements, loop control
statements, and procedure calls are all examples of statements that are usage nodes.
When the code corresponding to such statements executes, the contents of the mem-
ory location(s) associated with the variables remain unchanged.

Definition

A usage node USE(v, n) is a predicate use (denoted as P-use) if and only if the state-
ment n is a predicate statement; otherwise, USE(v, n) is a computation use, (denoted
C-use).

The nodes corresponding to predicate uses always have an outdegree ≥ 2, and
nodes corresponding to computation uses always have outdegree ≤ 1.

Definition

A definition-use path with respect to a variable v (denoted du-path) is a path in
PATHS(P) such that, for some v ϵ V, there are define and usage nodes DEF(v, m) and
USE(v, n) such that m and n are the initial and final nodes of the path.

Definition

A definition-clear path with respect to a variable v (denoted dc-path) is a definition-
use path in PATHS(P) with initial and final nodes DEF (v, m) and USE (v, n) such that
no other node in the path is a defining node of v.

Testers should notice how these definitions capture the essence of computing
with stored data values. Du-paths and dc-paths describe the flow of data across
source statements from points at which the values are defined to points at which
the values are used. Du-paths that are not definition-clear are potential trouble
spots. One of the main values of du-paths is they identify points for variable
“watches” and breakpoints when code is developed in an Integrated Development
Environment.

Testing Object-Oriented Software ◾ 173

9.3.2 Define/Use Testing Metrics

The whole point of analyzing a program with definition/use paths is to define a set
of test coverage metrics known as the Rapps-Weyuker Dataflow metrics [Rapps and
Weyuker, 1985]. The first three of these are equivalent to three of E.F. Miller’s metrics
in Chapter 8: All-Paths, All-Edges, and All-Nodes. The others presume that define and
usage nodes have been identified for all program variables, and that du-paths have
been identified with respect to each variable. In the following definitions, T is a set of
paths in the program graph G(P) of a program P, with the set V of variables. It is not
enough to take the cross product of the set of DEF nodes with the set of USE nodes
for a variable to define du-paths. This mechanical approach can result in infeasible
paths. In the next definitions, we assume that the define/use paths are all feasible.

Definition

The set T satisfies the All-Defs criterion for the program P if and only if for every vari-
able v ϵ V, T contains definition-clear paths from every defining node of v to a use of v.

Definition

The set T satisfies the All-Uses criterion for the program P if and only if for every
variable v ϵ V, T contains definition-clear paths from every defining node of v to every
use of v, and to the successor node of each USE(v, n).

Definition

The set T satisfies the All-P-Uses/Some C-Uses criterion for the program P if and only
if for every variable v ϵ V, T contains definition-clear paths from every defining node
of v to every predicate use of v; and if a definition of v has no P-uses, a definition-
clear path leads to at least one computation use.

Definition

The set T satisfies the All-C-Uses/Some P-Uses criterion for the program P if and only
if for every variable v ϵ V, T contains definition clear paths from every defining node
of v to every computation use of v; and if a definition of v has no C-uses, a definition-
clear path leads to at least one predicate use.

Definition

The set T satisfies the All-DU-paths criterion for the program P if and only if for every
variable v ϵ V, T contains definition clear paths from every defining node of v to every
use of v and to the successor node of each USE(v, n), and that these paths are either
single loop traversals or they are cycle free.

These test coverage metrics have several set-theory-based relationships, which
are referred to as “subsumption” in Rapps (1985). These relationships are shown
in Figure 9.1. We now have a more refined view of structural testing possibilities
between the extremes of the (typically unattainable) All-Paths metric and the gener-
ally accepted minimum, All-Edges. What good is all this? Define/use testing provides
a rigorous, systematic way to examine points at which faults may occur.

174 ◾ Software Engineering

9.3.3 Define/Use Testing Example

All of the define/use definitions so far make no mention of where the variable is
defined and where it is used. In procedural code, this is usually assumed to be within
a unit, but it can involve procedure calls to improperly coupled units. We might make
this distinction by referring to these definitions as “context free,” that is, the places
where variables are defined and used are independent. The object-oriented paradigm
changes this—we must now consider the define and use locations with respect to
class aggregation, inheritance, dynamic binding, and polymorphism. The bottom line
is that dataflow testing for object-oriented code moves from the unit level to the inte-
gration level, and we will revisit this discussion in Chapter 12.

However, given a concrete integration of the objects in the form of an applica-
tion, or even a test, provides concrete paths and flows of data. In the listing below

Figure 9.1 Rapps-Weyuker hierarchy of dataflow coverage metrics.

All Paths

All DU-Paths

All Uses

All C-Uses
some P-Uses

All P-Uses
some C-Uses

All Defs All P-Uses

All Edges

All Nodes

Figure 9.2 UML class diagram for SimpleDate.

SimpleDate

Day Month Year

SimpleDate

Day Month Year

Testing Object-Oriented Software ◾ 175

(Listing 9.5), several date-related classes are presented, as well as a JUnit test class.
These classes are:

	 ◾	 DateTest: A JUnit test class with a single test function (i.e., testSimple),
	 ◾	 Date: A class representing date with a month, day, and year,
	 ◾	 Day: A class representing a single day,
	 ◾	 Month: A class representing a single month,
	 ◾	 Year: A class representing a single year.

LISTING 9.6 NEXTDATE CLASSES AND TEST

 import static org.junit.jupiter.api.Assertions.*;
 import org.junit.jupiter.api.Test;

1 class DateTest {
2 @Test
2 void testSimple() {

3 Date date = new Date(Month.MAY, 27, 2020); /* msg 1 */
4 assertEquals("5-27-2020", date.getDate()); /* msg 2 */
5 date = date.nextDate(); /* msg 3 */
6 assertEquals("5-28-2020", date.getDate()); /* msg 4 */
7 }
7 }

8 public class Date {
9 private Day day;
10 private Month month;
11 private Year year;

12 public Date(int month, int day, int year) {
13 this.year = new Year(year); /* msg 5 */
14 this.month = new Month(month, this.year); /* msg 6 */
15 this.day = new Day(day, this.month); /* msg 7 */
16 }

17 public String getDate() {
18 return month.getMonth() + "-" + day.getDay() + "-"

+ year.getYear();
19 } /* msg 8, msg 9, msg 10 */

20 public Date nextDate() {
21 Day nextDay = day.getNextDay(); /* msg 11 */
22 Month month = nextDay.getMonth(); /* msg 12 */
23 Year year = month.getYear(); /* msg 13 */
24 return new Date(month.getMonth(), nextDay.

getDay(), year.getYear());
 /* msg14, msg15, msg16 */
25 }
26 }

176 ◾ Software Engineering

27 public class Day {
28 private int day;
29 private Month month;

30 public Day(int day, Month month) {
31 this.day = day;
32 this.month = month;
33 }

34 public int getDay() {
35 return day;
36 }

37 public Day getNextDay() {
38 if(day < month.numberOfDays()) /* msg 17 */
39 return new Day(day + 1, month); /* msg1 8 */
40 else
41 return new Day(1, month.getNextMonth());

/* msg 19 */
42 }

43 public Month getMonth() {
44 return month;
45 }
46 }

47 public class Month {
48 public static final int JANUARY = 1;
49 public static final int FEBRUARY = 2;
50 public static final int MARCH = 3;
51 public static final int APRIL = 4;
52 public static final int MAY = 5;
53 public static final int JUNE = 6;
54 public static final int JULY = 7;
55 public static final int AUGUST = 8;
56 public static final int SEPTEMBER = 9;
57 public static final int OCTOBER = 10;
58 public static final int NOVEMBER = 11;
59 public static final int DECEMBER = 12;

60 private int month;
61 private Year year;

62 public Month(int month, Year year) {
63 this.month = month;
64 this.year = year;
65 }

66 public int getMonth() {
67 return month;
68 }

Testing Object-Oriented Software ◾ 177

69 public int numberOfDays() {
70 int numberOfDays = 0;
71 switch (month) {
 // 31 day months
72 case 1: case 3: case 5: case 7: case 8: case 10: case 12:
73 numberOfDays = 31;
74 break;
 // 30 day months
75 case 4: case 6: case 9: case 11:
76 numberOfDays = 30;
77 break;
 // February
78 case 2:
79 if(year.isLeapYear()) /* msg 20 */
80 numberOfDays = 29;
81 else
82 numberOfDays = 28;
84 break;
85 }
86 return numberOfDays;
87 }

88 public Month getNextMonth() {
89 if(month < 12)
90 return new Month(month + 1, year); /* msg 21 */
91 else
92 return new Month(1, year.getNextYear());

/* msg 22, msg 23 */
93 }

94 public Year getYear() {
95 return year;
96 }
97 }

98 public class Year {
99 private int year;

100 public Year(int year) {
101 this.year = year;
102 }

103 public int getYear() {
104 return year;
105 }

106 public boolean isLeapYear() {
107 boolean isLeapYear = true;

108 if(year % 4 != 0)
109 isLeapYear = false;
110 else if(year % 100 != 0)

178 ◾ Software Engineering

The define/use nodes for each of the class member variables is listed in Table 9.1.
Note that local variables also have define/use nodes, but that we skip those for brevity.

The actual dataflows based on Table 9.1 depend on the use of the classes and
how they are integrated. For example, the JUnit test in Listing 9.5 in class DateTest
and function testSimple executes the following lines in the following modules in the
order presented in Table 9.2. Each line that specifies a message that indicates a func-
tion call to an instance whichever class has the next line number listed.

Define/Use paths based on the integrated Date, Day, Month, and Year classes
include:

	 ◾	 Date.day: 15, 30, 31, 32, 4, 17, 18
	 ◾	 Date.month: 14, 62, 63, 64, 15
	 ◾	 Date.year: 13, 100, 101, 14
	 ◾	 Day.day: 31, 32, 4, 17, 18, 66, 67, 18, 34
	 ◾	 Day.month: 32, 4, 17, 18, 66, 67, 18, 34, 35
	 ◾	 Month.month: 63, 64, 15, 30, 31, 32, 4, 17, 18, 66, 67
	 ◾	 Month.year: No uses in this integration. However, there would be if the month

February was used.
	 ◾	 Year.year: 101, 14, 62, 63, 64, 15, 30, 31, 32, 4, 17, 18, 66, 67, 18, 34, 35, 18, 103, 104

111 isLeapYear = true;
112 else if(year % 400 != 0)
113 isLeapYear = false;

114 return isLeapYear;
115 }

116 public Year getNextYear() {
117 return new Year(year + 1); /* msg 24 */
118 }
119 }

Table 9.1 Define/Use Nodes for Variables in the NextDate Classes and Test

Variable Defined at Node Used at Node

Date.day 15 18, 21

Date.month 14 15, 18, 22

Date.year 13 14, 18

Day.day 31 35, 38, 39

Day.month 32 38, 39, 41, 44

Month.month 63 67, 71, 89, 90

Month.year 64 79, 92, 95

Year.year 101 104, 108, 110, 112, 117

Testing Object-Oriented Software ◾ 179

(Continued)

Table 9.2 NextDate Classes and Test Line Execution

DateTest Date Year Month Day

3 (msg 1)

12

13 (msg 5)

100

101

14 (msg 6)

62

63

64

15 (msg 7)

30

31

32

4 (msg 2)

17

18 (msg 8)

66

67

18 (msg 9)

34

35

18 (msg 10)

103

104

5 (msg 3)

21 (msg 11)

37

38 (msg 17)

69

180 ◾ Software Engineering

DateTest Date Year Month Day

70

71

72

73

74

86

39 (msg 18)

30

31

32

22 (msg 12)

43

44

23 (msg 13)

94

95

24 (msg 14)

66

67

24 (msg 15)

34

35

24 (msg 16)

103

104

6 (msg 4)

17

18 (msg 8)

66

67

Table 9.2 (Continued)

(Continued)

Testing Object-Oriented Software ◾ 181

Each of these is a dc-path, indicating that the assignment (i.e., first node) is not
modified by another assignment before the value is read by the last node. However,
du-paths that are not dc-paths also exist. For example, Day.day has a du-path that is
not clear (modifications and reads are indicated in bold): 31, 32, 4, 17, 18, 66, 67, 18,
34, 35, 18, 103, 104, 5, 21, 37, 38, 69, 70, 71, 72, 73, 74, 86, 39, 30, 31, 32, 22, 43, 44,
23, 94, 95, 24, 66, 67, 34.

Both du- and dc-paths can be used to verify that each possible definition and use
combination is tested or, in this case, even indicate that the Month.year is never used
since it is only used if the month is February to calculate the number of days in the
month. Additional path-based methods of testing at the integration level for object-
oriented code will be covered in Chapter 12.

9.4 Object-Oriented Complexity Metrics
The Chidamber/Kemerer (CK) metrics are the best-known metrics for object-oriented
software [Chidamber 1994]. The names for the six CK metrics are almost self-explan-
atory; some can be derived from a Call Graph, others use the unit level complexity
discussed in Section 15.2.

	 ◾	 WMC—Weighted Methods per Class
	 ◾	 DIT—Depth of Inheritance Tree
	 ◾	 NOC—Number of Child Classes
	 ◾	 CBO—Coupling between Classes
	 ◾	 RFC—Response for Class
	 ◾	 LCOM—Lack of Cohesion on Methods

9.4.1 WMC—Weighted Methods per Class

The WMC metric counts the number of methods in a class and weights them by their
cyclomatic complexity. This weighting can easily be extended to include the notion of
decisional complexity in Section 9.2. In a follow-up paper [Kemerer 2005], Kemerer
observes that this metric is a good predictor of implementation and testing effort.

DateTest Date Year Month Day

18 (msg 9)

34

35

18 (msg 10)

103

104

7

Table 9.2 (Continued)

182 ◾ Software Engineering

9.4.2 DIT—Depth of Inheritance Tree

The name says it all. If we made another call graph to show inheritance, this is the
length of the longest inheritance path from root to leaf node. This is directly deriv-
able from a standard UML Class Inheritance Diagram. While comparatively large
values of the DIT metric imply good reuse, this also increases testing difficulty. One
strategy is to “flatten” the inheritance classes such that all inherited methods are in
one class for testing purposes. Current guidelines recommend a limit of DIT = 3. The
Depth of the Inheritance Tree for the Java version of NextDate is 0, not including
implicit inheritance from the Java Object class, due to a lack of inheritance between
the NextDate, Day, Month, and Year classes.

9.4.3 NOC—Number of Child Classes

The Number Of Child classes of a class in the inheritance diagram for the DIT met-
ric is simply the outdegree of each node. This is very analogous to the cyclomatic
complexity of the call graph. The Number of Child Classes for the Java version of
NextDate is 0, not including implicit inheritance from the Java Object class.

9.4.4 CBO—Coupling Between Classes

This metric is a carry-over from the procedural coupling metrics popularized by
Yourdon and Constantine, in which coupling is increased when one unit refers to
variables in another unit. In procedural code, there are six levels of coupling: Content,
Common, External, Control, Stamp, and Data. Presence of most of these led to the
design of object-oriented programming languages. Proper encapsulation results in
“good” o-o code that is data coupled. Greater coupling implies both greater testing
and greater maintenance difficulty. Well-designed classes should reduce the CBO
values. The Coupling Between Classes in the Java version of NextDate is restricted
to data coupling.

9.4.5 RFC—Response for Class

The RFC method refers to the length of the message sequence that results from an
initial message. In Chapter 12, we saw that this is also the “length” of the integration-
level testing construct, the MM-Path. The longest MM-Path in the Java version of
NextDate is 4.

9.4.6 LCOM—Lack of Cohesion on Methods

Coupling and Cohesion are somewhat diametrically opposed—methods should have
very low coupling with other methods, and at the same time, should be cohesive
in the sense that a method has a single purpose. LCOM describes the extent to
which methods are focused on a single purpose—highly cohesive methods are (or
should be) a consequence of good encapsulation. The methods in the Java version of
NextDate all exhibit high cohesion.

Testing Object-Oriented Software ◾ 183

9.5 Issues in Testing Object-Oriented Software
Our goal in this section is to identify the testing issues raised by object-oriented soft-
ware. First, we consider some of the implications of inheritance, encapsulation, and
polymorphism; therefore, we look at ways that traditional testing can be extended to
address the implications of these issues.

9.5.1 Implications of Composition and Encapsulation

Composition (as opposed to decomposition) is the central design strategy in object-
oriented software development. Together with the goal of reuse, composition creates
the need for very strong unit testing. Because a unit (class) may be composed with
previously unknown other units, the traditional notions of coupling and cohesion are
applicable. Encapsulation has the potential to resolve this concern, but only if the
units (classes) are highly cohesive and very loosely coupled. Indeed, highly cohe-
sive units that are loosely coupled not only indicate a maintainable design but are
also require less testing and are generally easier to test. As coupling increases, each
reference to another unit must be tested, increasing the number of required tests.
Similarly, as cohesion decreases, additional, but unrelated, functionality is included
and requires additional tests. At the unit level, better object-oriented complexity met-
rics lead to reduced tests. However, there is a point where the inherent complexity
necessary to create the desired functionality is pushed out of the individual units and
into the composition of the units. Microservices, for example, are highly cohesive and
very loosely coupled units applicable to a multitude of applications. The definition of
the application is in the composition of which microservice units are used, and how
they interact with each other. The main implication of composition is that, even pre-
suming very good unit-level testing, the real burden is at the integration testing level.

9.5.2 Implications of Inheritance

Although the choice of classes as units seems natural, the role of inheritance com-
plicates this choice. If a given class inherits attributes and/or operations from super
classes, the stand-alone compilation criterion of a unit is sacrificed. Binder suggests
“flattened classes” as an answer [Binder, 1996]. A flattened class is an original class
expanded to include all the attributes and operations it inherits. (Notice that flattened
classes are complicated by multiple inheritance, and really complicated by selective
and multiple selective inheritance. We ignore these issues here.) Unit testing on a
flattened class solves the inheritance problem, but it raises another. A flattened class
will not be part of a final system, so some uncertainty remains. Also, the methods
in a flattened class might not be sufficient to test the class. The next work-around is
to add special-purpose test methods. This facilitates class-as-unit testing but raises a
final problem: a class with test methods is not (or should not be) part of the delivered
system. This is perfectly analogous to the question of testing original or instrumented
code in traditional software. Some ambiguity is also introduced: the test methods
can also be faulty. What if a test method falsely reports a fault, or worse, incorrectly
reports success? Test methods are subject to the same false positive and false nega-
tive outcomes as medical experiments. This leads to an unending chain of methods

184 ◾ Software Engineering

testing other methods, very much like the attempt to provide external proofs of con-
sistency of a formal system.

Figure 9.3 shows a UML inheritance diagram of a part of a banking system. Both
checking and savings accounts have account numbers and balances, and these can
be accessed and changed. Checking accounts have a per-check processing charge
that must be deducted from the account balance. Savings accounts draw interest that
must be calculated and posted on some periodic basis.

If we did not “flatten” the checkingAccount and savingsAccount classes, we would
not have access to the balance attributes, and we would not be able to change the
balances. This is clearly unacceptable for unit testing. Figure 9.4 shows the “flat-
tened” checkingAccount and savingsAccount classes. These are clearly stand-alone
units that are sensible to test. Solving one problem raises another: with this formula-
tion, we would test the getBalance and setBalance operations twice, thereby losing
some of the hoped-for economies of object orientation.

Figure 9.4 shows a UML inheritance diagram of a part of the banking application
in Figure 9.3. (Some functionality has been added to make this a better example.)
Both checking and savings accounts have account numbers and balances, and these
can be accessed and changed. Checking accounts have a per-check processing charge

Figure 9.3 UML inheritance.

Account

accountNumber
Balance

getBalance()
setBalance()

Account

accountNumber
Balance

getBalance()
setBalance()

checkingAccount

checkProcessingCharge
checkNumber

postCharge()

savingsAccount

interestRate

postInterest()

Account

accountNumber
Balance

getBalance()
setBalance()

checkingAccount

checkProcessingCharge
checkNumber

postCharge()

savingsAccount

interestRate

postInterest()

Figure 9.4 Flattened checkingAccount and savingsAccount classes.

checkingAccount

accountNumber
Balance
checkProcessingCharge
checkNumber

getBalance()
setBalance()
postCharge()

savingsAccount

accountNumber
Balance
interestRate

getBalance()
setBalance()
postInterest()

checkingAccount

accountNumber
Balance
checkProcessingCharge
checkNumber

getBalance()
setBalance()
postCharge()

savingsAccount

accountNumber
Balance
interestRate

getBalance()
setBalance()
postInterest()

Testing Object-Oriented Software ◾ 185

that must be deducted from the account balance. Savings accounts draw interest that
must be calculated and posted on some periodic basis.

If we did not “flatten” the checkingAccount and savingsAccount classes, we would
not have access to the balance attributes, and we would not be able to access or
change the balances. This is clearly unacceptable for unit testing. Figure 9.4 shows
the “flattened” checkingAccount and savingsAccount classes. These are clearly stand-
alone units that are sensible to test. Solving one problem raises another: with this
formulation, we would test the getBalance and setBalance operations twice, thereby
losing some of the hoped-for economies of object orientation.

9.5.3 Implications of Polymorphism

The essence of polymorphism is that the same method applies to different objects.
Considering classes as units implies that any issues of polymorphism will be covered
by the class/unit testing.

The code in Listing 9.7 has been updated to include inheritance and polymor-
phism to the code previously discussed in Listing 9.5. Importantly, despite changes
to the structure of the code (illustrated in the UML class diagram in Figure 9.5), the
previous tests (i.e., DateTest.testSimple()) remain the same in both versions.

LISTING 9.7 NEXTDATE CLASSES AND TEST WITH INHERITANCE

 import static org.junit.jupiter.api.Assertions.*;
 import org.junit.jupiter.api.Test;

1 public class DateTest {
2 @Test
3 void testSimple() {

4 Date date = new Date(Month.MAY, 27, 2020);
5 assertEquals("5-27-2020", date.getDate());
6 date = date.nextDate();
7 assertEquals("5-28-2020", date.getDate());
8 }

9 @Test
10 void testPolymorphismValidRange() {

11 Date date = new Date(Month.FEBRUARY, 29, 2000);
12 ValidRange arrayOfValidRanges[] = { date, date.day, date.

month, date.year };
13 for(ValidRange validRange : arrayOfValidRanges)
14 assertTrue(validRange.validRange());
15 }

16 @Test
17 void testPolymorphismInValidRange() {

18 Date date = new Date(Month.FEBRUARY, 29, 2001);

186 ◾ Software Engineering

19 ValidRange arrayOfValidRanges[] = { date, date.day, date.
month, date.year };

20 boolean allValid = true;
21 for(ValidRange validRange : arrayOfValidRanges)
22 allValid &= validRange.validRange();

23 assertFalse(allValid);
24 }

25 }

26 abstract class ValidRange {

27 protected int minimum, maximum;

28 public ValidRange(int minimum, int maximum) {

29 this.minimum = minimum;
30 this.maximum = maximum;
31 }
32 public boolean validRange() {

33 return minimum <= getValue() && getValue() <= maximum;
34 }

35 protected abstract int getValue();
36 }

37 class Date extends ValidRange {
38 protected Day day;
39 protected Month month;
40 protected Year year;

41 public Date(int month, int day, int year) {
42 super(0, 0); // Values aren't used
43 this.year = new Year(year);
44 this.month = new Month(month, this.year);
45 this.day = new Day(day, this.month);
46 }

47 public String getDate() {
48 return month.getMonth() + "-" + day.getDay() + "-" + year.

getYear();
49 }

50 public Date nextDate() {
51 Day nextDay = day.getNextDay();
52 Month month = nextDay.getMonth();
53 Year year = month.getYear();
54 return new Date(month.getMonth(), nextDay.getDay(), year.

getYear());
55 }

Testing Object-Oriented Software ◾ 187

56 @Override
57 public boolean validRange() {
58 // Inherited value overwritten
59 return year.validRange() && month.validRange() && day.

validRange();
60 }

61 @Override
62 protected int getValue() {
63 return 0;
64 }
65 }

66 class Day extends ValidRange {
67 private int day;
68 private Month month;

69 public Day(int day, Month month) {
70 super(1, month.numberOfDays());
71 this.day = day;
72 this.month = month;
73 }

74 public int getDay() {
75 return day;
76 }

77 public Day getNextDay() {
78 if(day < month.numberOfDays())
79 return new Day(day + 1, month);
80 else
81 return new Day(1, month.getNextMonth());
82 }

83 public Month getMonth() {
84 return month;
85 }

86 @Override
87 public boolean validRange() {
88 return super.validRange() && month.validRange();
89 }

90 @Override
91 protected int getValue() {
92 return day;
93 }
94 }

95 class Month extends ValidRange {
96 public static final int JANUARY = 1;
97 public static final int FEBRUARY = 2;
98 public static final int MARCH = 3;

188 ◾ Software Engineering

99 public static final int APRIL = 4;
100 public static final int MAY = 5;
101 public static final int JUNE = 6;
102 public static final int JULY = 7;
103 public static final int AUGUST = 8;
104 public static final int SEPTEMBER = 9;
105 public static final int OCTOBER = 10;
106 public static final int NOVEMBER = 11;
107 public static final int DECEMBER = 12;

108 private int month;
109 private Year year;

110 public Month(int month, Year year) {
111 super(1, 12);
112 this.month = month;
113 this.year = year;
114 }

115 public int getMonth() {
116 return month;
117 }

118 public int numberOfDays() {
119 int numberOfDays = 0;
120 switch (month) {
 // 31 day months

121 case 1: case 3: case 5: case 7: case 8: case 10: case 12:
122 numberOfDays = 31;
123 break;
 // 30 day months

124 case 4: case 6: case 9: case 11:
125 numberOfDays = 30;
126 break;
 // February

127 case 2:
128 if(year.isLeapYear())
129 numberOfDays = 29;
130 else
131 numberOfDays = 28;
132 break;
133 }

134 return numberOfDays;
135 }

136 public Month getNextMonth() {
137 if(month < 12)
138 return new Month(month + 1, year);
139 else

Testing Object-Oriented Software ◾ 189

140 return new Month(1, year.getNextYear());
141 }

142 public Year getYear() {
143 return year;
144 }

145 @Override
146 public boolean validRange() {
147 return super.validRange() && year.validRange();
148 }

149 @Override
150 protected int getValue() {
151 return month;
152 }
153 }

154 class Year extends ValidRange {
155 private int year;

156 public Year(int year) {
157 super(1200, 2100);
158 this.year = year;
159 }

160 public int getYear() {
161 return year;
162 }

163 public boolean isLeapYear() {
164 boolean isLeapYear = true;

165 if(year % 4 != 0)
166 isLeapYear = false;
167 else if(year % 100 != 0)
168 isLeapYear = true;
169 else if(year % 400 != 0)
170 isLeapYear = false;

171 return isLeapYear;
172 }

173 public Year getNextYear() {
174 return new Year(year + 1);
175 }

176 @Override
177 protected int getValue() {
178 return year;
179 }
180 }

190 ◾ Software Engineering

While the code listing (Listing 9.5) included no inheritance, the listing (Listing 9.7)
does. While not strictly necessary, this design illustrates inheritance and polymor-
phism in the following ways:

	 ◾	 The Date class entirely overrides parent functionality (i.e., ValidRange.valid-
Range()) in lines 56–60.

	 ◾	 The Day and Month classes override the parent functionality, but then use it as
part of their own implementation in lines 86–89 and 145–148, respectively.

	 ◾	 The Year class uses the parent functionality as-is, without overriding in its own
class definition.

Importantly, it is necessary to verify the behavior of each of the derived child classes
to ensure correct functionality. Again, the redundancy of testing polymorphic opera-
tions sacrifices hoped-for economies.

9.6 Slice-Based Testing
Program slices have surfaced and submerged in software engineering literature since
the early 1980s. They were proposed in Mark Weiser’s dissertation in 1979 [Weiser79],
made more generally available in [Weiser 85], used as an approach to software main-
tenance in [Gallagher 91], and more recently used to quantify functional cohesion
in [Bieman 94]. During the early 1990s. there was a flurry of published activity on
slices, including a paper [Ball 94] describing a program to visualize program slices.
This latter paper describes a tool used in industry. (Note that it took about 20 years
to move a seminal idea into industrial practice.)

Part of the utility and versatility of program slices is due to the natural, intuitively
clear intent of the concept. Informally, a program slice is a set of program statements
that contributes to, or affects the value of, a variable at some point in a program.
This notion of slice corresponds to other disciplines as well. We might study history
in terms of slices—U.S. history, European history, Russian history, Far East history,
Roman history, and so on. The way such historical slices interact turns out to be very
analogous to the way program slices interact.

We will start by growing our working definition of a program slice. We continue
with the notation we used for define-use paths: a program P that has a program
graph G(P) and a set of program variables V. The first try refines the definition in
[Gallagher 1991) to allow nodes in P(G) to refer to statement fragments.

Definition

Given a program P and a set V of variables in P, a slice on the variable set V at state-
ment n, written S(V, n), is the set of all statement fragments in P that contribute to
the values of variables in V at node n.

Figure 9.5 UML class diagram for revised Date classes using inheritance.

ValidRange

Day Month Year Date

ValidRange

Day Month Year Date

Testing Object-Oriented Software ◾ 191

One simplifying notion—in our discussion, the set V of variables consists of a
single variable, v. Extending this to sets of more than one variable is both obvious
and cumbersome. For sets V with more than one variable, we just take the union of
all the slices on the individual variables of V. There are two basic questions about
program slices, whether they are backward or forward slices, and whether they are
static or dynamic. Backward slices refer to statement fragments that contribute to the
value of v at statement n. Forward slices refer to all the program statements that are
affected by the value of v and statement n. This is one place where the define-use
notions are helpful. In a backward slice S(v, n), statement n is nicely understood as a
Use node of the variable v, i.e., Use(v, n). Forward slices are not as easily described,
but they certainly depend on predicate uses and computation uses of the variable v.

The static/dynamic dichotomy is more complex. We borrow two terms from data-
base technology to help explain the difference. In database parlance, we can refer
to the intension and extensions of a database. The intension (it is unique) is the
fundamental database structure, presumably expressed in a data modeling language.
Populating a database creates an extension, and changes to a populated database all
result in new extensions. With this in mind, a static backward slice S(v, n) consists of
all the statements in a program that determine the value of variable v at statement n,
independent of values used in the statements. Dynamic slices refer to execution-time
execution of portions of a static slice with specific values of all variables in S(v, n).
This is illustrated in Figures 9.7 and 9.8.

Listing elements of a slice S(V, n) will be cumbersome because, technically, the
elements are program statement fragments. It is much simpler to list the statement
fragment numbers in P(G), so we make the following trivial change.

Definition

Given a program P and a program graph G(P) in which statements and statement
fragments are numbered, and a set V of variables in P, the static, backward slice on
the variable set V at statement fragment n, written S(V, n), is the set of node numbers
of all statement fragments in P that contribute to the values of variables in V at state-
ment fragment n.

The idea of program slicing is to separate a program into components that have
some useful (functional) meaning. Another refinement is whether a program slice is
executable. Adding all the data declaration statements and other syntactically nec-
essary statements clearly increases the size of a slice, but the full version can be
compiled and separately executed and tested. Further, such compiled slices can be
“spliced” together [Gallagher 91] as a bottom-up way to develop a program. As a test
of clear diction, Gallagher suggests the term “slice splicing.” In a sense, this is a pre-
cursor to agile programming. The alternative is to just consider program fragments,
which we do here for space and clarity considerations. Eventually, we will develop a
lattice (a directed, acyclic graph) of static slices, in which nodes are slices and edges
correspond to the subset relationship.

The “contribute” part is more complex. In a sense, data declaration statements
have an effect on the value of a variable. For now, we only include all executable
statements. The notion of contribution is partially clarified by the predicate (P-use)
and computation (C-use) usage distinction of [Rapps 85].

Recall our simplification that the slice S(V, n) is a slice on one variable; that is, the
set V consists of a single variable, v. If statement fragment n is a defining node for v,

192 ◾ Software Engineering

then n is included in the slice. If statement fragment n is a usage node for v, then n
is not included in the slice. If a statement is both a defining and a usage node, then it
is included in the slice. In a static slice, P-uses and C-uses of other variables (not the
v in the slice set V) are included to the extent that their execution affects the value
of the variable v. As a guideline, if the value of v is the same whether a statement
fragment is included or excluded, exclude the statement fragment.

9.6.1 Example

We want a computational example to show the essential features of program slices.
Here we use a method of our continuing Foodies Wish List example, private static
double updateShoppingCart(). The full foodies Wish List inventory is reduced to just
the three items in Table 9.3. All quantities ordered are in full ounces. This method
presumes an event watcher that populates the queueOfEvents variable. Figure 9.7 is
a program graph of updateShoppingCart(), and Figure 9.8 is a program graph of the
slice on truffleSales at line 39, denoted as S(truffleSales, 39). The source code of three
simpler slices follows Figure 9.8.

Figure 9.6 shows a simple User Interface screen tor placing Foodie Wish List
orders.

Table 9.3 Reduced Foodie Inventory for Example

Foodie Item $/ounce

Italian white truffles $12.50

Kobe beef $18.75

Saffron $28.13

Figure 9.6 Shopping Cart User Interface.

Shopping Cart User Interface

Truffles

Add 1

Remove 1

Truffles

Add 1

Remove 1

Kobe Beef

Add 1

Remove 1

Kobe Beef

Add 1

Remove 1

Saffron

Add 1

Remove 1

Saffron

Add 1

Remove 1

Submit

Continue

Quit

Response messages here

Shopping Cart User Interface

Truffles

Add 1

Remove 1

Kobe Beef

Add 1

Remove 1

Saffron

Add 1

Remove 1

Submit

Continue

Quit

Response messages here

Testing Object-Oriented Software ◾ 193

Figure 9.7 Program Graph of private static double updateShoppingCart().

1 private static double updateShoppingCart() {

2 double trufflePrice = 12.50;
3 double kobeBeefPrice = 18.75;
4 double saffronPrice = 28.13;
5 double truffleSales = 0.0;
6 double kobeBeefSales = 0.0;
7 double saffronSales = 0.0;
8 double totalSales = 0.0;

9 int totalTruffles = 0;
10 int totalKobeBeefs = 0;
11 int totalSaffrons = 0;
12 String message = "";

13 String event;
14 do {
15 while(queueOfEvents.isEmpty());
16 event = queueOfEvents.remove();

17 if(event.equalsIgnoreCase("Remove 1 Truffles")
&& totalTruffles > 0) {

18 totalTruffles--;
19 message = "Removed 1 Truffle";
20 } else if(event.equalsIgnoreCase("Remove 1 Kobe Beef")

&& totalKobeBeefs > 0) {
21 totalKobeBeefs--;
22 message = "Removed 1 Kobe Beef";
23 } else if(event.equalsIgnoreCase("Remove 1 Saffron")

&& totalSaffrons > 0) {
24 totalSaffrons--;
25 message = "Removed 1 Saffron";
26 } else if(event.equalsIgnoreCase("Add 1 Truffles")) {
27 totalTruffles++;
28 message = "Added 1 Truffle";
29 } else if(event.equalsIgnoreCase("Add 1 Kobe Beef")) {
30 totalKobeBeefs++;
31 message = "Added 1 Kobe Beef";
32 } else if(event.equalsIgnoreCase("Add 1 Saffron")) {
33 totalSaffrons++;
34 message = "Added 1 Saffron";
35 }

36 truffleSales = trufflePrice * totalTruffles;
37 kobeBeefSales = kobeBeefPrice * totalKobeBeefs;
38 saffronSales = saffronPrice * totalSaffrons;
39 totalSales = truffleSales + kobeBeefSales + saffronSales;

40 setMessage(message + " total price: " + totalSales);

41 } while(!event.equalsIgnoreCase("Submit")
&&!event.equalsIgnoreCase("Quit"));

42 if(event.equalsIgnoreCase("Submit"))
43 return totalSales;
44 else return 0.0;
45
46 }

45

44

40

41

42

43

28

29

30

31

32

33

34

17

18

19

20

21

22

23

24

25

26

27

37

35

36

1

2 3 4 5

9 10 11 12

13

14

15

6 7 8

16

3938

46

194 ◾ Software Engineering

Slice on totalTruffles at line 36 S(totalTruffles, 36)

1 private static double updateShoppingCart() {

2 double trufflePrice = 12.50;
5 double truffleSales = 0.0;
8 double totalSales = 0.0;

9 int totalTruffles = 0;
12 String message = "";

13 String event;
14 do {
15 while(queueOfEvents.isEmpty());
16 event = queueOfEvents.remove();

17 if(event.equalsIgnoreCase("Remove 1 Truffles") && totalTruffles
> 0) {

18 totalTruffles--;
19 message = "Removed 1 Truffle";
26 } else if(event.equalsIgnoreCase("Add 1 Truffles")) {
27 totalTruffles++;
28 message = "Added 1 Truffle";
35 }
36 truffleSales = trufflePrice * totalTruffles;
45 }
46 }

Figure 9.8 Program Graph of Slice on truffleSales at line 39 S(truffleSales, 39).

1

2 double trufflePrice = 12.50;
5 double truffleSales = 0.0;
8 double totalSales = 0.0;
9 int totalTruffles = 0;
12 String message = "";

13 String event;

14 do {
15 while(queueOfEvents.isEmpty());
16 event = queueOfEvents.remove();
17 if(event.equalsIgnoreCase("Remove 1 Truffles")

&& totalTruffles > 0) {
18 totalTruffles
19 message = "Removed 1 Truffle";

26 } else if(event.equalsIgnoreCase("Add 1 Truffles")) {
27 totalTruffles++;
28 message = "Added 1 Truffle";
35 }

36 truffleSales = trufflePrice * totalTruffles;
39 totalSales = truffleSales + kobeBeefSales + saffronSales;

45 }
46 }

45 36

46

3945 36

46

39

28

17

18

19

26

27

35

1 2 9 12

13

14

15

16

5 8

28

17

18

19

26

27

35

1 2 9 12

13

14

15

16

5 8

45 36

46

39

28

17

18

19

26

27

35

1 2 9 12

13

14

15

16

5 8 private static double updateShoppingCart() {

2 double trufflePrice = 12.50;
5 double truffleSales = 0.0;
8 double totalSales = 0.0;
9 int totalTruffles = 0;
12 String message = "";

13 String event;

14 do {
15 while(queueOfEvents.isEmpty());
16 event = queueOfEvents.remove();
17 if(event.equalsIgnoreCase("Remove 1 Truffles")

&& totalTruffles > 0) {
18 totalTruffles--;
19 message = "Removed 1 Truffle";

26 } else if(event.equalsIgnoreCase("Add 1 Truffles")) {
27 totalTruffles++;
28 message = "Added 1 Truffle";
35 }

36 truffleSales = trufflePrice * totalTruffles;
39 totalSales = truffleSales + kobeBeefSales + saffronSales;

45 }
46 }

45 36

46

39

28

17

18

19

26

27

35

1 2 9 12

13

14

15

16

5 8

Testing Object-Oriented Software ◾ 195

S(totalTruffles, 36) = {1,2,5,8,9,12,13,14,15,16,17,18,19,26,27,28,35,36}

Slice on totalTruffles at line 27 S(totalTruffles, 27)

1 private static double updateShoppingCart() {

2 double trufflePrice = 12.50;
5 double truffleSales = 0.0;
8 double totalSales = 0.0;

9 int totalTruffles = 0;
12 String message = "";

13 String event;
14 do {
15 while(queueOfEvents.isEmpty());
16 event = queueOfEvents.remove();

17 if(event.equalsIgnoreCase("Remove 1 Truffles") && totalTruffles
> 0) {

18 totalTruffles--;
19 message = "Removed 1 Truffle";
26 } else if(event.equalsIgnoreCase("Add 1 Truffles")) {
27 totalTruffles++;
35 }
45 }
46 }

Slice on totalTruffles at line 18 S(totalTruffles, 18)

1 private static double updateShoppingCart() {

2 double trufflePrice = 12.50;
5 double truffleSales = 0.0;
8 double totalSales = 0.0;

9 int totalTruffles = 0;
12 String message = "";

13 String event;
14 do {
15 while(queueOfEvents.isEmpty());
16 event = queueOfEvents.remove();

17 if(event.equalsIgnoreCase("Remove 1 Truffles") && totalTruffles
> 0) {

18 totalTruffles--;
35 }
45 }
46 }

These slices are all related as proper subsets. Five slices are listed here as sets of
statement fragment numbers.

196 ◾ Software Engineering

S(totalSales, 40) = { 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,
24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40}

S(truffleSales, 39) = {1,2,5,8,9,12,13,14,15,16,17,18,19,26,27,28,35,36,39}

S(truffleSales, 36) = {1,2,5,8,9,12,13,14,15,16,17,18,19,26,27,28,35,36}

S(totalTruffles, 27) = {1,2,5,8,9,12,13,14,15,16,17,18,19,26,27,35,36}

S(totalTruffles, 18) = {1,2,5,8,9,12,13,14,15,16,17,18,35,36}

By inspection, we see that:

S(totalTruffles, 18) ⊂ S(totalTruffles, 27) ⊂ S(totalTruffles, 36)
⊂ S(truffleSales, 39) ⊂ S(totalSales, 40)

Due to the structure of the code, we can also derive the following:

S(totalKobeBeefs,21) ⊂ S(totalKobeBeefs,30) ⊂ S(totalKobeBeefs,37)
 ⊂ S(kobeBeefsSales,37) ⊂ S(totalSales, 40)

S(totalSaffrons,24) ⊂ S(totalSaffrons,33)) ⊂ S(totalSaffrons,38) ⊂ S(saffronsSales,38)
⊂ S(totalSales, 40)

Figure 9.9 condenses the slice subsets into a lattice in which the ordering relation
is “proper subset.”

The lattice in Figure 9.9 is a roadmap for slice-based testing. Working from the
leaves of a single branch in the lattice, we first assure that the contribution of total-
Truffles is correct. At each step up the lattice, the slices are increasingly complete. As
long as each step is tested to be correct, we know the contribution of totalTruffles to
totalSales is correct. Similarly for the totalKobeBeefs and totalSaffrons lattice branches.

Notice that slice-based testing allows us to focus exactly on the program por-
tions of interest in a well-organized way. Is all the detail necessary? For this simple
example, probably not, but in larger, more complex examples, it works well.

Figure 9.9 Subset Lattice of “Interesting” Slices.

S(totalSales, 40)S(totalSales, 40)

S(kobeBeefsSales, 37)S(truffleSales, 39)

S(totalTruffles, 36) S(totalKobeBeefs, 37)

S(saffronsSales, 38)

S(totalSaffrons, 38)

S(totalTruffles, 27) S(totalKobeBeefs, 30) S(totalSaffrons, 33)

S(totalTruffles, 18) S(totalKobeBeefs, 21) S(totalSaffrons, 24)

Testing Object-Oriented Software ◾ 197

9.6.2 Style and Technique

When we analyze a program in terms of interesting slices, we can focus on parts of
interest while disregarding unrelated parts. We could not do this with du-paths—
they are sequences that include statements and variables that may not be of interest.
Before discussing some analytic techniques, we will first look at “good style.” We
could have built these stylistic precepts into the definitions, but then the definitions
are more restrictive than necessary.

 1. Never make a slice S(V, n) for which variables v of V do not appear in statement
fragment n. This possibility is permitted by the definition of a slice, but it is bad
practice. In our example, we defined a slice on truffleSales at node 40. Defining
such slices necessitates tracking the values of all variables at all points in the
program.

 2. Make slices on one variable. The set V in slice S(V, n) can contain several vari-
ables, and sometimes such slices are useful. The slice S(V, 40) where

V = { totalSales, truffleSales, kobeBeefSales, saffronSales }

 contains all the elements of the slice S40: S(totalSales, 40) except statement 40.
 3. Make slices for P-use nodes. When a variable is used in a predicate, the slice on

that variable at the decision statement shows how the predicate variable got its
value. This is very useful in decision-intensive programs such as the triangle
program and NextDate.

 4. Consider making slices compilable. Nothing in the definition of a slice requires
that the set of statements is compilable; but if we make this choice, it means that
a set of compiler directive and data declaration statements is a subset of every
slice. If we added this same set of statements to all the slices we made for the
updateShoppingCart() method, our lattices remain undisturbed; but each slice
is separately compilable (and therefore executable).

9.6.3 Slice Splicing

Weiser [Weiser 1984] created the concept/tongue twister of “slice splicing.” The
updateShoppingCart() method is deliberately small, yet it suffices to illustrate the
idea of slice splicing. In Figure 9.9, the updateShoppingCart() method is split into
13 slices. The three branches of the lattice correspond to the three products: truffles,
Kobe beef, and saffron.

In Chapter 1, we suggested that good testing practices lead to better program-
ming practices. Here, we have a good example. Think about developing programs in
terms of compilable slices. If we did this, we could work upward from a leaf in the
Lattice of slices, code a slice, and immediately test it. Notice that this is the essence
of agile development! We can then code and test larger slices, knowing that the lower
level slices are correct, thereby assisting in fault location. Once the three branches of
the lattice have been tested, we can merge them into the full method. This is exactly
the process of slice splicing.

Slice splicing also offers assistance for program comprehension needed in soft-
ware maintenance. Slices allow the maintenance programmer to focus on the issues
at hand and avoid the extraneous information that would be in longer du-paths.

198 ◾ Software Engineering

9.6.4 Program Slicing Tools

Any reader who has gone carefully through the preceding section will agree that pro-
gram slicing is not a viable manual approach. We hesitate assigning a slicing exercise
to our university students, because the actual learning is only marginal in terms of
the time spent. With good tools, however, program slicing has its place. There are a
few program slicing tools, most are academic or experimental, but there are a very
few commercial tools. (See [Hoffner 95] for a dated comparison.)

The more elaborate tools feature inter-procedural slicing, something clearly useful
for large systems. Much of the market uses program slicing to improve the program
comprehension that maintenance programmers need. One, JSlice, will be appropri-
ate for object-oriented software. Table 9.4 summarizes a few program slicing tools.

Exercises
 1. Compare and contrast DD-paths and du-paths.
 2. If a mocked function includes a difference from the original could a false posi-

tive, false negative, or both be introduced? If so, provide an example. If not,
provide an explanation.

 3. The source code for the slice on totalTruffles at line 36, S(totalTruffles, 36), is
repeated here:

1 private static double updateShoppingCart() {
2 double trufflePrice = 12.50;
5 double truffleSales = 0.0;
8 double totalSales = 0.0;
9 int totalTruffles = 0;
12 String message = "";
13 String event;

Table 9.4 Selected Program Slicing Tools

Tool/Product Language Static/dynamic?

Kamkar Pascal Dynamic

Spyder ANSI C Dynamic

Unravel ANSI C Static

CodeSonar® C, C++ Static

Indus/Kaveri Java Static

JSlice Java Dynamic

SeeSlice C Dynamic

Testing Object-Oriented Software ◾ 199

14 do {
15 while(queueOfEvents.isEmpty());
16 event = queueOfEvents.remove();
17 if(event.equalsIgnoreCase("Remove 1 Truffles") &&

totalTruffles > 0) {
18 totalTruffles--;
19 message = "Removed 1 Truffle";
26 } else if(event.equalsIgnoreCase("Add 1 Truffles")) {
27 totalTruffles++;
28 message = "Added 1 Truffle";
35 }
36 truffleSales = trufflePrice * totalTruffles;
45 }
46 }

 List the Statement fragment numbers for all Def(totalTruffles) nodes. Do the
same for all Use(totalTruffles)

 nodes.
 4. List the du-paths for the totalTruffles variable, and indicate which are definition

clear. How do these du-paths align with the slices on totalTruffles?
 5. List the elements in the slice S(saffronSales, 40).
 6. Our discussion of slices in this chapter has actually been about “backward

slices” in the sense that we are always concerned with parts of a program that
contribute to the value of a variable at a certain point in the program. We could
also consider “forward slices” that refer to parts of the program where the vari-
able is used. Compare and contrast forward slices with du-paths.

References
Thomas Ball, and Stephen G. Eick, “Visualizing Program Slices”, Proceedings of the 1994 IEEE

Symposium on Visual Languages, pp. 288–295, October 1994.
Kent Beck. “Simple smalltalk testing: With patterns”, The Smalltalk Report 4.2 (1994): 16–18.
Robert V. Binder “Testing object‐oriented software: a survey.” Software Testing, Verification

and Reliability 6.3–4 (1996): 125–252.
S. R. Chidamber and C. F. Kemerer, “A metrics suite for object-oriented design”, IEEE

Transactions of Software Engineering vol. 20, No 6: pp. 476–493, (1994).
Lori A. Clarke et al., “A formal evaluation of dataflow path selection criteria”, IEEE Transactions

on Software Engineering, Vol. SE-15, No. 11, pp. 1318–1332, November 1989.
https://martinfowler.com/bliki/Xunit.html
Chris Gaffney, Christian Trefftz, and Paul Jorgensen. “Tools for coverage testing: necessary but

not sufficient”, Journal of Computing Sciences in Colleges, 20.1 (2004): 27–33.
K. B. Gallagher and J. R. Lyle, “Using program slicing in software maintenance”, IEEE

Transactions on Software Engineering, vol. SE-17, no.8, pp. 751–761, Aug. 1991.
T. Hoffner, Evaluation and comparison of Program Slicing Tools, Technical Report, Dept. of

Computer and Information Science, Linkoping University, Sweden, 1995.
Paul C. Jorgensen, and Carl Erickson. “Object-oriented integration testing”. Communications

of the ACM, 37.9 (1994): 30–38.
https://github.com/Pragmatists/JUnitParams
https://site.mockito.org/

https://martinfowler.com
https://github.com
https://site.mockito.org

200 ◾ Software Engineering

S. Rapps and E.J. Weyuker, “Selecting software test data using Dataflow information”. IEEE
Transactions on Software Engineering, Vol. SE-11, No. 4, pp. 367–375, April, 1985.

M. Weiser, Program slices: Formal psychological and practical investigations of an automatic
program abstraction method. PhD thesis University of Michigan, Ann Arbor, MI.

M. D. Weiser, “Program slicing”, IEEE Transactions on Software Engineering, vol. SE-10, no. 4,
pp. 352–357, April, 1984.

https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks
https://en.wikipedia.org/wiki/Unit_testing

https://en.wikipedia.org
https://en.wikipedia.org

201

Chapter 10

Retrospective on Unit Testing

When should unit testing stop? Here are some possible answers:

 1. When you run out of time.
 2. When continued testing causes no new failures.
 3. When continued testing reveals no new faults.
 3. When you cannot think of any new test cases.
 4. When you reach a point of diminishing returns.
 5. When mandated coverage has been attained.
 6. When all faults have been removed.

Unfortunately, the first answer is all too common, and the seventh cannot be guar-
anteed. This leaves the testing craftsperson somewhere in the middle. Software reli-
ability models provide answers that support the second and third choices; both have
been used with success in industry. The fourth choice is curious: if you have fol-
lowed the precepts and guidelines we have been discussing, this is probably a good
answer. On the other hand, if the reason is due to a lack of motivation, this choice is
as unfortunate as the first. The point of diminishing returns choice has some appeal:
it suggests that serious testing has continued, and the discovery of new faults has
slowed dramatically. Continued testing becomes very expensive and may reveal no
new faults. If the cost (or risk) of remaining faults can be determined, the trade-off
is clear. (This is a big IF.) We are left with the coverage answer, and it is a pretty
good one. In this chapter, we will see how using structural testing as a cross-check
on functional testing yields powerful results. First, we take a broad brush look at
the unit testing methods we studied. Metaphorically, this is pictured as a pendulum
that swings between extremes. Next, we follow one swing of the pendulum from the
most abstract form of code-based testing through strongly semantic-based methods,
and then back toward the very abstract shades of specification-based testing. We
do this tour with the Triangle Program. After that, some recommendations for both
forms of unit testing, followed by another case study—this time of an automobile
insurance example.

202 ◾ Software Engineering

10.1 The Test Method Pendulum
As with many things in life, there is a pendulum that swings between two extremes.
The test method pendulum swings between two extremes of low semantic content—
from strictly topological to purely functional. As testing methods move away from the
extremes and toward the center, they at once become both more effective and more
difficult. (See Figure 10.1.)

On the code-based side, path based testing relies on the connectivity of a program
graph—the semantic meaning of the nodes is lost. A program graph is a purely topo-
logical abstraction of the code; it is nearly devoid of code meaning—only the control
flow remains. This gives rise to program paths which can never be recognized as
infeasible by automated means. Moving to dataflow testing, the kinds of dependen-
cies that typically create infeasible paths can often be detected. Finally, when viewed
in terms of slices, we arrive as close as we can to the semantic meaning of the code.

On the spec-based side, testing based only on boundary values of the variables is
vulnerable to severe gaps and redundancies, neither of which can be known in purely
spec-based testing. Equivalence class testing uses the “similar treatment” idea to identify
classes, and in doing so, uses more of the semantic meaning of the specification. Finally,
decision table testing uses both necessary and impossible combinations of conditions,
derived from the specification, to deal with complex logical considerations.

On both sides of the testing pendulum, test case identification becomes easier as
we move toward the extremes. It also becomes less effective. As testing techniques
move toward higher semantic meaning, they become more difficult to automate—and
more effective. Hmmm...could it be that, when he wrote “The Pit and the Pendulum,”
Edgar Allen Poe was actually thinking about testing as a pit, and methods as a pen-
dulum? You decide. Meanwhile, these ideas are approximated in Figure 10.2.

These graphs need some elaboration. Starting with program graph testing, notice
that the nodes contain absolutely no semantic information about the statement
 fragments—and the edges just describe whether one fragment can be executed after a
predecessor fragment. Paths in a program graph are all topologically possible—in fact

Figure 10.1 The test method pendulum.

Spec-based
Testing

Code-based
Testing

Path
Testing Dataflow

Testing
Slice

Testing

Decision
Table

Testing

Boundary
Value
Testing

High
Semantic
Content

Equivalence
Class

Testing

Low
Semantic
Content

Low
Semantic
Content

Increasing Tool Support

Increasing Ease of Test Case Identification

Decreasing Effectiveness

Retrospective on Unit Testing ◾ 203

they can be generated mathematically with Warshall’s Algorithm. The problem is that
the set of topologically possible paths includes both feasible and infeasible paths, as we
discussed in Chapter 8. Moving in the direction of McCabe’s basis path testing adds a
little semantic content (see Section 8.4). The recommended starting point is a mainline
path that represents common unit functionality. The basis path method runs into trou-
ble after that due to the heuristic of simply “flipping” decisions as they are encountered
on the starting point path. This also leads to the possibility of infeasible paths. When
testing moves to the define/use domain, we use more semantic meaning. We follow
where values of variables are defined and later used. The distinction between define-
use paths and definition-clear paths gives the tester even more semantic information.
Finally, backward slices do two things, they eliminate unwanted detail, and thereby
focus attention exactly where it is needed—all the statements affecting the value of a
variable at a given point in a program. The program slicing literature contains extensive
discussions of automatic slicing algorithms that are beyond the scope of this book.

On the specification-based side, the various forms of boundary value testing are
shown as the most abstract. All test cases are derived from properties of the input
space with absolutely no consideration about how the values are used in the unit
code. When we move to equivalence class testing, the prime factor that determines
a class is the “similar treatment” principle. Clearly, this moves in the direction of
semantic meaning. Moving from equivalence class testing to decision table testing
is usually done for two reasons: the presence of dependencies among the variables,
and the possibility of impossible combinations—clearly semantic information.

Figure 10.2 Effort and efficacy of unit test methods.

Number of Test Cases

High

Low

Test Case Identification Effort

High

Low

Basis Path
Testing

du-Path
Testing

Slice
Testing

Decision
Table

Testing

Equivalence
Class

Testing

Boundary
Value

Testing

Program
Graph
Testing

Basis Path
Testing

du-Path
Testing

Slice
Testing

Decision
Table

Testing

Equivalence
Class

Testing

Boundary
Value

Testing

Program
Graph
Testing

204 ◾ Software Engineering

The lower half of Figure 10.2 shows that, for specification-based testing, there is
a true trade-off between test case creation effort and test case execution time. If the
testing is automated, as in a JUnit environment, this is not a penalty. On the code-
based side, as methods get more sophisticated, they concurrently generate more test
cases. The bottom line to this discussion is that the combination of specification-
based and code-based methods depends on the nature of the unit being tested, and
this is where testers can exhibit craft rather than art.

10.2 Traversing the Pendulum
We will use a “classical” version of the Triangle Program to explore some of the les-
sons of the testing pendulum. We begin with a flowchart of an efficient version so
popular in the early literature. We use this implementation here, mostly because it
is the most frequently used in testing literature (Brown and Lipov, 1975; Pressman,
1982). The flowchart from Chapter 2 is repeated here in Figure 10.3, and it is shown
as a directed graph in Figure 10.4.

We can begin to see some of the difficulties when we base testing on a program
graph. There are 352 topologically possible paths in Figure 10.4 (and also in Figure
10.3), but only 11 of these are feasible; they are listed in Table 10.1. Since this is at
one abstract end of the testing pendulum, we cannot expect any automated help to
separate feasible from infeasible paths. Much of the infeasibility is due to the match
variable. Its intent was to reduce the number of decisions. The boxes incrementing
the match variable depend on tests of equality among the three pairs of sides. Of the
eight paths from box 1 to box 7, the logically possible values of match are 0, 1, 2,
3, and 6. The three impossible paths correspond to exactly two pairs of sides being
equal, which, by transitivity means that the sides in the third pair are equal.

Based on the flowchart, this version computes the sums of pairs (a + b, a + c, and
b + c) only once and uses these later in the decisions checking the triangle inequality
(decisions 8, 9, 10, 14, 17, and 19).

10.2.1 Program Graph-Based Testing

We can begin to see some of the difficulties when we base testing on a program
graph (see Figure 10.4 where there are 352 topologically possible paths). Compare
this to the 11 of feasible paths in Figure 10.3; they are listed in Table 10.2. Since this
is at one abstract end of the testing pendulum, we cannot expect any automated
help to separate feasible from infeasible paths. Some of the infeasibility is due to
the match variable. Its intent was to reduce the number of decisions. The boxes
incrementing the match variable depend on tests of equality among the three pairs
of sides. Of the eight paths from node 1 to node 14, the logically possible values of
match are 0, 1, 2, 3, and 6. Also, no pair of triangle inequalities in nodes 15 to 19 can
be true, thereby eliminating four of the topologically possible paths.

10.2.2 Basis Path Testing

Moving on to basis path testing, we have another problem. Since the program graph in
Figure 10.4 has a cyclomatic complexity of 14, McCabe’s basis path method would ask us
to find 14 test cases, but there are only 11 feasible paths. They are shown in Table 10.3.

Retrospective on Unit Testing ◾ 205

Table 10.4 shows one main path and its “flipped” paths, many of which are
 counter-intuitive. In this exercise, the main path takes the false branch for every
decision except the one at node 12. This choice ignores the semantic meaning of the
code associated with the nodes and therefore leads to a nearly useless set of basis
paths. Other choices for a main path will have similarly useless results. The bottom
line: basis path testing adds little to the information obtained from program graph
based testing, and it can be worse.

Figure 10.3 Flowchart of Efficient Triangle Program.

Input a, b, c

Match = 0

11
Scalene

12
Not a Triangle

15
Isosceles

20
Equilateral

2, Match = Match + 1

4, Match = Match + 2

6, Match = Match + 3

1
a = b?

3
a = c?

5
b = c?

N

N

7
Match = 0?

8
a + b ≤ c?

9
a + c ≤ b?

10
b + c ≤ a?

13
Match = 1?

16
Match = 2?

18
Match = 3?

14
a + b ≤ c?

17
a + c ≤ b?

19
b + c ≤ a?

N

Y

Y

N

N Y

N

Y

Y

N

N

N

N

Y

N

Y

Y

206 ◾ Software Engineering

10.2.3 Dataflow Testing

Dataflow testing will give us some valuable insights. Consider du-paths on the match
variable. It has four definition nodes (5, 7, 9, and 11), three computation uses (7, 9,
and 11), and four predicate uses (13, 21, 26, 31), so there are 28 possible du-paths.

Table 10.2 Possible and Feasible Paths in Figure 10.4

Node Segment Topologically Possible Paths Feasible Paths

1 to 12 8 4

12 to 20 8 4

12 to 25 2 2

12 to 30 2 2

12 to 35 2 2

Combinations of Segments

1 to 20 64 4

1 to 25, 36 16 2

1 to 30, 36 16 2

1 to 35, 36 16 2

36 to 40 1 1

Total 112 11

Table 10.1 Feasible Paths in the Efficient Triangle Program Flowchart

Path Node Sequence Description

p1 1–2–3–4–5–6–7–13–16–18–20 Equilateral

p2 1–3–5–6–7–13–16–18–19–15 Isosceles (b = c)

p3 1–3–5–6–7–13–16–18–19–12 Not a Triangle (b = c)

p4 1–3–4–5–7–13–16–17–15 Isosceles (a = c)

p5 1–3–4–5–7–13–16–17–12 Not a Triangle (a = c)

p6 1–2–3–5–7–13–14–15 Isosceles (a = b)

p7 1–2–3–5–7–13–14–12 Not a Triangle (a = b)

p8 1–3–5–7–8–12 Not a Triangle (a + b ≤ c)

p9 1–3–5–7–8–9–12 Not a Triangle (b + c ≤ a)

p10 1–3–5–7–8–9–10–12 Not a Triangle (a + c ≤ b)

p11 1–3–5–7–8–9–10–11 Scalene

Retrospective on Unit Testing ◾ 207

The computation definition-clear paths dc(5, 7) yields the value match = 1, dc(5, 9)
yields the value match = 2, and dc(5, 11) yields the value match = 3.

It is more interesting to look at du-paths involving the triangleType variable. We
can assume that triangleType is initialized to “” at statement 1, and is given values at
nodes 14, 16, 18, 20, 23, 25, 28, 30, 33, 35, and 37. Each of the paths from 1 to any
of the later defining nodes is an important path that follows the logic of the triangle
program. Six du-paths give triangleType the value “Not A Triangle”: (1, 14), (1, 16),
(1, 18), (1, 23), (1, 28), and (1, 33). Similarly three du-paths give triangleType the
value “Isosceles): (1, 25), 1, 30), and 1, 35). There is only one du-path that gives trian-
gleType the value “Scalene”, and only one gives triangleType the value “Equilateral”.
Each of these du-paths echoes one of the known 11 feasible paths. (Quite an improve-
ment over basis paths!) Looking at the du-paths for the side variables, a, b, and c is
not helpful, but their role will be more important in slice-based testing.

Figure 10.4 Program Graph of the Efficient Triangle Program.

1. public static String triangleType(int a, int b, int c) {
1. int match;
1. String triangleType = "";
2. System.out.println("Side A is " + a);
3. System.out.println("Side B is " + b);
4. System.out.println("Side C is " + c);
5. match = 0;
6. if(a == b)
7. match = match + 1;
8. if(a == c)
9. match = match + 2;
10. if(b == c)
11. match = match + 3;
12. if(match == 0) {
13. if((a+b)<=c)
14. triangleType = “NotATriangle”;
15. else if((b+c)<=a)
16. triangleType = “NotATriangle”;
17. else if((a+c)<=b)
18. triangleType = “NotATriangle”;
19. else
20. triangleType ="Scalene”;
21. } else if(match == 1) {
22. if((a+c)<=b)
23. triangleType = "NotATriangle”;
24. else
25. triangleType = "Isosceles”;
26. } else if(match == 2) {
27. if((a+c)<=b)
28. triangleType = "NotATriangle”;
29. else
30. triangleType = "Isosceles”;
31. } else if(match == 3) {
32. if((b+c)<=a)
33. triangleType = "NotATriangle”;
34. else
35. triangleType = "Isosceles”;
36. } else {
37. triangleType = "Equilateral”;
38. }
39. return triangleType;
40. }

12

5

6 7

8 9

10 11

13 14

20

18

19

22 23

24

15 16

17

1

2

3

4

21

25

28

26

27

29 30

31

32 33

34 35

36

37

38

39

40

12

5

6 7

8 9

10 11

13 14

20

18

19

22 23

24

15 16

17

1

2

3

4

21

25

28

26

27

29 30

31

32 33

34 35

36

37

38

39

40

208 ◾ Software Engineering

Table 10.3 Feasible Paths in Figure 10.4

Path Node Sequence Match Result

p1 1–6, 8, 10, 12, 13, 15, 17, 19, 20, 36, 38, 39, 40 0 Scalene

p2 1–6, 7, 8, 10, 12, 13, 15, 17, 19, 20, 36, 38, 39, 40 1 Isosceles a = b

p3 1–6, 8, 9, 10, 12, 26, 27, 29, 30, 36, 38, 39, 40 2 Isosceles a = c

p4 1–7, 8, 10, 11, 12, 31, 32, 34, 35, 36, 38, 39, 40 3 Isosceles b = c

p5 1–6, 8, 10, 12, 13, 14, 36, 37, 38, 39, 40 6 Equilateral

p6 1–6, 8, 10, 12, 14, 38, 39, 40 0 Not a triangle (a + b) > c

p7 1–6, 8, 10, 12, 14, 15, 16, 38, 39, 40 0 Not a triangle (b + c) > a

p8 1–6, 8, 10, 12, 14, 17, 18, 38, 39, 40 0 Not a triangle (a + c) > b

p9 1–6, 7, 8, 12, 21, 22, 23, 38, 39, 40 1 Not a triangle (a + c) > b

p10 1–6, 8, 9, 10, 12, 26, 27, 38, 39, 40 2 Not a triangle (a + c) > b

p11 1–6, 8, 10, 11, 12, 31, 32, 33, 38, 39, 40 3 Not a triangle (b + c) > a

Table 10.4 One Set of Basis Paths

Path Flip Node Node Sequence Match Result

1 main 1–6, 8, 10, 12, 13, 15, 17, 19, 20, 36, 38, 39, 40 0 Scalene

2 flip 6 1–6, 7, 8, 10, 12, 13, 15, 17, 19, 20, 36, 38, 39, 40 1 Scalene

3 flip 8 1–6, 8, 9, 10, 12, 13, 15, 17, 19, 20, 36, 38, 39, 40 2 Scalene

4 flip 10 1–6, 8, 10, 11, 12, 13, 15, 17, 19, 20, 36, 38, 39, 40 3 Scalene

5 flip 13 1–6, 7, 8, 10, 12, 13, 14, 15, 17, 19, 20, 36, 38, 39, 40 0 Scalene

6 flip 15 1–6, 7, 8, 10, 12, 13, 15, 16, 17, 19, 20, 36, 38, 39, 40 0 Scalene

7 flip 17 1–6, 7, 8, 10, 12, 13, 15, 17, 18, 19, 20, 36, 38, 39, 40 0 Scalene

8 flip 12 1–6, 8, 10, 12, 21, 22, 24, 25, 36, 38, 39, 40 0 Isosceles

9 flip 22 1–6, 8, 10, 12, 21, 22, 23, 24, 25, 36, 38, 39, 40 0 Isosceles

10 flip 21 1–6, 8, 10, 12, 21, 26, 27, 29, 36, 38, 39, 40 0 (no result)

11 flip 27 1–6, 8, 10, 12, 21, 26, 27, 28, 29, 30, 36, 38, 39, 40 0 Isosceles

12 flip 26 1–6, 8, 10, 12, 21, 26, 31, 32, 34, 35, 36, 38, 39, 40 0 Isosceles

13 flip 32 1–6, 8, 10, 12, 21, 26, 31, 32, 33, 34, 35, 36, 38, 39, 40 0 Not a triangle

14 flip 36 1–6, 7, 8, 10, 12, 13, 14, 15, 17, 19, 20, 36, 37, 38, 39, 40 0 Equilateral

Retrospective on Unit Testing ◾ 209

10.2.4 Slice-Based Testing

Testing using backward static slices would be a good idea. In fact, each of the du-paths
for triangleType described above lets a tester focus on where triangleType gets its
value(s) at those points of the program. The advantage of slices over du-paths is that
careful examination of the program logic in a slice shows how to generate test case val-
ues. Here is one example: the slice on triangleType at statement 20 (S(triangleType, 20).

 1. public static String triangleType(int a, int b, int c) {
 1. int match;
 1. String triangleType = "";

 5. match = 0;
 6. if(a == b)
 7. match = match + 1;
 8. if(a == c)
 9. match = match + 2;
 10. if(b == c)
 11. match = match + 3;
 12. if(match == 0) {
 13. if((a+b)<=c)
 14. triangleType = “NotATriangle”;
 15. else if((b+c)<=a)
 16. triangleType = “NotATriangle”;
 17. else if((a+c)<=b)
 18. triangleType = “NotATriangle”;
 19. else
 20. triangleType ="Scalene”;

If we look carefully at statements 5 through 20, we see that the end value of triangle-
Type depends on the values of a, b, c, and match. They serve as a guideline to finding
actual test case values of a, b, and c. In statements 5–11, we learn that the values of
a, b, and c satisfy all three combinations of the triangle inequality. In addition, since
match = 0, we know that there is no pair of equal sides. Table 10.5 shows how this
logic can be applied to candidate values of the side variables.

The following source statements are the slice on triangleType at statement 14
(S(triangleType, 14).

 1. public static String triangleType(int a, int b, int c) {
 1. int match;
 1. String triangleType = "";

 5. match = 0;
 6. if(a == b)
 7. match = match + 1;
 8. if(a == c)
 9. match = match + 2;
 10. if(b == c)
 11. match = match + 3;
 12. if(match == 0) {
 13. if((a+b)<=c)
 14. triangleType = “NotATriangle”;

 39. return triangleType
 40. }

210 ◾ Software Engineering

10.2.5 Boundary Value Testing

Notice that, in the pendulum swing from the very abstract program graphs to the
semantically rich slice-based testing, the testing is improved. We can expect the same
on the specification-based side. Here we use boundary value testing to define test
cases. We will do this for both the normal and worst-case formulations. Table 10.6
shows the test cases generated using the nominal boundary value form of functional
testing. The last column shows the path (from Table 10.3) taken by the test case.

The following paths are covered: p1, p2, p3, p4, p5, p6, p7; and paths p8, p9,
p10, p11 are missed. Now, suppose we use a more powerful functional testing tech-
nique, worst-case boundary value testing. We saw, in Chapter 5, that this yields 125
test cases; they are summarized here in Table 10.7 so you can see the extent of the
redundant path coverage.

Taken together, the 125 test cases provide full path coverage, but the redundancy
is onerous.

10.2.6 Equivalence Class Testing

The next step in the pendulum progression is Equivalence Class testing. For the
Triangle Problem, equivalence classes on the individual variables are pointless.
Instead, we can make equivalence classes on the types of triangles, and the six ways
that the variables a, b, and c can fail to be sides of a triangle. In Chapter 6 (Section
6.4), we ended up with these equivalence classes:

D1 = {<a, b, c>: a = b = c}
D2 = {<a, b, c>: a = b, a ≠ c}
D3 = {<a, b, c>: a = c, a ≠ b}
D4 = {<a, b, c>: b = c, a ≠ b}

Table 10.5 Test Case Values Derived from Slices

case a b c
(a + b)
< = c?

(b + c)
< = a?

(a + c)
< = b?

Equal
sides?

Value of
triangleType

Statement
Number

1 3 4 9 yes no no none Not a Triangle 14

2 11 4 5 no yes no none Not a Triangle 16

3 3 10 5 no no yes none Not a Triangle 18

4 3 4 5 no no no none Scalene 20

5 5 5 3 yes no no a = b Not a Triangle 23

6 3 3 4 no no no a = b Isosceles 25

7 5 3 5 no no yes a = c Not a Triangle 28

8 3 4 3 no no no a = c Isosceles 30

9 3 5 5 no yes no b = c Not a Triangle 33

10 4 3 3 no no no b = c Isosceles 35

11 5 5 5 no no no all Equilateral 37

Retrospective on Unit Testing ◾ 211

D5 = {<a, b, c>: a ≠ b, a ≠ c, b ≠ c}
D6 = {<a, b, c>: a > b + c}
D7 = {<a, b, c>: b > a + c}
D8 = {<a, b, c>: c > a + b}
D9 = {<a, b, c>: a = b + c}
D10 = {<a, b, c>: b = a + c}
D11 = {<a, b, c>: c = a + b}

Since these are equivalence classes, we will have just 11 test cases, and we know we
will have full coverage of the 11 feasible paths in Figure 10.4.

10.2.7 Decision Table Testing

The last step is to see if decision tables will add anything to the equivalence class
test cases. They do not, but they can provide some insight into the decisions in the
Efficient Triangle Program flowchart. In the decision table in Table 10.8, first notice

Table 10.7 Path Coverage of Nominal and Worst-case Boundary Values

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

Nominal 3 3 1 3 1 3 1 0 0 0 0

Worst-case 5 12 6 11 6 12 7 17 18 19 12

Table 10.6 Path Coverage of Normal Boundary Values

Case a b c Expected Output Path

1 100 100 1 Isosceles p6

2 100 100 2 Isosceles p6

3 100 100 100 Equilateral p1

4 100 100 199 Isosceles p6

5 100 100 200 Not a Triangle p7

6 100 1 100 Isosceles p4

7 100 2 100 Isosceles p4

8 100 100 100 Equilateral p1

9 100 199 100 Isosceles p4

1 100 200 100 Not a Triangle p5

11 1 100 100 Isosceles p2

12 2 100 100 Isosceles p2

13 100 100 100 Equilateral p1

14 199 100 100 Isosceles p2

15 200 100 100 Not a Triangle p3

212 ◾ Software Engineering

that the condition on match is an extended entry. Although it is topologically possible
for to have match = 4 and match = 5, these values are logically impossible. Conditions
c2, c3, and c4 are exactly those used in the flowchart. We use the “F!” (must be false)
notation to denote the impossibility of more than one of these conditions to be true.
Also, note that there is no point in developing conditions on the individual variables
a, b, and c. To conclude the traversal of the pendulum, decision table-based testing
did not add much, but it did highlight why some cases are impossible (Table 10.9).

Table 10.9 Comparison of Code-Based and Spec-Based Techniques

Path Description
Prog
Graph

Basis
Path

Data-
flow Slice

Boundary
Value

Equiv.
Class

Decision
Table

p1 Equilateral yes yes yes yes yes (3) yes yes

p2 Isosceles (b = c) yes yes yes yes yes (2) yes yes

(Continued)

Table 10.8 Decision Table for the Efficient Triangle Program

(a) Part 1

c1. match = 0 1 2

c2. a + b <= c? T F! F! F T F! F! F T F! F! F

c3. a + c <= b? F! T F! F F! T F! F F! T F! F

c4. b + c <= a? F! F! T F F! F! T F F! F! T F

a1. Scalene x

a2. Not a Triangle x x x x x x x x x

a3. Isosceles x x

a4. Equilateral

a5. Impossible

(b) Part 2

c1. match = 3 4 5 6

c2. a + b <= c? T F! F! F -- -- T F! F! F

c3. a + c <= b? F! T F! F -- -- F! T F! F

c4. b + c <= a? F! F! T F -- -- F! F! T F

a1. Scalene

a2. Not a Triangle x x x x x x

a3. Isosceles x

a4. Equilateral x

a5. Impossible x x

Retrospective on Unit Testing ◾ 213

10.3 Insurance Premium Case Study
Here is an example that lets us compare both specification-based and code-based
testing methods and apply the guidelines. A hypothetical insurance premium pro-
gram computes the semiannual car insurance premium based on two parameters: the
policyholder’s age and driving record:

 Premium BaseRate * ageMultiplier safeDrivingReduction� �

The ageMultiplier is a function of the policyholder’s age, and the safe driving reduc-
tion is given when the current points (assigned by traffic courts for moving viola-
tions) on the policyholder’s driver’s license are below an age-related cutoff. Policies
are written for drivers in the age range of 16 to 100. Once a policyholder exceeds 12
points, the driver’s license is suspended (thus, no insurance is needed). The BaseRate
changes from time to time; for this example, it is $500 for a semiannual premium. The
data for the Insurance Premium program are in Table 10.10.

Table 10.10 Data for the Insurance Premium Problem

Age Range Age Multiplier Points Cutoff Safe Driving Reduction

16 ≤ age < 25 2.8 1 50

25 ≤ age < 35 1.8 3 50

35 ≤ age < 45 1.0 5 100

45 ≤ age < 60 0.8 7 150

60 ≤ age < 100 1.5 5 200

Path Description
Prog
Graph

Basis
Path

Data-
flow Slice

Boundary
Value

Equiv.
Class

Decision
Table

p3 Not a Triangle (b = c) yes yes yes yes yes (1) yes yes

p4 Isosceles (a = c) yes yes yes yes yes (2) yes yes

p5 Not a Triangle (a = c) yes yes yes yes yes (1) yes yes

p6 Isosceles (a = b) yes yes yes yes yes (1) yes yes

p7 Not a Triangle (a = b) yes NO yes yes yes (1) yes yes

p8 Not a Triangle (a + b ≤ c) yes NO yes yes NO yes yes

p9 Not a Triangle (b + c ≤ a) yes NO yes yes NO yes yes

p10 Not a Triangle (a + c ≤ b) yes NO yes yes NO yes yes

p11 Scalene yes yes (6) yes yes NO yes yes

Table 10.9 (Continued)

214 ◾ Software Engineering

10.4 Specification-Based Testing
Worst-case boundary value testing, based on the input variables, age, and points,
yields the following extreme values of the age and points variables (Table 10.11). The
corresponding 25 test cases are shown graphically in Figure 10.5.

Nobody should be content with these test cases. There is too much of the problem
statement missing. The various age cutoffs are not tested, nor are the point cutoffs.
We could refine this by taking a closer look at classes based on the age ranges.

A1 = {age: 16 ≤ age < 25}
A2 = {age: 25 ≤ age < 35}
A3 = {age: 35 ≤ age < 45}
A4 = {age: 45 ≤ age < 60}
A5 = {age: 60 ≤ age < 100}

Table 10.11 Data Boundaries for the Insurance Premium Problem

Variable Min Min+ Nom. Max- Max

Age 16 17 54 99 100

Points 0 1 6 11 12

Figure 10.5 Worst Case boundary value test cases for the insurance premium problem.

0

5

10

13

20 40 60 80 100

Retrospective on Unit Testing ◾ 215

Here are the age-dependent classes on license points.

P1(A1) = {points = 0, 1}, {points = 2, 3, ...,12}.
P2(A2) = {points = 0, 1, 2, 3}, {points = 4, 5, ...,12}.
P3(A3) = {points = 0, 1, 2, 3, 4, 5}, {points = 6, 7,...,12}.
P4(A4) = {points = 0, 1, 2, 3, 4, 5, 6, 7}, {points = 8, 9, 10, 11, 12}.
P5(A5) = {points = 0, 1, 2, 3, 4, 5}, {points = 6, 7,...,12}.

One added complexity is that the point ranges are dependent on the age of the
policy holder and they also overlap. Both constraints are shown in Figure 10.6. The
dashed lines show the age-dependent equivalence classes. A set of worst case bound-
ary value test cases is shown only for Class A4 and its two related point classes are
given in Figure 10.6. Because these ranges meet at “endpoints,” we would have the
worst-case test values shown in Table 10.12. Notice that the discrete values of the
point variable do not lend themselves to the min + and max– convention in some
cases. These are the variable values that lead to 103 test cases.

We are clearly at a point of severe redundancy; time to move on to equivalence
class testing. The age sets A1–A5, and the points sets P1–P5 are natural choices for
equivalence classes. The corresponding weak normal equivalence class test cases are
shown in Figure 10.7. Since the point classes are not independent, we cannot do the
usual cross product. Weak robust cases are of some value, because we would expect

Figure 10.6 Detailed worst-case boundary value test cases for one age class.

0

5

10

13

20 40 60 80 100

216 ◾ Software Engineering

Table 10.12 Detailed Worst-Case Values

Variable Min Min+ Nom. Max- Max

Age 16 17 20 24

Age 25 26 30 34

Age 35 36 40 44

Age 45 46 53 59

Age 60 61 75 99 100

Points(A1) 0 n/a n/a n/a 1

Points(A1) 2 3 7 11 12

Points(A2) 0 1 n/a 2 3

Points(A2) 4 5 8 11 12

Points(A3) 0 1 3 4 5

Points(A3) 6 7 9 11 12

Points(A4) 0 1 4 6 7

Points(A4) 8 9 10 11 12

Points(A5) 0 1 3 4 5

Points(A5) 6 7 9 11 12

Figure 10.7 Weak and robust normal equivalence class test cases for the insurance premium
program.

0

5

10

13

20 40 60 80 100

Retrospective on Unit Testing ◾ 217

different outputs for drivers with age less than 16, and points in excess of 12. The
additional weak robust test cases are shown as open circles in Figure 10.7.

The next step is to see if a decision table approach might help. Table 10.13 is a
decision table based on the age equivalence classes. The decision table test cases are
almost the same as those shown in Figure 10.7; the only weak robust test case miss-
ing in the decision table is that for points exceeding 12.

What are the error-prone aspects of the insurance premium program? The end-
points of the age ranges appear to be a good place to start, and this puts us back in
boundary value mode. We can imagine many complaints from policy holders whose
premium did not reflect a recent borderline birthday. Incidentally, this would be a
good example of risk-based testing. Dealing with such complaints would be costly.
Also, we should consider ages under 16 and over 100. Finally, we should probably
check the values at which the safe driving reduction is lost, and maybe values of
points over 12, when all insurance is lost. All of this is shown in Figure 10.7. (Notice
that the responses to these were not in the problem statement, but our testing analy-
sis provokes us to think about them.) Maybe this should be called hybrid functional
testing: it uses the advantages of all three forms in a blend that is determined by the
nature of the application (shades of special value testing). Hybrid appears appropri-
ate, because such selection is usually done to improve the stock.

Table 10.13 Insurance Premium Decision Table

Variable Min Min+ Nom. Max- Max

Age 16 17 20 24

Age 25 26 30 34

Age 35 36 40 44

Age 45 46 53 59

Age 60 61 75 99 100

Points(A1) 0 n/a n/a n/a 1

Points(A1) 2 3 7 11 12

Points(A2) 0 1 n/a 2 3

Points(A2) 4 5 8 11 12

Points(A3) 0 1 3 4 5

Points(A3) 6 7 9 11 12

Points(A4) 0 1 4 6 7

Points(A4) 8 9 10 11 12

Points(A5) 0 1 3 4 5

Points(A5) 6 7 9 11 12

218 ◾ Software Engineering

To blend boundary value testing with weak robust equivalence class testing, note
that the age class borders are helpful. Testing the max-, max, and max+ values of one
age class automatically moves us into the next age class, so there is a slight economy.
Figure 10.8 shows the hybrid test cases for the age range 35–45 in the insurance
premium problem.

10.4.1 Code-Based Testing

Our analysis so far has been entirely specification-based. To be complete, we really
need the code. It will answer questions such as whether the age variable is an
integer (our assumption so far) or not. There is no question that the points vari-
able is an integer. The pseudo code implementation is minimal in the sense that
it does very little error checking. The pseudo code and its program graph are in
Figure 10.9. Because the program graph is acyclic, only a finite number of paths
exist—in this case, 11. The best choice is simply to have test cases that exercise
each path. This automatically constitutes both statement and DD-Path coverage.
The compound case predicates indicate multiple-condition coverage; this is accom-
plished only with the worst-case boundary test cases and the hybrid test cases. The
remaining path-based coverage metrics are not applicable.

Figure 10.8 Hybrid test cases for the 35 to 45 age class.

0

5

10

13

20 40 60 80 100

Retrospective on Unit Testing ◾ 219

10.4.1.1 Path-based Testing

The cyclomatic complexity of the program graph of the insurance premium program
is V(G) = 12, and exactly 12 feasible program execution paths exist. They are listed
in Table 10.14. If you follow the pseudo code for the various sets of functional test
cases in Chapter 5, you will find the results shown in Table 10.15. We can see some
of the insights gained from structural testing. For one thing, the problem of gaps
and redundancies is obvious. Only the test cases from the hybrid approach yield
complete path coverage. It is instructive to compare the results of these 25 test cases
with the other two methods yielding the same number of test cases. The 25 bound-
ary value test cases only cover six of the feasible execution paths, while the 25 weak

Figure 10.9 Insurance premium Java code and program graph.

1. public static PremiumResult insPremium (
1. int driverAge, int driverPoints, double baseRate) {
2. double premium;
3. double ageMultiplier;
4. int safeDriverReduction;
5. boolean notInsurable;
6. safeDriverReduction = 0;
7. premium = 0;
8. baseRate = 500;
9. notInsurable = false;
10. if (driverAge < 16) {
11. notInsurable = true;
12. } else if (driverAge < 25) {
13. ageMultiplier = 2.8;
14. if (driverPoints < 1)
15. safeDriverReduction = 50;
16. } else if (driverAge < 35) {
17. ageMultiplier = 1.8;
18. if (driverPoints < 3)
19. safeDriverReduction = 50;
20. } else if (driverAge < 45) {
21. ageMultiplier = 1.0;
22. if (driverPoints < 5)
23. safeDriverReduction = 100;
24. } else if (driverAge < 60) {
25. ageMultiplier = 0.8;
26. if (driverPoints < 7)
27. safeDriverReduction = 150;
28. } else if (driverAge < 100) {
29. ageMultiplier = 1.5;
30. if (driverPoints < 5)
31. safeDriverReduction = 200;
32. } else {
33. notInsurable = false;
34. }
35. if (driverPoints > 12)
36. notInsurable = false;
37. premium = baseRate;
38.
39. return new PremiumResult(premium, notInsurable);
40. }

36

35

38

37

33

34

11

10

12

13

14

16

15

17

18

20

19

21

22

24

23

25

26

28

27

29

30

32

31

40

39

36

35

38

37

33

34

10

12

13

14

16

15

17

18

20

19

21

22

24

23

26

28

27

30

32

31

40

39

35.

220 ◾ Software Engineering

normal equivalence classes test cases cover 10 of the feasible execution paths. The
next difference is in the coverage of the conditions in the case statement. Each predi-
cate is a compound condition of the form a < = x < b. The only methods that yield
test cases that exercise these extreme values are the worst-case boundary value (103)
test cases and the hybrid (32) test cases. Incidentally, the McCabe Baseline Method
will yield 11 of the 12 decision table test cases.

Table 10.14 Feasible Paths in the Insurance Premium Program

Path Node Sequence

p1 1–9, 10, 11, 34–38

p2 1–9, 10, 12, 13, 14, 15, 34–38

p3 1–9, 10, 12, 14, 34–38

p4 1–9, 10, 12, 16, 17, 18, 19, 34–38

p5 1–9, 10, 12, 16, 17, 18, 34–38

p6 1–9, 10, 12, 16, 20, 21, 22, 23, 34–38

p7 1–9, 10, 12, 16, 20, 21, 22, 34–38

p8 1–9, 10, 12, 16, 20, 24, 25, 26, 27, 34–38

p9 1–9, 10, 12, 16, 20, 24, 25, 26, 34–38

p10 1–9, 10, 12, 16, 20, 24, 28, 29, 30, 31, 34–38

p11 1–9, 10, 12, 16, 20, 24, 28, 29, 30, 34–38

p12 1–9, 10, 12, 16, 20, 24, 28, 32, 33, 34–38

Table 10.15 Path Coverage of Functional Methods in the Insurance Program

Figure Spec-Based Method Test Cases Paths covered

10.5 Normal Boundary Value 25 p2, p3, p8, p9, p10, p11

10.6 Worst Case Boundary Value 103 p2, p3, p4, p5, p6, p7, p8, p9, p10, p11

10.7 Weak Normal Equivalence Class 10 p2, p4, p6, p8, p10

10.7 Robust Normal Equivalence
Class

12 p1, p2, p3, p4, p5, p6, p7, p8, p9, p10,
p11, p12

10.7 Decision Table 12 p1, p2, p3, p4, p5, p6, p7, p8, p9, p10,
p11, p12

10.8 Hybrid Spec-based 32 p1, p2, p3, p4, p5, p6, p7, p8, p9, p10,
p11, p12

Retrospective on Unit Testing ◾ 221

10.4.1.2 Dataflow Testing

Data flow testing for this problem is boring. The driverAge, points, and safeDriving
Reduction variables all occur in six definition clear du-paths. The “uses” for driverAge
and points are both predicate uses. Recall from Chapter 9 that the all-paths criterion
implies all the lower dataflow covers.

10.4.1.3 Slice Testing

Slice testing does not provide much insight either. Four slices are of interest:

S(safeDrivingReduction, 33) = {1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 19,
20, 22, 23, 24, 25, 27, 28, 29, 32}
S(ageMultiplier, 33) = {1, 2, 3, 4, 5, 6, 10, 11, 15, 16, 20, 21, 25, 26, 32}
S(baseRate, 33) = {1}
S(Premium, 33) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 32}

The union of these slices is the whole program. The only insight we might get from
slice-based testing is that, if a failure occurred at line 33, the slices on safeDrivingRe-
duction and ageMultiplier separate the program into two disjoint pieces, and that
would simplify fault isolation.

10.5 Guidelines
One of my favorite testing stories is about an inebriated man was crawling around on
the sidewalk beneath a street light. When a policeman asked him what he was doing,
he replied that he was looking for his car keys. “Did you lose them here?” the police-
man asked. “No, I lost them in the parking lot, but the light is better here.”

This little story contains an important message for testers: testing for faults that
are not likely to be present is pointless. It is far more effective to have a good idea of
the kinds of faults that are most likely (or most damaging) and then to select testing
methods that are likely to reveal these faults.

Many times, we do not even have a feeling for the kinds of faults that may be
prevalent. What then? The best we can do is use known attributes of the program to
select methods that deal with the attributes—sort of a “punishment fits the crime”
view. The attributes that are most helpful in choosing specification-based testing
methods are:

Whether the variables represent physical or logical quantities
Whether dependencies exist among the variables
Whether single or multiple faults are assumed
Whether exception handling is prominent

222 ◾ Software Engineering

Here is the beginning of an “expert system” to help choosing a spec-based method:

 1. If the variables refer to physical quantities, domain testing and equivalence
class testing are indicated.

 2. If the variables are independent, domain testing and equivalence class testing
are indicated.

 3. If the variables are dependent, decision table testing is indicated.
 4. If the single-fault assumption is warranted, boundary value analysis and robust-

ness testing are indicated.
 5. If the multiple-fault assumption is warranted, worst-case testing, robust worst-

case testing, and decision table testing are indicated.
 6. If the program contains significant exception handling, robustness testing and

decision table testing are indicated.
 7. If the variables refer to logical quantities, equivalence class testing and decision

table testing are indicated.

Combinations of these may occur; therefore, the guidelines are summarized as a deci-
sion table in Table 10.16.

What about code-based testing? Once again, we revert to the “punishment fits
the crime” view. (But thinking of good testing as “punishment” is not appropriate.)
This is where code coverage metrics are useful. As a reminder, we are focused on
Unit Level testing. The first step is to examine the code for its main characteristics.
Table 10.17 is a good starting point.

Table 10.16 Appropriate Choices for Functional Testing

c1 Variables (P, physical; L, logical) P P P P P L L L L L

c2 Independent variables? Y Y Y Y N Y Y Y Y N

c3 Single-fault assumption? Y Y N N — Y Y N N —

c4 Exception handling? Y N Y N — Y N Y N —

a1 Boundary value analysis x

a2 Robustness testing x

a3 Worst-case testing x

a4 Robust worst case x

a5 Weak Robust equivalence class x x x x

a6 Weak Normal equivalence class x x x x

a7 Strong Normal equivalence class x x x x x x

a8 Decision table x x

Retrospective on Unit Testing ◾ 223

Exercises
 1. Repeat the gaps and redundancies analysis for the Triangle Problem using the

implementation in Chapter 2 (Section 2.2.3) and its program graph in Chapter 8
Figure 8.2.

 2. The Java code for the Insurance Premium Program (Figure 10.9) does not check
for driver ages over 100. The Else clause (lines 32, 33) will catch this, but the
output value of notInsurable is incorrect. Which functional testing techniques
will reveal this fault? Which structural testing coverage, if not met, will reveal
this fault?

 3. In Figure 10.9, the statement at line 37 is incorrect. Which functional testing
techniques will reveal this fault? Which structural testing coverage, if not met,
will reveal this fault?

References
Brown, J.R. and Lipov, M., Testing for Software Reliability, Proceedings of the International

Symposium on Reliable Software, Los Angeles, pp. 518–527, April 1975.
Pressman, Roger S., Software Engineering: A Practitioner’s Approach, McGraw-Hill, New York,

1982.

Table 10.17 Code Characteristics

Characteristic of code Recommended practice(s)

Is it well structured?
Compute Cyclomatic complexity. If excessive (project
dependent threshold), simplify first.

Are there violations of
“structured programming?

Compute Cyclomatic complexity, then revise code.
Revisit “is it well structured?”

Is it logic/decision intensive?
(Some of this will show up in the calculation of
cyclomatic complexity.) Develop a program graph and
apply the appropriate edge/decision coverage.

Does it contain compound
conditions?

Apply either MCDC of Multiple Condition Coverage

Does it contain loops, and
possibly nested loops?

Use loop coverage metrics (repeat and exit loop)

Is it computation intensive?
Use carefully selected dataflow and slice testing
techniques to better understand code.

Is it hard to read/understand?
Apply “good programming practices”: appropriate
comments, good variable names, etc. And refactor.

https://taylorandfrancis.com

BEYOND UNIT
TESTING

III

In Part III, we build on the basic ideas of unit testing covered in Part II, with one
major change. We are more concerned with knowing what to test and less concerned
with how to test. To that end, the discussion in this part begins with the whole idea
of Model-Based Testing. Chapter 11 examines testing based on models of software
development life cycles, and models of software/system behavior are discussed in
Chapter 19. Chapter 12 presents model-based strategies for integration testing, and
these are extended to system testing in Chapter 13. Having completed this much, we
are in a position to finally take a serious look at software complexity in Chapter 14.
We apply much of this to a relatively recent question, testing systems of systems, in
Chapter 15 and to testing Feature Interaction in Chapter 16.

https://taylorandfrancis.com

227

Chapter 11

Life Cycle-Based Testing

In this chapter, we examine various models of the software development life cycle in
terms of the implications these lifecycles have for testing. We took a general view in
Chapter 1, where we identified three levels (unit, integration, and system) in terms of
symmetries in the waterfall model of software development. This view has been rela-
tively successful for decades, and these levels persist; however, the advent of alter-
native life cycle models mandates a deeper look at these views of testing. We begin
with the traditional waterfall model, mostly because it is widely understood and is a
reference framework for the more recent models. Then we look at derivatives of the
waterfall model, and finally some mainline agile variations.

We also make a major shift in our thinking. We are more concerned with how to
represent the item tested, because the representation may limit our ability to identify
test cases.

11.1 Traditional Waterfall Testing
The traditional model of software development is the waterfall model, which is illus-
trated in Figure 11.1. It is sometimes drawn as a V as in Figure 11.2 to emphasize how
the basic levels of testing reflect the early waterfall phases. (In ISTQB circles, this is
known as “the V-Model.) In this view, information produced in one of the develop-
ment phases constitutes the basis for test case identification at that level. Nothing
controversial here: we certainly would hope that system test cases are clearly corre-
lated with the requirements specification, and that unit test cases are derived from the
detailed design of the unit. On the upper left side of the waterfall, the tight what/how
cycles are important. They underscore the fact that the predecessor phase defines
what is to be done in the successor phase. When complete, the successor phase states
how it accomplishes “what” was to be done. These are also ideal points at which to
conduct software reviews (see Chapter 20). Some humorists assert that these phases
are the fault creation phases, and those on the right are the fault detection phases.

Two observations: a clear presumption of functional testing is used here, and
an implied bottom-up testing order is used. Here, “bottom up” refers to levels of

228 ◾ Software Engineering

 abstraction—unit first, then integration, and finally, system testing. In Chapter 12,
bottom up also refers to a choice of orders in which units are integrated (and tested).

Of the three main levels of testing (unit, integration, and system), unit testing
is best understood. All of Part II is directed at the testing theory and techniques
applicable to unit testing. System testing is understood better than integration test-
ing, but both need clarification. The bottom-up approach sheds some insight: test
the individual components, and then integrate these into subsystems until the entire
system is tested. System testing should be something that the customer (or user)
understands, and it often borders on customer acceptance testing. Generally, system
testing is functional instead of structural; this is mostly due to the lack of higher level
structural notations.

Figure 11.1 The waterfall lifecycle.

Requirements
Specification

Preliminary
Design

Detailed
Design

Coding

Unit
Testing

Integration
Testing

System
Testing

Figure 11.2 The Waterfall Lifecycle as the V Model.

Requirements
Specification

Preliminary
Design

Detailed
Design

Coding

Unit
Testing

Integration
Testing

System
Testing

Life Cycle-Based Testing ◾ 229

11.1.1 Waterfall Testing

The waterfall model is closely associated with top-down development and design by
functional decomposition—it applies best to projects coded in a procedural language.
The end result of preliminary design is a functional decomposition of the entire sys-
tem into a tree-like structure of functional components. With such a decomposition,
top-down integration would begin with the main program, checking the calls to the
next level units, and so on until the leaves of the decomposition tree are reached. At
each point, lower level units are replaced by stubs—throw-away code that replicates
what the lower level units would do when called. Bottom-up integration is the oppo-
site sequence, starting with the leaf units and working up toward the main program.
In bottom-up integration, units at higher levels are replaced by drivers (another form
of throw-away code) that emulate the procedure calls. The “big bang” approach sim-
ply puts all the units together at once, with no stubs or drivers. Whichever approach
is taken, the goal of traditional integration testing is to integrate previously tested
units with respect to the functional decomposition tree. Although this describes inte-
gration testing as a process, discussions of this type offer little information about the
methods or techniques. We return to this in Chapter 12.

11.1.2 Pros and Cons of the Waterfall Model

In its history since the first publication in 1968, the Waterfall Model has been ana-
lyzed and critiqued repeatedly. The earliest compendium was by [Agresti, 1986]
which stands as a good source. Agresti observes that:

	 ◾	 the framework fits well with hierarchical management structures,
	 ◾	 the phases have clearly defined end products (exit criteria), which in turn are

convenient for project management, and
	 ◾	 the detailed design phase marks the starting point where individuals responsi-

ble for units can work in parallel., thereby shortening the overall project devel-
opment interval.

More importantly, Agresti highlights major limitations of the Waterfall Model. We
shall see that these limitations are answered by the derived lifecycle models. He
observes that:

	 ◾	 there is a very long feedback cycle between requirements specification and sys-
tem testing, in which the customer is absent,

	 ◾	 the model emphasizes analysis to the near exclusion of synthesis, which first
occurs at the point of integration testing,

	 ◾	 massive parallel development at the unit level may not be sustainable with staff-
ing limitations, and most importantly,

	 ◾	 “perfect foresight” is required, because any faults or omissions at the require-
ments level will penetrate through the remaining lifecycle phases.

The “omission” part was particularly troubling to the early waterfall developers. As a
result, nearly all of the early papers of requirements specification demanded consis-
tency, completeness, and clarity. Consistency is impossible to demonstrate for most
requirements specification techniques (decision tables are an exception), and the

230 ◾ Software Engineering

need for clarity is obvious. The interesting part is completeness—all of the successor
lifecycles assume incompleteness and depend on some form of iteration to gradually
arrive at “completeness.”

11.2 Testing in Iterative Lifecycles
Since the early 1980s, practitioners have devised alternatives in response to shortcom-
ings of the traditional waterfall model just mentioned. The shift away from functional
decomposition to an emphasis on iteration and composition is common to all these alter-
natives. Functional decomposition can only be well done when the system is completely
understood, and it promotes analysis to the near exclusion of synthesis. The result is a
very long separation between requirements specification and a completed system; and
during this interval, no opportunity is available for feedback from the customer.

11.2.1 Waterfall Spin-Offs

There are three mainline derivatives of the waterfall model: incremental develop-
ment, evolutionary development, and the spiral model [Boehm, 1988]. Each of these
involves a series of increments or builds as shown in Figure 11.3. It is important to
keep preliminary design as an integral phase, rather than to try to amortize such
high-level design across a series of builds. (To do so usually results in unfortunate
consequences of design choices made during the early builds that are regrettable in
later builds.) This single design step cannot be done in the evolutionary and spiral
models. This is also a major limitation of the bottom-up agile methods.

Within a build, the normal waterfall phases from detailed design through testing
occur with one important difference: system testing is split into two steps— regression
and progression testing. The main impact of the series of builds is that regression
testing becomes necessary. The goal of regression testing is to ensure that things
that worked correctly in the previous build still work with the newly added code.

Figure 11.3 Iterative Development.

Detailed
Design

Coding

Unit
Testing

Integration
Testing

Regression
Testing

Build
Definition

Progression
Testing

Requirements
Specification

Preliminary
Design

Build
Sequence

Life Cycle-Based Testing ◾ 231

Regression testing can either precede or follow integration testing, or possibly occur
in both places. Progression testing assumes that regression testing was successful and
that the new functionality can be tested. Regression testing is an absolute necessity
in a series of builds because of the well-known ripple effect of changes to an exist-
ing system. (The industrial average is that one change in five introduces a new fault.)

Evolutionary Development is best summarized as client-based iteration. In this spin-
off, a small initial version of a product is given to users who then suggest additional
features. This is particularly helpful in applications for which time-to-market is a prior-
ity. The initial version might capture a segment of the target market, and then that seg-
ment is “locked in” to future evolutionary versions. When these customers have a sense
that they are “being heard,” they tend to be more invested in the evolving product.

Barry Boehm’s Spiral Model has some of the flavor of the evolutionary model. The
biggest difference is that the increments are determined on the basis of risk rather
than on client suggestions. The spiral is superimposed on an x-y coordinate plane,
with the upper left quadrant referring to determining objectives, the upper right to
risk analysis, the lower right refers to development (and test), and the lower left is
for planning the next iteration. These four phases: determine objectives, analyze risk,
develop, and test, and next iteration planning is repeated in an evolutionary way. At
each evolutionary step, the spiral enlarges.

There are two views of regression testing: one is to simply repeat the tests from the
previous iteration, the other is to devise a smaller set of test cases specifically focused
on finding affected faults. Repeating a full set of previous integration tests is fine in an
automated testing environment but is undesirable in a more manual environment. The
expectation of test case failure is (or should be) lower for regression testing compared
to that for progression testing. As a guideline, regression tests might fail in only 5 %
of the repeated progression tests. This may increase to 20 % for progression tests. If
regression tests are performed manually, there is an interesting term for special regres-
sion test cases: Soap Opera Tests. The idea is to have long, complex regression tests,
akin to the complicated plot lines in television soap operas. A soap opera test case
could fail in many ways, whereas a progression test case should fail for only a very
few reasons. If a soap opera test case fails, clearly more focused testing is required to
localize the fault. We will see this again in Chapter 20 on All-Pairs Testing.

The differences among the three spin-off models are due to how the builds are
identified. In incremental development, the motivation for separate builds is usually
to flatten the staff profile. With pure waterfall development, there can be a huge
bulge of personnel for the phases from detailed design through unit testing. Many
organizations cannot support such rapid staff fluctuations, so the system is divided
into builds that can be supported by existing personnel. In evolutionary develop-
ment, the presumption of a build sequence is still made, but only the first build is
defined. Based on that, later builds are identified, usually in response to priorities set
by the customer/user, so the system evolves to meet the changing needs of the user.
This foreshadows the customer-driven tenet of the agile methods. The spiral model is
a combination of rapid prototyping and evolutionary development, in which a build
is defined first in terms of rapid prototyping and then is subjected to a go/no-go deci-
sion based on technology-related risk factors. From this, we see that keeping prelimi-
nary design as an integral step is difficult for the evolutionary and spiral models. To
the extent that this cannot be maintained as an integral activity, integration testing is
negatively affected. System testing is not affected.

232 ◾ Software Engineering

Because a build is a set of deliverable end user functionality, one advantage
common to all these spin-off models is that they provide earlier synthesis. This also
results in earlier customer feedback, so two of the deficiencies of waterfall devel-
opment are mitigated. The next section describes two approaches to deal with the
“perfect foresight” problem.

11.2.2 Specification-Based Life Cycle Models

When systems are not fully understood (by either the customer or the developer),
functional decomposition is perilous at best. Barry Boehm jokes when he describes
the customer who says “I don’t know what I want, but I’ll recognize it when I see it.”
The rapid prototyping life cycle (Figure 11.4) deals with this by providing the “look
and feel” of a system. In a sense, customers can recognize what they “see.” In turn,
this drastically reduces the specification-to-customer feedback loop by producing
very early synthesis. Rather than build a final system, a “quick and dirty” prototype
is built and then used to elicit customer feedback. Depending on the feedback, more
prototyping cycles may occur. Once the developer and the customer agree that a
prototype represents the desired system, the developer goes ahead and builds to a
correct specification. At this point, any of the waterfall spin-offs might also be used.
The agile lifecycles are the extreme of this pattern.

Rapid prototyping has no new implications for integration testing; but it has very
interesting implications for system testing. Where are the requirements? Is the last
prototype the specification? How are system test cases traced back to the prototype?
One good answer to questions such as these is to use the prototyping cycles as
information-gathering activities and then produce a requirements specification in a
more traditional manner. Another possibility is to capture what the customer does

Figure 11.4 Rapid prototyping life cycle.

Detailed
Design

Coding

Unit
Testing

Integration
Testing

Regression
Testing

Preliminary
Design

Progression
Testing

Prototype Cycle

Prototype
Objectives

Build
Prototype

Exercise
Prototype

Life Cycle-Based Testing ◾ 233

with the prototypes, define these as scenarios that are important to the customer, and
then use these as system test cases. These could be precursors to the User Stories
of the agile lifecycles. The main contribution of rapid prototyping is that it brings
the operational (or behavioral) viewpoint to the requirements specification phase.
Usually, requirements specification techniques emphasize the structure of a system,
not its behavior. This is unfortunate, because most customers do not care about the
structure, and they do care about the behavior.

Executable specifications (Figure 11.5) are an extension of the rapid prototyping
concept. With this approach, the requirements are specified in an executable format
(such as finite state machines, Statecharts, or Petri nets). The customer then executes the
specification to observe the intended system behavior and provides feedback as in the
rapid prototyping model. The executable models are, or can be, quite complex. Building
an executable model requires expertise, and executing it requires an engine. Executable
specification is best applied to event-driven systems, particularly when the events can
arrive in different orders. David Harel, the creator of Statecharts, refers to such sys-
tems as “reactive” [Harel 1988], because they react to external events. As with Rapid
Prototyping, the purpose of an executable specification is to let the customer experience
scenarios of intended behavior. Another similarity is that executable models might have
to be revised based on customer feedback. One side benefit is that a good engine for an
executable model will support the capture of “interesting” system transactions, and it is
often a nearly mechanical process to convert these into true system test cases. If this is
done carefully, system testing can be traced directly back to the requirements.

Once again, this life cycle has no implications for integration testing. One big differ-
ence is that the requirements specification document is explicit, as opposed to a pro-
totype. More importantly, it is often a mechanical process to derive system test cases
from an executable specification. We will see this in Chapter 13. Although more work

Figure 11.5 Executable specification.

Detailed
Design

Coding

Unit
Testing

Integration
Testing

Regression
Testing

Preliminary
Design

Progression
Testing

Executable Specification Cycle

Define/Revise
Model

Exercise
Prototype

234 ◾ Software Engineering

is required to develop an executable specification, this is partially offset by the reduced
effort to generate system test cases. Here is another important distinction: when system
testing is based on an executable specification, we have an interesting form of struc-
tural testing at the system level. Finally, as we saw with rapid prototyping, the execut-
able specification step can be combined with any of the iterative lifecycle models.

11.3 Agile Testing
The Agile Manifesto [http://agilemanifesto.org/] was written by 17 consultants, The
Agile Alliance, in February, 2001. It has been translated into 42 languages and has
drastically changed the software development world. The underlying characteristics
of all agile lifecycles are:

	 ◾	 customer-driven
	 ◾	 bottom-up development
	 ◾	 flexibility with respect to changing requirements
	 ◾	 early delivery of fully functional components

These are sketched in Figure 11.6. Customers express their expectations in terms
of “user stories,” which are taken as the requirements for very short iterations of
design-code-test. When does an agile project end? When the customer has no more
user stories. Looking back at the iterative models, we see the progenitors of agility,
especially in Barry Boehm’s Spiral Model. Various websites will list as few as three to
as many as 40 variations of agile software development. Here we look at three major
ones and focus on how they deal with testing.

11.3.1 About User Stories

User stories are expressed by the Customer to the Developer. The most common form
is a narrative in natural language. There are two other forms that lend structure to a
purely narrative form—Behavior-Driven Development (BDD) scenarios and Use Cases.

Figure 11.6 Generic Agile Lifecycle.

Customer
Expectations

Iteration
Plan

User Story

Design
Code
Test

Integration
Testing

http://agilemanifesto.org

Life Cycle-Based Testing ◾ 235

11.3.1.1 Behavior-Driven Development

Behavior-Driven Development (BDD) is completely consistent with agile develop-
ment projects—it is an extension of Test-Driven Development (see Section 11.4.3)
The BDD process centers on user stories that have a structure that translates easily
into a decision table. We begin with an example from Dan North, an early proponent
of BDD [Terhorst-North 2006].

+Scenario 1: Account is in credit+.
c1.: Given the account is in credit
c2: And the card is valid
c3: And the dispenser contains cash
c4: When the customer requests cash
a1: Then ensure the account is debited
a2: And ensure cash is dispensed
a3: And ensure the card is returned

For transform applications such as this BDD scenario, the first four statements are
conditions and the last three are actions the corresponding decision table. Decision
tables work well for transform applications since the order of conditions does not
matter. Here is a more formal definition of a BDD scenario:

Definition

A well-formed BDD scenario has the following sections and structure:

Short ID
IF (<pre-condition(s)>),
AND (<data condition(s)>),
AND (<input event sequence>),
THEN (action sequence),
AND (<output event sequence>),
AND (<post-condition(s>).

Given a well-formed BDD scenario, the “IF” portion maps into decision table con-
ditions, and the “THEN” portion maps into decision table actions. The full BDD
scenario becomes a rule in the derived decision table. We begin a series of analy-
ses decision table manipulations that illustrate how decision table manipulations
can enhance the bottom-up nature of Behavior Driven Development (see decision
tables 11.1 through 11.10).

In Decision Table 11.1, The IF portion of the BDD scenario maps to conditions
c1, c2, c3, and c4; the THEN portion maps to the three action entries. The rule entries
are all True.

If we mechanically expand Rule 1 using the same conditions and actions, we will
have a complete Limited Entry Decision Table (LEDT), see Decision Table 11.2. The
“?” action entries will gradually be removed as the final decision table is developed.
Since there are 16 rules, we split the decision table into two parts. Also, we add
action “a4. do nothing” in case we need it.

236 ◾ Software Engineering

Decision Table 11.2b Rules 9 to 16

Rules 9 10 11 12 13 14 15 16

c1. account is in credit? F F F F F F F F

c2. card is valid? T T T T F F F F

c3. dispenser contains cash T T F F T T F F

c4. customer requests cash T F T F T F T F

a1. dispense cash ? ? ? ? ? ? ? ?

a2. debit customer account ? ? ? ? ? ? ? ?

a3. return card ? ? ? ? ? ? ? ?

a4. do nothing ? ? ? ? ? ? ? ?

Decision Table 11.2a Rules 1 to 8

Rules 1 2 3 4 5 6 7 8

c1. account is in credit? T T T T T T T T

c2. card is valid? T T T T F F F F

c3. dispenser contains cash T T F F T T F F

c4. customer requests cash T F T F T F T F

a1. dispense cash x ? ? ? ? ? ? ?

a2. debit customer account x ? ? ? ? ? ? ?

a3. return card x ? ? ? ? ? ? ?

a4. do nothing — ? ? ? ? ? ? ?

Decision Table 11.1 First Rule

Rule 1

c1. account is in credit T

c2. card is valid? T

c3. dispenser contains cash T

c4. customer requests cash T

a1. dispense cash x

a2. debit customer account x

a3. return card x

Life Cycle-Based Testing ◾ 237

This mechanical expansion may lead to additional scenarios, and in the process,
additional actions. Advice: try to keep the number of conditions constant. A Limited
Entry Decision Table with n binary conditions (that is what makes it a limited entry
decision table) will have 2n distinct rules.

Now, Rule 2 (in Decision Table 11.3) corresponds to a second scenario. The
change to Rule 2 has no effect on Rules 9 to 16, so that half is unchanged, and is not
repeated here.

+Scenario 2: Account is in credit+.
Given the account is in credit.
And the card is valid.
And the dispenser contains cash.
If the customer does not request cash.
Then ensure the card is returned.
And do nothing else.

It then becomes a simple exercise to “follow” each rule to see if it corresponds
to an interesting scenario. Some other scenarios might simplify the decision table.
Consider the response to an invalid card: none of the other conditions will matter. As
a slight digression, there is no (or should not be) any order in a decision table. We
first interchange conditions 1 and 2, to get Decision Table 11.4.

Consider rules 9 through 16 in the second half of Decision Table 11.4. If the card
is not valid, conditions c1, c3, and c4 are moot. The only actions are to return the
invalid card and do nothing else. We show this with the “—” action entry.

Decision Table 11.3a Rule 2 Action Entries Added

Rules 1 2 3 4 5 6 7 8

c1. account is in credit? T T T T T T T T

c2. card is valid? T T T T F F F F

c3. dispenser contains cash T T F F T T F F

c4. customer requests cash T F T F T F T F

a1. dispense cash x — ? ? ? ? ? ?

a2. debit customer account x — ? ? ? ? ? ?

a3. return card x x ? ? ? ? ? ?

a4. do nothing — x ? ? ? ? ? ?

Decision Table 11.4a Conditions c1 and c2 Interchanged

Rules 1 2 3 4 5 6 7 8

c2. card is valid? T T T T T T T T

c1. account is in credit? T T T T F F F F

c3. dispenser contains cash T T F F T T F F

(Continued)

238 ◾ Software Engineering

The “—” entries in Decision Table 11.5 mean either “don’t care” or “not applica-
ble.” If the card is not valid, nothing else should happen, as shown in Rules 9 through
16 in Decision Table 11.5. (The “algebra” of decision tables results in a greatly simpli-
fied decision table. If two rules have identical action sets, there must be at least one
condition that is true in one rule and false in the other. Since this difference has no
effect on the actions that occur, we can combine the rules, and show that condition
with a “don’t care” entry “—”.)

Decision Table 11.5 Rules 9 Through 16 Collapsed Into One Rule

Rules 1 2 3 4 5 6 7 8 9 - 16

c2. card is valid? T T T T T T T T F

c1. account is in credit? T T T T F F F F —

c3. dispenser contains cash T T F F T T F F —

c4. customer requests cash T F T F T F T F —

a1. dispense cash x ? ? ? ? ? ? —

a2. debit customer account x ? ? ? ? ? ? —

a3. return card x x ? ? ? ? ? ? x

a4. do nothing x ? ? ? ? ? ? x

Decision Table 11.4b

Rules 9 10 11 12 13 14 15 16

c2. card is valid? F F F F F F F F

c1. account is in credit? — — — — — — — —

c3. dispenser contains cash — — — — — — — —

c4. customer requests cash — — — — — — — —

a1. dispense cash — — — — — — — —

a2. debit customer account — — — — — — — —

a3. return card x x x x x x x x

a4. do nothing x x x x x x x x

Rules 1 2 3 4 5 6 7 8

c4. customer requests cash T F T F T F T F

a1. dispense cash x ? ? ? ? ? ? ?

a2. debit customer account x ? ? ? ? ? ? ?

a3. return card x x ? ? ? ? ? ?

a4. do nothing — x ? ? ? ? ? ?

Decision Table 11.4a (Continued)

Life Cycle-Based Testing ◾ 239

Decision tables force a top-down view that complements the bottom-up BDD
approach. The mechanical expansion will frequently result in additional BDD scenar-
ios that otherwise might not have occurred to the BDD developer. Also, the algebraic
possibilities will usually result in much simpler tables. The example continues here,
looking at the remaining rules.

Rules 3 and 4

This is an anomaly, but it might happen. If the dispenser contains no cash, the cus-
tomer should be notified, but there is no action requiring that. The c4 condition
entries (customer requests cash) are irrelevant since there is no cash anyway. The
same comment applies to rules 7 and 8. This leads to an additional simplification, as
shown in Decision Table 11.6.

At this point, the two combined rules (3 & 4 and 7 & 8) can also be combined
because the action sets are identical resulting in Decision Table 11.7.

Decision Table 11.6 Action Added for Customer Notification

Rules 1 2 3 & 4 5 6 7 & 8 9 - 16

c2. card is valid? T T T T T T F

c1. account is in credit? T T T F F F —

c3. dispenser contains cash T T F T T F —

c4. customer requests cash T F — T F — —

a1. dispense cash x — — ? ? — —

a2. debit customer account x — — ? ? — —

a3. return card x x x ? ? x x

a4. do nothing — x — ? ? — x

a5: notify customer, no cash — x ? ? x —

Decision Table 11.7 Rules 3, 4, 7, and 8 Combined

Rules 1 2 3,4,7,8 5 6 9 - 16

c2. card is valid? T T T T T F

c1. account is in credit? T T — F F —

c3. dispenser contains cash T T F T T —

c4. customer requests cash T F — T F —

a1. dispense cash x — — ? ? —

a2. debit customer account x — — ? ? —

a3. return card x x x ? ? x

a4. do nothing — x — ? ? x

a5: notify customer, no cash — x ? ? —

240 ◾ Software Engineering

Rules 5 and 6

For now, assume there are two types of cards, credit and debit. Rules 5 and 6 refer
to debit cards because the condition entry for c2 is False. Decision Table 11.8 shows
that the treatment for both credit and debit cards is identical (Rules 1 and 5 have the
same action sets, similarly for rules 2 and 6, resulting in Decision Table 11.9.

Look closely at condition c1: account is in credit: each condition entry is a “don’t
care,” so we can delete that condition entirely, as in Decision Table 11.10.

We are left with four distinct rules, which correspond to four distinct BDD sce-
narios, each of which will become a test case.

Decision Table 11.9 Rules 1 and 5 Combined, rules 2 and 6 Combined

Rules 1 & 5 2 & 6 3,4,7,8 9 - 16

c2. card is valid? T T T F

c1. account is in credit? — — — —

c3. dispenser contains cash T T F —

c4. customer requests cash T F — —

a1. dispense cash x — — —

a2. debit customer account x — — —

a3. return card x x x x

a4. do nothing — x — x

a5: notify customer, no cash — x —

Decision Table 11.8 Rules 5and 6 Completed

Rules 1 2 3,4,7,8 5 6 9 - 16

c2. card is valid? T T T T T F

c1. account is in credit? T T — F F —

c3. dispenser contains cash T T F T T —

c4. customer requests cash T F — T F —

a1. dispense cash x — — x — —

a2. debit customer account x — — x — —

a3. return card x x x x x x

a4. do nothing — x — — x x

a5: notify customer, no cash — x — —

Life Cycle-Based Testing ◾ 241

11.3.1.2 Use Cases

Use Cases are central part of the Unified Modeling Language (UML). Their main
advantage is that they are easily understood by both customers/users and develop-
ers. They capture the “does view” that emphasized behavior, rather than the “is view”
that emphasizes structure. Customers and testers both tend to naturally think of a
system in terms of the does view, so use cases are a natural choice. Decades ago,
one author [Larman 2001] defined a hierarchy of use cases in which each level adds
information to the predecessor level. Larman named these levels as follows:

	 ◾	 High level (very similar to an agile User Story)
	 ◾	 Essential
	 ◾	 Expanded Essential
	 ◾	 Real

The information content of these variations is shown in Venn diagram form in
Figure 11.7. High-level use cases are at the level of the user stories used in agile
development. A set of high level use cases gives a quick overview of the does view
of a system. Essential use cases add the sequence of port input and output events. At
this stage, the port boundary begins to become clear to both the customer/user and
the developer. Expanded Essential use cases concentrate on pre- and post-conditions
of the use cases. Real use cases replace variables in an Expanded Essential use case
with actual values to be used in testing for inputs and expected outputs.

Decision Table 11.10 Final Decision Table

Rules 1 & 5 2 & 6 3,4,7,8 9 - 16

c2. card is valid? T T T F

c3. dispenser contains cash T T F —

c4. customer requests cash T F — —

a1. dispense cash x — — —

a2. debit customer account x — — —

a3. return card x x x x

a4. do nothing — x — x

a5: notify customer, no cash — x —

Figure 11.7 Information Content in Levels of Use Cases.

High Level

Essential

Real

Expanded Essential

242 ◾ Software Engineering

11.3.2 Extreme Programming

Extreme Programming (XP) was first applied to a project (in a documented way)
in 1996 by Kent Beck [http://www.extremeprogramming.org/] while he was at the
Chrysler Corporation. The clear success of the project, even though it was a revision
of an earlier version, led to his book [Beck 2004]. The main aspects of XP are cap-
tured in Figure 11.8. It is clearly customer-driven, as shown by the position of user
stories driving both a release plan and system testing. The release plan defines a
sequence of iterations, each of which delivers a small working component. One dis-
tinction of XP is the emphasis on paired programming, in which a pair of developers
work closely together, often sharing a single development computer and keyboard.
One person works at the code level, while the other takes a slightly higher view. In
a sense, the pair is conducting a continuous review. In Chapter 20, we will see that
this is better described as a continuous code walk-through. There are many similari-
ties to the basic iterative lifecycle shown in Figure 11.3. One important difference is
that there is no overall preliminary design phase. Why? Because this is a bottom-up
process. If XP were truly driven by a sequence of user stories, it is hard to imagine
what can occur in the release plan phase.

11.3.3 Scrum

Scrum is probably the most frequently used of all the agile lifecycles. There is a per-
vading emphasis on the team members and teamwork. The name comes from the
rugby maneuver in which the opposing teams are locked together and try to hook
the football back to their respective sides. A rugby scrum requires organized team-
work—hence the name for the software process.

The quick view of Scrum (the development lifecycle) is that it is mostly new
names for old ideas. This is particularly true about the accepted Scrum vocabulary.
Three examples: roles, ceremonies, and artifacts. In common parlance, Scrum roles
refer to project participants; the ceremonies are just meetings, the artifacts are work

Figure 11.8 The Extreme Programming Lifecycle.

User
Stories

Release
Plan

Acceptance
Test

Small
Release

Iteration

Iteration
Plan

Pair
Coding

Unit
Test

http://www.extremeprogramming.org

Life Cycle-Based Testing ◾ 243

products. Scrum projects have Scrum Masters (who act like traditional supervisors
with less administrative power). Product Owners are the customers of old, and the
Scrum Team is a development team. Figure 11.9 is adapted from “official” Scrum liter-
ature, the Scrum Alliance. Think about the activities in terms of the iterative lifecycle
in Figure 11.3. The traditional iterations become “sprints” which last from two to four
weeks. In a sprint, there is a daily stand-up meeting of the Scrum Team to focus on
what happened the preceding day and what needs to be done in the new day. Then
there is a short burst of design-code-test followed by an integration of the team’s
work at the end of the day. This is the agile part—a daily build that contributes to a
sprint-level work product in a short interval. The biggest differences between Scrum
and the traditional view of iterative development are the special vocabulary and the
duration of the iterations.

Testing in the Scrum lifecycle occurs at two levels—the unit level at each day’s
end, and the integration level of the small release at the end of a sprint. Selection
of the Sprint backlog from the product backlog is done by the Product Owner (the
customer), which corresponds roughly to a requirements step. Sprint definition looks
a lot like preliminary design because this is the point where the Scrum Team identi-
fies the sequence and contents of individual sprints. The bottom line? Scrum has two
distinct levels of testing—unit and integration/system. Why “integration/system?” The
small release is a deliverable product usable by the Product Owner, so it is clearly a
system level work product. But this is the point where all of the development work
is integrated for the first time.

11.3.4 Test-Driven Development

Test-Driven Development (TDD) is the extreme case of agility. It is driven by a
sequence of user stories, as shown in Figure 11.10. A user story can be decomposed

Figure 11.9 The Scrum Lifecycle.

Product
Backlog

Sprint
Backlog

Sprint
Definition

Small
Release

Daily Activities

Design

Coding

Test

Standup
Meeting

Sprint
Test

244 ◾ Software Engineering

into several tasks, and this is where the big difference occurs. Before any code is
written for a task, the developer decides how it will be tested. The tests become
the specification. The next step is curious—the tests are run on non-existent code.
Naturally, they fail, but this leads to the best feature of TDD—greatly simplified fault
isolation. Once the tests have been run (and failed), the developer writes just enough
code to make the tests pass, and the tests are rerun. If any test fails, the developer
goes back to the code and makes a necessary change. Once all the tests pass, the
next user story is implemented. Occasionally, the developer may decide to refactor
the existing code. The cleaned-up code is then subjected to the full set of existing test
cases, which is very close to the idea of regression testing. For TDD to be practical,
it must be done in an environment that supports automated testing, typically with a
member of the JUnit family of automated test environments.

Testing in TDD is interesting. Since the story level test cases drive the coding, they
ARE the specification, so in a sense, TDD uses specification-based testing. But since
the code is deliberately as close as possible to the test cases, we could argue that it
is also code-based testing. There are two problems with TDD. The first is common
to all agile flavors—the bottom-up approach prohibits a single, high-level design
step. User stories that arrive late in the sequence may obviate earlier design choices.
Then refactoring would have to also occur at the design level, rather than just at the
code level. The agile community is very passionate about the claim that repeated
refactoring results in an elegant design. Given one of the premises of agile develop-
ment, namely that the customer is not sure of what is needed, or equivalently, rapidly
changing requirements, refactoring at both the code and design levels seems the only
way to end up with an elegant design. This is an inevitable constraint on bottom-up
development.

The second problem is that all developers make mistakes—that is much of the
reason we test in the first place. But consider: what makes us think that the TDD
developer is perfect at devising the test cases that drive the development? Even
worse: what if late user stories are inconsistent with earlier ones? A final limitation
of TDD is there is no place in the lifecycle for a cross-check at the user story level.

Figure 11.10 Test-Driven Development Lifecycle.

User
Story

Story
Tasks

Yes

Pass

Story Test
Cases

“Just Enough”
Code

Run Tests

Refactor
Existing code

Refactor?

Life Cycle-Based Testing ◾ 245

11.3.5 Agile Model-Driven Development

Paul has a German friend Georg, who is a Ph.D. mathematician, a software devel-
oper, and a Go player. For several months, they had an email-based discussion about
agile development. At one point, Georg asked if Paul plays the oriental game Go.
Georg maintains that, to be a successful Go player, one needs both strategy and tac-
tics. A deficiency in either one puts a Go player at a disadvantage. In the software
development realm, he equates strategy with an overall design, and tactics as unit
level development. His take on the flavors of agile development is that the strategy
part is missing, and this leads us to a compromise between the agile world and
the traditional views of software development. We first look at Agile Model-Driven
Development (AMDD) popularized by Scott Ambler. This is followed by my mild
reorganization of Ambler’s work, named here as Model-Driven Agile Development
(MDAD).

The agile part of AMDD is the modeling step. Ambler’s advice is to model just
enough for the current user story and then implement it with Test-Driven Development.
The big difference between AMDD and any of the agile lifecycles is that there is a
distinct design step. (The agilists usually express their distaste/disdain for modeling
by calling it the “Big Design Up Front” and abbreviate it as simply the BDUF.) See
Figure 11.11.

Ambler’s contribution is the recognition that design does indeed have a place
in agile development. As this was being written, there was a protracted discussion
on LinkedIn started by the question “Is there any room for design in agile soft-
ware development?” Most of the thread affirms the need for design in any agile
lifecycle. Despite all this, there seems to be no room in AMDD for integration/
system testing.

11.3.6 Model-Driven Agile Development

Model-Driven Agile Development (MDAD) is my proposal for a compromise between
the traditional and the agile worlds. It is stimulated by Georg’s view of the need
for both strategy and tactics, hence the compromise. How does MDAD differ from

Figure 11.11 The Agile Model-Driven Development Lifecycle.

Project
Inception

Iteration
Plan

Iteration

Model
Storming

Test-Driven
Development

Iteration
Modeling

246 ◾ Software Engineering

Iterative development? MDAD recommends test-driven development as the tactic and
it uses Ambler’s view of short iterations. The strategy part is the emphasis on an over-
all model, which in turn supports Model-Based Testing. In MDAD, the three levels of
testing, unit, integration, and system are present.

11.4 Remaining Questions
11.4.1 Specification or Code Based?

Is Test-Driven Development code based, or specification based? In a sense, a test
case is a very low level specification, so Test-Driven Development seems to be speci-
fication based. But, test cases are very closely associated with code, so it has the
appearance of code-based testing. Certainly, code coverage, at least at the DD-Path
level, is unavoidable. Is it a stretch to claim that the set of all test cases constitutes a
requirements specification? Imagine the reaction of a Customer trying to understand
a TDD program from the set of test cases. In the Agile Programming sense, however,
the purpose of each test case can be considered to be a user story, and user stories
are accepted by Customers. It is really a question of level of detail, and this leads to
a variant of Test-Driven Development. Practitioners who object to tiny, incremental
steps suggest that “larger” test cases, followed by larger chunks of code, are prefer-
able. This has the advantage of introducing a small element of code design and prob-
ably reduces the frequency of refactoring. Then the strictly bottom-up approach of
“pure” TDD is complemented by top-down thinking.

11.4.2 Configuration Management?

Superficially, Test-Driven Development appears to be a configuration manage-
ment nightmare. Even a program as small as NextDate has dozens of versions in its
growth from inception to completion. This is where refactoring comes in. Test-Driven

Figure 11.12 The Model-Driven Agile Development Lifecycle.

Requirements
Specification

Project
Modeling

Iteration
Integration

Series of
Iterations

Iteration

Test-Driven
Development

Iteration
Modeling“Final”

System
Testing

Life Cycle-Based Testing ◾ 247

Development forces a bottom-up approach to code development. At certain points, the
conscientious programmer will see that the code can be reorganized into something
more elegant. There are no rules as to when refactoring should occur, but when it
does, it is important to note that the original test cases are preserved. If the refactored
code fails to pass all tests, there is a problem in the refactoring. Again, note the simple

Table 11.1 User Story Granularity

Large Grain User Stories Fine Grain User Stories

1. The program compiles. 1. The program compiles.

2. A date can be input and displayed. 2.1. A day can be input and displayed

2.2.. An input month can be displayed

2.3. An input year can be displayed

3. Invalid days can be recognized. 3.1. A day below minimum can be detected

3.2.. A day above maximum can be detected

4. Invalid months can be recognized. 4.1.. A month below minimum can be detected

4.2.. A month above maximum can be detected

5. Invalid years can be recognized. 5.1. A year below minimum can be detected

5.2. A year above maximum can be detected

6. Invalid dates can be recognized. 6.1. Day = 31 in a 30 day month

6.2. Day > = 29 in February

6.3. Day = 29 in February in a common year

6.4. Day = 29 in February in a leap year

7. Leap years can be recognized. 7.1. A year divisible by 4 is a leap year

7.2. A year not divisible by 4 is a common year.

7.3. A century year not divisible by 400 is a common year.

7.4. A century year divisible by 400 is a leap year.

8. Valid dates can be incremented. 8.1. Increment a non-last day of a month.

8.2. Increment the last day of a 30-day month.

8.3. Increment the last day of a 31-day month.

8.4. Increment December 31.

8.5. Increment February 28 in a common year.

8.6. Increment February 28 in a leap year.

8.7. Increment February 29 in a leap year.

248 ◾ Software Engineering

fault isolation. Refactoring points (once all test cases have passed) are good candidates
for configuration management actions. These are points where a design object is, or
can be, promoted to configuration item status. If later code causes earlier test cases
to fail, this is another clear configuration management point. The configuration item
should be demoted to a design object, which by definition, is subject to change.

11.4.3 Granularity?

The sequence of user stories in the example in Section 11.3.1 uses very fine-grained
level of detail. As an alternative, consider the enlarged granularity of user stories
in Table 11.5. With “larger” user stories, a particular user story is broken down to a
series of finer tasks, and code is developed for each task. In this way, the fault isola-
tion is preserved. To distinguish between these granularity choices, sometimes the
larger version is named “story-driven development.”

11.5 Pros, cons, and Open Questions of TDD
As with most innovations, Test-Driven Development has its advantages, disadvantages,
claims, and unanswered questions. The advantages of TDD are very clear. Due to the
extremely tight test/code cycles, something always works. In turn, this means a TDD
project can be turned over to someone else, likely a programming pair, for continued
development. Probably the biggest advantage of TDD is the excellent fault isolation. If
a test fails, the cause must be the most recently added code. Finally, TDD is supported
by an extensive variety of test frameworks, including those listed in Section 11.2.

It is nearly impossible, or at best, very cumbersome, to perform TDD in the absence
of test frameworks. There really isn’t much of an excuse for this, because the frame-
works are readily available for most programming languages. If a tester cannot find a
test framework for the project language, Test Driven Development is a poor choice. (It
is probably better to just change programming languages.) At a deeper level, TDD is
inevitably dependent on the ingenuity of the tester. Good test cases are necessary, but
not sufficient for TDD to produce good code. Part of the reason is that the bottom-up
nature of TDD provides little opportunity for elegant design. TDD advocates respond
by claiming that a good design is eventually accomplished by a series of refactorings,
each of which improves the code a little bit. A final disadvantage of TDD is that the bot-
tom-up process makes it unlikely that “deeper faults,” such as those only revealed by
dataflow testing, will be revealed by the incrementally created test cases. These faults
require a more comprehensive understanding of the code, and this disadvantage is
exacerbated by the possibility of the thread interaction faults discussed in Chapter 15.

Any new technology or technique has a set of open questions, and this is cer-
tainly true for Test-Driven Development. The easiest question is that of scale-up to
large applications. It would seem that there are practical limits as to how much an
individual can “keep in mind” during a development. This is one of the early motivat-
ing factors for program modularity and information hiding, which are the founda-
tions of the object-oriented paradigm. If size is a problem, complexity is even more
serious. Can systems developed with TDD effectively deal with questions such as
reliability and safety? Such questions usually require sophisticated models, but these

Life Cycle-Based Testing ◾ 249

are not produced in TDD. Finally, there is the question of support for long-term
maintenance. The Agile Programming community and the TDD advocates maintain
that there is no need for the documentation produced by the more traditional devel-
opment approaches. The more extreme advocates even argue against comments in
source code. Their view: the test cases are the specification, and well-written code,
with meaningful variable and method names, is self-documenting. Time will tell.

11.6 Retrospective on MDD vs. TDD
The Northern Cheyenne people of the North American plains have teaching stories
based on what they observe in nature. When they speak of the Medicine Wheel, they
associate animals with each of the four directions, and the animals have qualities
that are seen in nature. One interesting pair is the Eagle and the Mouse. The Eagle
sees the “big picture” and therefore understands the important relationships among
things. The Mouse, on the other hand, sees only the ground where it scurries, and the
grasses it encounters—a very detailed view. Living by the Medicine Wheel means that
each view is honored—each view is needed to have better understanding.

It is unlikely that the Northern Cheyenne ever thought much about Model-Driven
Development (MDD) and Test-Driven Development (TDD), but the lessons are obvious:
both are needed to have better understanding, in this case, of a program to be devel-
oped. This really is not too surprising. In the 1970s and 1980s, camps in the software
community passionately debated the merits of specification-based versus code-based
testing. Thoughtful people soon concluded that some blend of both approaches is nec-
essary. To illustrate these two approaches, consider our Boolean function, isLeap, that
determines whether a given year is a common or a leap year (Decision Table 11.11).

A Model-Driven approach to developing isLeap would likely begin with a deci-
sion table (Decision Table 11.11) showing the relationships among the phrases of the
definition.

The advantage of using a decision table for the model is that it is complete, con-
sistent, and not redundant. Rule 1 refers to century years that are leap years, while
rule 2 refers to century years that are common years. Rule 4 describes non-century
leap years, and rule 8 describes non-century common years. The other rules are

Decision Table 11.11 Leap Year Decision Table

Rules 1 2 3 4 5 6 7 8

c1. year is a multiple of 4 T T T T F F F F

c2. year is a century year T T F F T T F F

c3. year is a multiple of 400 T F T F T F T F

logically impossible X X X X

a1. year is a common year X X

a2. year is a leap year X X

test case: year = 2000 1900 2008 2011

250 ◾ Software Engineering

logically impossible. If we write isLeap from this decision table, we would get some-
thing like the following function (Figure 11.13).

Notice that there are four paths from the source node to the sink node. The path
through node 5 corresponds to rule r1, the one through nodes 7 to rule r2, and so
on. Coding nested If logic three levels deep is probably not what the average devel-
oper would do, at least not on the first try. (And it is even less likely that a developer
would get it correct on the first try. Score one for MDD.)

The test-driven approach results in a different form of complexity. Referring to
the code for User Stories 14 through 17 on Section 11.1, notice that the TDD code
gradually developed a compound If statement, rather than the nested If logic in the
MDD version (slightly refactored again in Figure 11.14).

As a cross check, here is the truth table for the compound condition.
(c1 AND NOT(c2)) OR (c3)

c1 c2 c3 NOT(c2) c1 AND NOT(c2) (c1 AND NOT(c2)) OR c3 year

T T T F F T 2000

T T F F F F 1900

T F T T T T imp

T F F T T T 2008

F T T F F T imp

F T F F F F imp

F F T T F T imp

F F F T F F 2011

Figure 11.13 MDD version of isLeap.

public sta�c boolean isLeap(int year) {
boolean c1; boolean c2; boolean c3;
boolean isLeapYear;

1. c1 = (year % 4 == 0);
// leap years are divisible by 4

2. c2 = (year % 100 == 0);
// but century years are common years

3. c3 = (year % 400 == 0);
// unless they are divisible by 400

4. if (c1 && c2 && c3) {
5. isLeapYear = true; // rule 1
6. } else if (c1 && c2 && !c3) {

8. } else if (c1 && !c2 && !c3) {
9. isLeapYear = true; // rule 4
10. } else
11. isLeapYear = false; // rule 8
12. return isLeapYear;

}

10

1

2

3

4

5

6

9

12

8
7

7. isLeapYear = false; // rule 2

11

Life Cycle-Based Testing ◾ 251

Notice that the same test cases and impossibilities (the “imp” entries) occur in the
rows of the truth table, and the columns of the decision table, therefore the two ver-
sions of isLeap are logically equivalent. Looking at the program graphs of the two
implementations, the MDD version seems to be more complex. In fact, the cyclomatic
complexity of the MDD version is 4, while that of the TDD version is only 2. From
a testing standpoint, however, the compound condition in the TDD version requires
multiple condition coverage. Both versions end up with the same necessary (and suf-
ficient) four test cases.

What, if any, conclusions can we draw from this? The MDD approach yields the
Eagle-eye view of the full picture. We know from the way decision tables work that
the result is correct. We had to do a little more work to reach the same level of confi-
dence with the TDD approach, but in the end, the two implementations are logically
equivalent. The apparent difference in cyclomatic complexity is negated by the need
for multiple condition coverage testing. The nested If complexity is moved into con-
dition complexity—it doesn’t disappear.

Any weaknesses? The MDD approach ultimately depends on the modeling skill;
similarly, the TDD approach depends on testing skill. No significant difference there.
What about size? The MDD version is longer: 17 statement fragments versus 9, but
the TDD process requires more keystrokes. No significant difference here either.

The biggest difference would seem to be maintenance. Presumably, the modeling
would be more helpful to a maintainer—the Eagle again. But the test cases from the
TDD approach will help the maintainer recreate and isolate a fault—the Mouse view.

References
Agresti, W.W., New Paradigms for Software Development, IEEE Computer Society Press,

Washington, D.C., 1986.
Beck, Kent, Extreme Programming Explained: Embrace Change, 2nd Edition, Addison Wesley,

Boston, 2004.

Figure 11.14 TDD version of isLeap.

public static boolean isLeap(int year){
boolean c1; boolean c2; boolean c3;

1 c1 = (year %4 == 0);
2 c2 = (year %100 == 0);
3 c3 = (year % 400 == 0);
4 boolean isLeapYear = false;

5 if ((c1 && !(c2)) || (c3))
6 isLeapYear = true;

7 return isLeapYear;
8 }

1

2

3

4

5

6

8

7

252 ◾ Software Engineering

Boehm, B.W., A spiral model for software development and enhancement, IEEE Computer,
Vol. 21, No. 6, IEEE Computer Society Press, Washington, D.C., May 1988, pp. 61–72.

Harel, David, On visual formalisms, Communications of the ACM, Vol. 31, No. 5, pp. 514–530,
May, 1988. http://www.scrumalliance.org/learn_about_scrum

Larman, C., Applying U.M.L. and Patterns, Prentice-Hall, Upper Saddle River, New Jersey, 2001.

http://www.scrumalliance.org

253

Chapter 12

Integration Testing

In September 1999, the Mars Climate Orbiter mission failed after successfully traveling
416 million miles in 41 weeks. It disappeared just as it was to begin orbiting Mars. The
fault should have been revealed by integration testing: Lockheed Martin Astronautics
used acceleration data in English units (pounds), while the Jet Propulsion Laboratory
did its calculations with metric units (newtons). NASA announced a $50,000 project
to discover how this could have happened (Fordahl, 1999). They should have read
this chapter. The Mars Perseverance Rover did much better in 2021.

Of the three distinct levels of software testing: unit, integration, and system, inte-
gration testing is the least well understood of these, hence in practice, it is the phase
most poorly done. This chapter examines two mainline and one less well-known
integration testing strategies. Traditional integration is illustrated with a continuing
procedural example. Integration testing of object-oriented software is treated next,
followed by a “unifying theory” for both procedural and object-oriented software.
The chapter ends with a discussion of Model-Based Integration Testing.

Craftpersons are recognized by two essential characteristics: they have a deep
knowledge of the tools of their trade, and they have a similar knowledge of the
medium in which they work so that they understand their tools in terms of how they
work with the medium. In Part II, we focused on the tools (techniques) available to
the testing craftsperson at the unit level. Our goal there was to understand testing
techniques in terms of their advantages and limitations with respect to particular
types of software. Here, we continue our emphasis on model-based testing, with the
goal of improving the testing craftsperson’s judgment through a better understanding
of three underlying models.

12.1 Decomposition-Based Integration
Beginning in the 1990s, and continuing 30 years later, mainline introductory software
engineering texts, for example [Pressman 1992] and [Schach 1993], typically present
four integration strategies based on the functional decomposition tree of the proce-
dural software: top-down, bottom-up, sandwich, and the vividly named “big bang.”

254 ◾ Software Engineering

Many classic software testing texts echo this approach, [Deutsch 1982], [Hetzel 1988],
[Kaner et al., 1993], [Mosley 1993], to name a few. Each of these strategies (except
big bang) describes the order in which units are to be integrated. We can dispense
with the big bang approach most easily: in this view of integration, all the units are
compiled together and tested at once. The drawback to this is that when (not if!) a
failure is observed, few clues are available to help isolate the location(s) of the fault.
(Recall the distinction we made in Chapter 1 between faults and failures.)

The functional decomposition tree is the basis for this approach to integration
testing because it is the main representation, usually derived from final source code,
which shows the structural relationship of the system with respect to its units. All
three integration orders presume that the units have been separately tested, thus,
the goal of decomposition-based integration is to test the interfaces among sepa-
rately tested units. A functional decomposition tree reflects the lexicological inclu-
sion of units, in terms of the order in which they need to be compiled, to assure the
correct referential scope of variables and unit names. In this chapter, our familiar
NextDate unit is extended to a main program, Calendar, with procedures and func-
tions. Figure 12.1 contains the functional decomposition tree for the calendar pro-
gram. The pseudo-code is given in next.

The calendar program sketched here in acquires a date in the form mm, dd, yyyy,
and provides the following functional capabilities:

	 ◾	 the date of the next day (our old friend, NextDate)
	 ◾	 the day of the week corresponding to the date (i.e., Monday, Tuesday…)
	 ◾	 the zodiac sign of the date
	 ◾	 the most recent year in which Memorial Day was celebrated on May 27
	 ◾	 the most recent Friday the Thirteenth

The sketch of the Calendar Program is given next, followed by a condensed “skel-
eton” which is the basis for the functional decomposition in Figure 12.1.

Figure 12.1 Functional decomposition of the Calendar Program.

Calendar
(Main)

getDigits

lastDayOfMonth

isValidDate

dateToDaynum

DaynumToDate isMondayisFriday

isLeap getDateisLeap weekDay Friday13th MemorialDayzodiac nextDate

Integration Testing ◾ 255

Pseudo code for the Calendar Program

Main Calendar
Data Declarations
 mm, dd, yyyy, dayNumber, dayName, zodiacSign
Function isLeap (input yyyy, returns T/F)
 (isLeap is sefl-contained)
End Function isLeap

Procedure getDate (returns mm, dd, yyyy, dayNumber)
 Function isValidDate (inputs mm, dd, yyyy; returns T/F)
 Function lastDayOfMonth (inputs mm, yyyy, returns 28, 29, 30, or 31)
 lastDayOfMonth body
 (uses isLeap)
 end lastDayOfMonth body
 End Function lastDayOfMonth

 isValidDate body
 (uses lastDayOfMonth)
 end isValidDate body
 End Function isValidDate

 Procedure getDigits(returns mm, dd, yyyy)
 (uses Function isValidDate)
 End Procedure getDigits

 Procedure memorialDay (inputs mm, dd, yyyy ; returns yyyy)
 Function isMonday (inputs mm, dd, yyyy ; returns T/F)
 (uses weekDay)
 End Function isMonday

 memorialDaybody
 isMonday
 end memorialDay
 End Procedure memorialDay
Procedure friday13th (inputs mm, dd, yyyy ; returns mm1, dd1, yyyy1)
 Function isFriday (inputs mm, dd, yyyy ; returns T/F)
 (uses weekDay)
 End Function isFriday

 friday13th body
 (uses isFriday)
 end friday13th
End Procedure friday13th

getDate body
 getDigits
 isValidDate
 dateToDayNumber
end getDate body
End Procedure getDate
Procedure nextDate (input daynum, output mm1, dd1, yyyy1)

256 ◾ Software Engineering

 Procedure dayNumToDate
 dayNumToDate body
 (uses isLeap)
 end dayNumToDate body
nextDate body
 dayNumToDate
end nextDate body
End Procedure nextDate

Procedure weekDay (input mm, dd, yyyy; output dayName)
 (uses Zeller’s Congruence)
End Procedure weekDay

Procedure zodiac (input dayNumber; output dayName)
 (uses dayNumbers of zodiac cusp dates)
End Procedure zodiac

Main program body
 getDate
 nextDate
 weekDay
 zodiac
 memorialDay
 friday13th
End Main program body

Lexicological Inclusion of Calendar Program

Main Calendar
 Function isLeap
 Procedure weekDay
 Procedure getDate
 Function isValidDate
 Function lastDayOfMonth
 Procedure getDigits
 Procedure memorialDay
 Function isMonday
 Procedure friday13th
 Function isFriday
 Procedure nextDate
 Procedure dayNumToDate
 Procedure zodiac

12.1.1 Top-down Integration

Top-down integration begins with the main program (the root of the tree). Any lower
level unit that is called by the main program appears as a “stub,” where stubs are
pieces of throw-away code that emulate a called unit. If we performed top-down
integration testing for the Calendar program, the first step would be to develop stubs
for all the units called by the main program—isLeap, weekDay, getDate, zodiac,

Integration Testing ◾ 257

nextDate, friday13th, and memorialDay. In a stub for any unit, the tester hard codes
in a correct response to the request from the calling/invoking unit. In the stub for
zodiac, for example, if the main program calls zodiac with 05, 27, 2012, zodiacStub
would return “Gemini.” In extreme practice, the response might be “pretend zodiac
returned Gemini.” The use of the pretend prefix emphasizes that it is not a real
response. In practice, the effort to develop stubs is usually quite significant. There
is good reason to consider stub code as part of the software project and main-
tain it under configuration management. In Figure 12.2, the first step in Top-Down
Integration is shown. The gray-shaded units are all stubs. The goal of the first step is
to check that the main program functionality is correct.

Once the main program has been tested, we replace one stub at a time, leaving
the others as stubs. Figure 12.3 shows the first three steps in the gradual replace-
ment of stubs by actual code. The stub replacement process proceeds in a breadth-
first traversal of the decomposition tree until all the stubs have been replaced.
(In Figures 12.2 and 12.3, the units below the first level are not shown, because they
are not needed.)

Figure 12.2 First step in Top-Down integration.

getDateisLeap weekDay Friday13th MemorialDayzodiac nextDate

Calendar
(Main)

getDateisLeap weekDay Friday13th MemorialDayzodiac nextDate

Figure 12.3 Next three steps in Top-Down integration.

getDateisLeap weekDay Friday13th MemorialDayzodiac nextDategetDateisLeap weekDay Friday13th MemorialDayzodiac nextDate

Calendar
(Main)

getDateisLeap weekDay Friday13th MemorialDayzodiac nextDate

Calendar
(Main)

getDateisLeap weekDay Friday13th MemorialDayzodiac nextDate

Calendar
(Main)

getDateisLeap weekDay Friday13th MemorialDayzodiac nextDate

Calendar
(Main)

getDateisLeap weekDay Friday13th MemorialDayzodiac nextDate

Calendar
(Main)

getDateisLeap weekDay Friday13th MemorialDayzodiac nextDate

Calendar
(Main)

getDateisLeap weekDay Friday13th MemorialDayzodiac nextDate

Calendar
(Main)

getDateisLeap weekDay Friday13th MemorialDayzodiac nextDate

258 ◾ Software Engineering

The “theory” of top-down integration is that, as stubs are replaced one at a time,
if there is a problem, it must be with the interface to the most recently replaced stub.
(Note that the fault isolation is similar to that of Test-Driven Development). The prob-
lem is that a functional decomposition is deceptive. Because it is derived from the
lexicological inclusion required by most compilers, the process generates impossible
interfaces. Calendar main never directly refers to either isLeap or weekDay, so those
test sessions could not occur.

12.1.2 Bottom-up Integration

Bottom-up integration is a “mirror image” to the top-down order, with the difference
that stubs are replaced by driver modules that emulate units at the next level up in
the tree. (In Figure 12.4, the gray units are drivers.) Bottom-up integration begins
with the leaves of the decomposition tree and uses a driver version of the unit that
would normally call it to provide it with test cases. (Note the similarity to test driver
units at the unit level. As units are tested, the drivers are gradually replaced, until the
full decomposition tree has been traversed. There is less throw-away code in bottom-
up integration, but the problem of impossible interfaces persists.

Figure 12.5 shows one case where a unit (zodiac) can be tested with a driver. In
this case, the Calendar driver would probably call zodiac with 36 test dates that are
the day before a cusp date, the cusp date, and the day after the cusp date. The cusp
date for Gemini is May 21, so the driver would call zodiac three times, with May
20, May 21, and May 22. The expected responses, respectively, would be “Taurus,”
“Gemini,” and “Gemini.” Note how similar this is to the assert mechanism in the JUnit
(and related) test environments.

12.1.3 Sandwich Integration

Sandwich integration is a combination of top-down and bottom-up integration. If we
think about it in terms of the decomposition tree, we are doing big bang integration

Figure 12.4 First step in bottom-up integration.

Calendar
(Main)

getDigits

lastDayOfMonth

isValidDate

dateToDaynum

DaynumToDate isMondayisFriday

getDateisLeap weekDay Friday13th MemorialDayzodiac nextDate

Calendar
(Main)

getDigits

lastDayOfMonth

isValidDate DaynumToDate isMondayisFriday

getDateisLeap weekDay Friday13th MemorialDayzodiac nextDate

Integration Testing ◾ 259

on a subtree (see Figure 12.6). There will be less stub and driver development effort,
but this will be offset to some extent by the added difficulty of fault isolation that is a
consequence of big bang integration. (We could probably discuss the size of a sand-
wich, from dainty finger sandwiches to Dagwood-style sandwiches, but not now.)

A sandwich is a full path from the root to leaves of the functional decomposi-
tion tree. In Figure 12.6, the set of units is almost semantically coherent, except that
isLeap is missing. This set of units could be meaningfully integrated, but test cases at
the end of February would not be covered. Also note that the fault isolation capabil-
ity of the top-down and bottom-up approaches is sacrificed. No stubs not drivers are
needed in sandwich integration.

12.1.4 Pros and Cons

With the exception of big bang integration, the decomposition-based approaches are
all intuitively clear. Build with tested components. Whenever a failure is observed,
the most recently added unit is suspected. Integration testing progress is easily
tracked against the decomposition tree. (If the tree is small, it is a nice touch to shade
in nodes as they are successfully integrated.) The top-down and bottom-up terms

Figure 12.5 Bottom-up integration for zodiac.

Calendar
(driver)

getDateisLeap weekDay Friday13th MemorialDayzodiac nextDate

Calendar
(driver)

getDateisLeap weekDay Friday13th MemorialDaynextDate

Figure 12.6 Sample sandwich integration.

Calendar
(Main)

getDigits

lastDayOfMonth

isValidDate

dateToDaynum

DaynumToDate isMondayisFriday

getDateisLeap weekDay Friday13th MemorialDayzodiac nextDate

260 ◾ Software Engineering

suggest breadth-first traversals of the decomposition tree, but this is not mandatory.
(We could use full-height sandwiches to test the tree in a depth-first manner.)

One of the most frequent objections to functional decomposition and waterfall
development is that both are artificial, and both serve the needs of project manage-
ment more than the needs of software developers. This holds true also for decompo-
sition-based testing. The whole mechanism is that units are integrated with respect to
structure; this presumes that correct behavior follows from individually correct units
and correct interfaces. (Practitioners know better.) The development effort for stubs
or drivers is another drawback to these approaches, and this is compounded by the
retesting effort.

12.2 Call Graph-Based Integration
One of the drawbacks of decomposition-based integration is that the basis is the
functional decomposition tree. We saw that this leads to impossible test pairs. If we
use the call graph instead, we resolve this deficiency; we also move in the direction
of structural testing. A Call Graph is developed by considering units to be nodes,
and if unit A calls (or uses) unit B, there is an edge from node A to node B. Notice
that this also applies to object-oriented software, in which nodes are o-o units, and
edges are messages. The call graph for the (procedural) Calendar program is shown
in Figure 12.7.

Since edges in the Call Graph refer to actual execution-time connections, the call
graph avoids all the problems we saw in the decomposition-tree based versions of
integration. In fact, we could repeat the discussion of Section 12.1 based on stubs
and drivers in the units in Figure 12.7. This will work well, and it preserves the fault
isolation feature of the decomposition-based approaches. Figure 12.8 shows the first
step in call graph-based top-down integration.

The stubs in the first session could operate as follows. When the Calendar main
program calls getDateStub, the stub might return May 27, 2020. The zodiacStub would
return “Gemini,” and so on. Once the main program logic is tested, the stubs would
be replaced as we discussed in Section 12.1. The three strategies of Section 12.1 will

Figure 12.7 Call Graph of the Calendar Program.

getDate zodiac memorialDay Friday13thweekDay

isFridayisMonday

nextDate

dayNumToDatedateToDaynum

lastDayOfMonth

isValidDate

getDigits

isLeap

Calendar
(Main)

Integration Testing ◾ 261

all work well when stubs and drivers are based on the call graph rather than the
functional decomposition.

We now enjoy the investment we made in the discussion of graph theory. Because
the call graph is a directed graph, why not use it the way we used program graphs?
This leads us to two new approaches to integration testing: we will refer to them
as pairwise integration and neighborhood integration. We repeat: This discussion
applies to both procedural and object-oriented code.

12.2.1 Pairwise Integration

The idea behind pairwise integration is to eliminate the stub/driver development
effort. Instead of developing stubs and/or drivers, why not use the actual code? At
first, this sounds like big bang integration, but we restrict a session to only a pair of
units in the call graph. The end result is that we have one integration test session
for each edge in the call graph. Pairwise integration results in an increased number
of integration sessions when a node (unit) is used by two or more other units. In
the Calendar example, there would be 15 separate sessions for top-down integration
(one for each stub replacement); this increases to 19 sessions for pairwise integra-
tion (one for each edge in the call graph). This is offset by a reduction in stub/
driver development. Three pairwise integration sessions are shown in Figure 12.9:
getDate and getDigits, nextDate and dayNumToDate, and the third pair, weekDay
and isFriday.

The main advantage of pairwise integration is the high degree of fault isolation. If
a test fails, the fault must be in one of the two units. The biggest drawback is that, for

Figure 12.8 Call graph-based top-down integration of the Calendar Program.

Calendar
(Main)

getDate zodiac memorialDay Friday13thweekDaynextDate

Figure 12.9 Three pairs for pairwise integration.

getDate zodiac memorialDay Friday13thweekDay

isFridayisMonday

nextDate

dayNumToDatedateToDaynum

lastDayOfMonth

isValidDate

getDigits

isLeap

Calendar
(Main)

262 ◾ Software Engineering

units involved on several pairs, a fix that works in one pair may not work in another
pair. This is yet another example of the testing pendulum discussed in Chapter 10.
Call graph integration is slightly better than the decomposition tree-based approach,
but both can be removed from the reality of the code being tested.

12.2.2 Neighborhood Integration

We can let the mathematics carry us still further by borrowing the notion of a neigh-
borhood from topology. The neighborhood of a node in a graph is the set of nodes
that are one edge away from the given node. (Technically, this is a neighborhood of
radius 1; in larger systems, it makes sense to increase the neighborhood radius.) In a
directed graph, this includes all the immediate predecessor nodes and all the imme-
diate successor nodes (notice that these correspond to the set of stubs and drivers
of the node). The neighborhoods for nodes isValidDate, nextDate, and memorialDay
are shown in Figure 12.10.

The 15 neighborhoods for the Calendar example (based on the call graph in
Figures 12.7 and 12.10) are listed in Table 12.1. To make the table simpler, the origi-
nal unit names are replaced by node numbers (in Figure 12.11), where the number-
ing is generally breadth-first.

The information in Table 12.1 is given below in Table 12.2 as the adjacency matrix
for the call graph. The column sums show the indegrees of each node, and the row
sums show the outdegrees.

We can always compute the number of neighborhoods for a given call graph.
Each interior node will have one neighborhood, plus one extra in case leaf nodes are
connected directly to the root node. (An interior node has a nonzero indegree and a
nonzero outdegree.) We have:

Interior nodes = nodes – (source nodes + sink nodes)

Neighborhoods = interior nodes + source nodes

which combine to:

Neighborhoods = nodes – sink nodes

Figure 12.10 Three neighborhoods (of radius 1) for neighborhood integration.

getDate zodiac memorialDay Friday13thweekDay

isFridayisMonday

nextDate

dayNumToDatedateToDaynum

lastDayOfMonth

isValidDate

getDigits

isLeap

Calendar
(Main)

getDate zodiac memorialDay Friday13thweekDay

isFridayisMonday

nextDate

dayNumToDatedateToDaynum

lastDayOfMonth

isValidDate

getDigits

isLeap

Integration Testing ◾ 263

Neighborhood integration usually yields a reduction in the number of integration
test sessions, and it reduces stub and driver development. The end result is that
neighborhoods are essentially the sandwiches that we slipped past in the previ-
ous section. (It is slightly different, because the base information for neighbor-
hoods is the call graph, not the decomposition tree.) What they share with sandwich

Table 12.1 Neighborhoods of radius 1 in the Calendar call graph

Neighborhoods in the Calendar Program Call Graph

Node Unit name Predecessors Successors

1 Calendar (Main) (none) 2, 3, 4, 5, 6, 7

2 getDate 1 8, 9

3 zodiac 1 9

4 nextDate 1 10

5 memorialDay 1 11

6 weekday 1, 11, 12 (none)

7 Friday13th 1 12

8 getDigits 2 13

9 dateToDayNum 3 15

10 dayNumToDate 4 15

11 isMonday 5 6

12 isFriday 7 6

13 isValidDate 8 14

14 lastDayOfMonth 13 15

15 isLeap 9, 10, 14 (none)

Figure 12.11 Calendar call graph with units replaced by numbers.

1

3 6

9

2 5

8 11

4 7

10 12

14

13

15

1

3 6

9

2 5

8 11

4 7

10 12

14

13

15

264 ◾ Software Engineering

integration is more significant—neighborhood integration testing has the fault isola-
tion difficulties of “medium bang” integration. This is somewhat offset by reduced
stub and driver effort.

12.2.3 Pros and Cons

The call graph-based integration techniques move from a purely structural basis
toward a behavioral basis; the underlying assumption is an improvement. (See the
Testing Pendulum in Chapter 10.) The neighborhood-based techniques also reduce
the stub/driver development effort. In addition to these advantages, call graph-based
integration matches well with developments characterized by builds and compo-
sition. For example, sequences of neighborhoods can be used to define builds.
Alternatively, we could allow adjacent neighborhoods to merge (into villages?) and
provide an orderly, composition-based growth path. All this supports the use of
neighborhood-based integration for systems developed by life cycles in which com-
position dominates.

The biggest drawback to call graph-based integration testing is the fault isola-
tion problem, especially for large neighborhoods. A more subtle but closely related
problem occurs. What happens if (when) a fault is found in a node (unit) that

Table 12.2 Adjacency matrix of the Calendar Call Graph

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 row sum

1 1 1 1 1 1 1 6

2 1 1 2

3 1 1

4 1 1

5 1 1

6 0

7 1 1

8 1 1

9 1 1

10 1 1

11 1 1

12 1 1

13 1 1

14 1 1

15 0

column sum 0 1 1 1 1 1 3 1 2 1 1 1 1 1 3

Integration Testing ◾ 265

appears in several neighborhoods? The adjacency matrix (Table 12.2) highlights this
 immediately—nodes with either a high row sum or a high column sum will be in
several neighborhoods. Obviously, we resolve the fault in one neighborhood; but
this means changing the unit’s code in some way, which in turn means that all the
previously tested neighborhoods that contain the changed node need to be retested.

Finally, a fundamental uncertainty exists in any structural form of testing: the
presumption that units integrated with respect to structural information will exhibit
correct behavior. We know where we are going: we want system-level threads of
behavior to be correct. When integration testing based on call graph information is
complete, we still have quite a leap to get to system-level threads. We resolve this by
changing the basis from call graph information to special forms of paths.

12.3 Path-Based Integration
Much of the progress in the development of mathematics comes from an elegant pat-
tern: have a clear idea of where you want to go, and then define the concepts that
take you there. We do this here for path-based integration testing, but first we need
to motivate the definitions.

We already know that the combination of structural and functional testing is
highly desirable at the unit level; it would be nice to have a similar capability for inte-
gration (and system) testing. We also know that we want to express system testing in
terms of behavioral threads. Lastly, we extend our goal for integration testing: instead
of just testing interfaces among separately developed and tested units, we focus on
interactions among these units. (“Co-functioning” might be a good term.) Interfaces
are structural; interaction is behavioral.

When a unit executes, some path of source statements is traversed. Suppose that
a call goes to another unit along such a path. At that point, control is passed from
the calling unit to the called unit, where some other path of source statements is tra-
versed. We deliberately ignored this situation in Part II, because this is a better place
to address the question. Two possibilities are available: abandon the single-entry,
single-exit precept and treat such calls as an exit followed by an entry or suppress the
call statement because control eventually returns to the calling unit anyway. The sup-
pression choice works well for unit testing, but it is antithetical to integration testing.

12.3.1 New and Extended Concepts

To get where we need to go, we need to refine some of the program graph concepts.
As before, these refer to programs written in an imperative language. We allow state-
ment fragments to be a complete statement, and statement fragments are nodes in
the program graph.

Definition

A source node in a unit is a statement fragment at which unit execution begins or
resumes.

The first executable statement in a unit is clearly a source node. Source nodes also
occur immediately after nodes that transfer control to other units.

266 ◾ Software Engineering

Definition

A sink node in a unit is a statement fragment at which unit execution terminates.
The final executable statement in a program is clearly a sink node; so are state-

ments that transfer control to other units.

Definition

A module execution path is a sequence of statements that begins with a source node
and ends with a sink node, with no intervening sink nodes.

The effect of the definitions so far is that program graphs now have multiple
source and sink nodes. This would greatly increase the complexity of unit testing, but
integration testing presumes that unit testing is complete.

Definition

A message is a programming language mechanism by which one unit transfers con-
trol to another unit and acquires a response from the other unit.

Depending on the programming language, messages can be interpreted as sub-
routine invocations, procedure calls, function references, and the usual messages in
an object-oriented programming language. We follow the convention that the unit
that receives a message (the message destination) always eventually returns control
to the message source. Messages can pass data to other units. We can finally make
the definitions for path-based integration testing. Our goal is to have an integration
testing analog of DD-Paths.

Definition

An MM-Path is an interleaved sequence of module execution paths and messages.
The basic idea of an MM-Path is that we can now describe sequences of module

execution paths that include transfers of control among separate units. In traditional
software, “MM” is nicely understood as Module-Message; in object-oriented software,
it is clearer to interpret “MM” as Method-Message. These transfers are by messages;
therefore, MM-Paths always represent feasible execution paths, and these paths cross
unit boundaries. The hypothetical example in Figure 12.12 shows an MM-Path (the
solid edges) in which module A calls module B, which in turn calls module C. Notice
that, for traditional (procedural) software, MM-Paths will always begin (and end) in
the main program.

In unit A, nodes a1, a5, and a6 are source nodes (a5 and a6 are outcomes of the
decision at node a5.), and nodes a4 (a decision) and a8 are sink nodes. Similarly, in
unit B, nodes b1 and b3 are source nodes, and nodes b2 and b5 are sink nodes. Node
b2 is a sink node because control leaves unit B at that point. It could also be a source
node, because unit C returns a value used at node b2. Unit C has a single source
node, c1, and a single sink node, c9. Unit A contains three module execution paths:
<a1, a2, a3, a4>, <a4, a5, a7, a8>, and < a4, a6, a7, a8>. The solid edges are edges
actually traversed in this hypothetical example. The dashed edges are in the program
graphs of the units as stand-alone units, but they did not “execute” in the hypotheti-
cal MM-Path. We can now define an integration testing analog of the DD-Path graph
that serves unit testing so effectively.

Integration Testing ◾ 267

Definition

Given a set of units, their MM-Path graph is the directed graph in which nodes are
module execution paths and edges correspond to messages and returns from one
unit to another.

Notice that MM-Path graphs are defined with respect to a set of units. This directly
supports composition of units and composition-based integration testing. We can
even compose down to the level of individual module execution paths, but that is
probably more detailed than necessary.

We should consider the relationships among module execution paths, program
paths, DD-Paths, and MM-Paths. A program path is a sequence of DD-Paths, and
an MM-Path is a sequence of module execution paths. Unfortunately, there is no
simple relationship between DD-Paths and module execution paths. Either might
be contained in the other, but more likely, they partially overlap. Because MM-Paths
implement a function that transcends unit boundaries, we do have one relationship:
consider the intersection of an MM-Path with a unit. The module execution paths
in such an intersection are an analog of a slice with respect to the (MM-Path) func-
tion. Stated another way, the module execution paths in such an intersection are the
restriction of the function to the unit in which they occur.

The MM-Path definition needs some practical guidelines. How long (“deep” might
be better) is an MM-Path? The notion of message quiescence helps here. Message
quiescence occurs when a unit that sends no messages is reached (like module C in
Figure 12.12). In a sense, this could be taken as a “midpoint” of an MM-Path—the
remaining execution consists of message returns. This is only mildly helpful. What
if there are two points of message quiescence. Maybe a better answer is to take

Figure 12.12 A hypothetical MM-Path across three units.

b2

b3

b1

b4

b5

c1

c2

c4

c9

c5

c6 c7

c8

c3

a1

a2

a3

a4

a5 a6

a8

a7

268 ◾ Software Engineering

the longer of the two, or, if they are of equal depth, the latter of the two. Points of
 message quiescence are natural endpoints for an MM-Path.

12.3.2 MM-Path Complexity

If you compare the MM-Paths in Figures 12.13 and 12.20, it seems intuitively clear
that the latter is more complex than the former. Because these are strongly connected
directed graphs, we can “blindly” compute their cyclomatic complexities; recall the
formula is V(G) = e – n + 2p, where p is the number of strongly connected regions.
Since messages return to the sending unit, we will always have p = 1, so the formula
reduces to V(G) = e – n + 2. Surprisingly, both graphs have V(G) = 7. Clearly, MM-Path
complexity needs some notion of size in addition to cyclomatic complexity.

12.3.3 Pros and Cons

MM-Paths are a hybrid of functional and structural testing. They are functional in the
sense that they represent actions with inputs and outputs. As such, all the functional
testing techniques are potentially applicable. The net result is that the cross-check of
the functional and structural approaches is consolidated into the constructs for path-
based integration testing. We therefore avoid the pitfall of structural testing; and, at
the same time, integration testing gains a fairly seamless junction with system testing.
Path-based integration testing works equally well for software developed in the tra-
ditional waterfall process or with one of the composition-based alternative life cycle
models. Finally, the MM-Path concept applies directly to object-oriented software.

The most important advantage of path-based integration testing is that it is closely
coupled with actual system behavior, instead of the structural motivations of decom-
position and call graph-based integration. However, the advantages of path-based
integration come at a price—more effort is needed to identify the MM-Paths. This
effort is probably offset by the elimination of stub and driver development.

Figure 12.13 Cyclomatic complexities of two MM-Paths.

A

B

C

V(G) = 3

A

B

C

V(G) = 3

MainMain

getDate

validDate

lastDayOfMonth

V(G) = 4

Main

getDate

validDate

lastDayOfMonth

V(G) = 4V(G) = 4

Integration Testing ◾ 269

12.4 Example: Procedural integrationNextDate
Our now familiar NextDate is rewritten here as integrationNextDate, a main program
with a functional decomposition into procedures and functions. The pseudo-code
is very close to Visual Basic for Applications (VBA); the lines are numbered for use
in the program graphs. Figures 12.14, 12.15, and 12.16 show the source code, the
program graphs, and the cyclomatic complexity (see Chapter 15) of the units in the
procedural version of integrationNextDate.

Figures 12.17 and 12.18 show the functional decomposition and the call graph,
respectively. Figure 12.19 shows the program graphs of the units in integrationNext-
Date. Figure 12.20 shows the MM-Paths for the input date May 27, 2020.

12.4.1 Decomposition-Based Integration

Pairwise integration based on the decomposition in Figure 12.17 is problematic; the
isLeap and lastDayOfMonth functions are never directly called by the Main program,

Figure 12.14 Procedural integrationNextDate Part 1.

isLeap V(G) = 4

7

8

9

10

11 12

13

14 15

17

16

18

19

20

1 Main integrationNextDate

Type Date
Month As Integer
Day As Integer
Year As Integer

EndType

Dim today As Date
Dim tomorrow As Date

2 GetDate(today) 'msg1
3 PrintDate(today) 'msg2
4 tomorrow = IncrementDate(today) 'msg3
5 PrintDate(tomorrow) 'msg4
6 End Main

7 Function isLeap(year) Boolean
8 If (year divisible by 4)
9 Then
10 If (year is NOT divisible by 100)
11 Then isLeap = True
12 Else
13 If (year is divisible by 400)
14 Then isLeap = True
15 Else isLeap = False
16 EndIf
17 EndIf
18 Else isLeap = False
19 EndIf
20 End (Function isLeap)

1 2 3 4 5 6

Main V(G) = 1

270 ◾ Software Engineering

so these integration sessions would be empty. The pairs involving integrationNext-
Date and GetDate, IncrementDate, and PrintDate are all useful (but short) sessions.

12.4.2 Call Graph-Based Integration

Call Graph integration based on the call graph in Figure 12.18 is an improvement
over that for the decomposition-based pairwise integration. There are no empty inte-
gration sessions because edges refer to actual unit references. There is still the prob-
lem of stubs. Sandwich integration is appropriate because this example is so small.

Figure 12.15 Procedural integrationNextDate Part 2.

21 Function lastDayOfMonth(month, year) Integer
22 Case month Of
23 Case 1: 1, 3, 5, 7, 8, 10, 12
24 lastDayOfMonth = 31
25 Case 2: 4, 6, 9, 11
26 lastDayOfMonth = 30
27 Case 3: 2
28 If (isLeap(year)) 'msg5
29 Then lastDayOfMonth = 29
30 Else lastDayOfMonth = 28
31 EndIf
32 EndCase
33 End (Function lastDayOfMonth)

68 Function IncrementDate(aDate) Date
69 If (aDate.Day < lastDayOfMonth(aDate.Month)) 'msg8
70 Then aDate.Day = aDate.Day + 1
71 Else aDate.Day = 1
72 If (aDate.Month = 12)
73 Then aDate.Month = 1
74 aDate.Year = aDate.Year + 1
75 Else aDate.Month = aDate.Month + 1
76 EndIf
77 EndIf
78 End (IncrementDate)

79 Procedure PrintDate(aDate)
80 Output("Day is ", aDate.Month, "/", aDate.Day, "/",
aDate.Year)
81 End (PrintDate)

IncrementDate V(G) = 3

68

69

71

74

77

78

72

73 75

76

70

LastDayOfMonth
V(G) = 4

21

22

23

24

25

26

27

28

29 30

31

32

33

PrintDate V(G) = 1

79

80

81

Integration Testing ◾ 271

In fact, it lends itself to a build sequence. Build 1 could contain Main and PrintDate.
Build 2 could contain Main, GetDate, and PrintDate. IncrementDate. Finally, build 3
would add the remaining units lastDayOfMonth, isLeap, and IncrementDate in addi-
tion to the already present PrintDate, and GetDate.

Neighborhood integration based on the call graph would likely proceed
with the neighborhood of lastDayOfMonth followed by the neighborhood of
integrationNextDate.

Figure 12.16 Procedural integrationNextDate Part 3.

34 Function GetDate(aDate) Date
dim aDate As Date

35 Function ValidDate(aDate) Boolean 'within scope of GetDate
dim aDate As Date
dim dayOK, monthOK, yearOK As Boolean

36 If ((aDate.Month > 0) AND (aDate.Month <=12)
‘added decisional complexity = +1

37 Then monthOK = True
38 Else monthOK = False
39 EndIf
40 If (monthOK)
41 Then
42 If ((aDate.Day > 0) AND 'msg6

(aDate.Day <= lastDayOfMonth(aDate.Month, aDate.Year))
‘added decisional complexity = +1

43 Then dayOK = True
44 Else dayOK = False
45 EndIf
46 EndIf
47 If ((aDate.Year > 1811) AND (aDate.Year <= 2012)

‘added decisional complexity = +1
48 Then yearOK = True
49 Else yearOK = False
50 EndIf
51 If (monthOK AND dayOK AND yearOK)

‘added decisional complexity = +2
52 Then ValidDate = True
53 Else ValidDate = False
54 EndIf
55 End (Function ValidDate)

' GetDate body begins here
56 Do
57 Output("enter a month")
58 Input(aDate.Month)
59 Output("enter a day")
60 Input(aDate.Day)
61 Output("enter a year")
62 Input(aDate.Year)
63 GetDate.Month = aDate.Month
64 GetDate.Day = aDate.Day
65 GetDate.Year = aDate.Year
66 Until (ValidDate(aDate)) 'msg7
67 End (Function GetDate)

GetDate V(G) = 2

56

66

34

67

57 - 65

56

66

34

67

57 - 65

GetDate V(G) = 2

56

66

34

67

57 - 65

ValidDate V(G) = 6

43

47

38

51

55

42

46

39

50

54

41

45

37

49

53

40

44

36

48

52

35

ValidDate V(G) = 6

43

47

38

51

55

42

46

39

50

54

41

45

37

49

53

40

44

36

48

52

35
34 Function GetDate(aDate) Date

dim aDate As Date
35 Function ValidDate(aDate) Boolean 'within scope of GetDate

dim aDate As Date
dim dayOK, monthOK, yearOK As Boolean

36 If ((aDate.Month > 0) AND (aDate.Month <=12)
‘added decisional complexity = +1

37 Then monthOK = True
38 Else monthOK = False
39 EndIf
40 If (monthOK)
41 Then
42 If ((aDate.Day > 0) AND 'msg6

(aDate.Day <= lastDayOfMonth(aDate.Month, aDate.Year))
‘added decisional complexity = +1

43 Then dayOK = True
44 Else dayOK = False
45 EndIf
46 EndIf
47 If ((aDate.Year > 1811) AND (aDate.Year <= 2012)

‘added decisional complexity = +1
48 Then yearOK = True
49 Else yearOK = False
50 EndIf
51 If (monthOK AND dayOK AND yearOK)

‘added decisional complexity = +2
52 Then ValidDate = True
53 Else ValidDate = False
54 EndIf
55 End (Function ValidDate)

' GetDate body begins here
56 Do
57 Output("enter a month")
58 Input(aDate.Month)
59 Output("enter a day")
60 Input(aDate.Day)
61 Output("enter a year")
62 Input(aDate.Year)
63 GetDate.Month = aDate.Month
64 GetDate.Day = aDate.Day
65 GetDate.Year = aDate.Year
66 Until (ValidDate(aDate)) 'msg7
67 End (Function GetDate)

GetDate V(G) = 2

56

66

34

67

57 - 65

ValidDate V(G) = 6

43

47

38

51

55

42

46

39

50

54

41

45

37

49

53

40

44

36

48

52

35

272 ◾ Software Engineering

12.4.3 Integration Based on MM-Paths

Because the program is data-driven, all MM-Paths begin in and return to the main
program. Here are the four MM-Paths for May 27, 2020 (note the points of message
quiescence). They are shown in Figure 12.20.

Main (1, 2, 3)
 msg1
 GetDate (35, 36, 37, 38, 39, 40, 41, 42) 'point of message quiescence
 msg1 return
Main(3, 4)
 msg2
 PrintDate(58, 59, 60) 'point of message quiescence
 msg2 return
Main(4, 5)
 msg3
 IncrementDate(43, 44)
 msg 6
 LastDayOfMonth(22, 23, 24, 25, 33, 34) 'point of message quiescence
 msg 6 return
 IncrementDate(45, 46, 56, 57)
 msg 3 return
Main(5, 6)
 msg4
 PrintDate(58, 59, 60) 'point of message quiescence
 msg4 return
Main (6, 7)

We are now in a strong position to describe test coverage metrics for MM-Paths of
procedural code. Given a set of MM-Paths,

MMP0: Every message sent
MMP1: Correct response received for every message sent.
MMP2: Every unit execution path is traversed

Figure 12.17 Functional decomposition of integrationNextDate.

lastDayOfMonth getDateisLeap

integrationNextDate

incrementDate printDate

Figure 12.18 Call graph of integrationNextDate.

integrationNextDate

getDate incrementDate

isLeaplastDayOfMonth

printDate

msg3

msg5

msg3

msg5

Integration Testing ◾ 273

Figure 12.19 Program graphs of units in integrationNextDate.

isLeap V(G) = 4

LastDayOfMonth
V(G) = 4

22

23

24

25

26

27

28

29

30 31

32

33

34

22

23

24

25

26

27

28

29

30 31

32

33

34

Main V(G) = 1

2

1

3

4

5

6

7

IncrementDate
V(G) = 3

43

44

47

50

55

57

48

49

53

56

45

46 51

52

54

42

GetDate V(G) = 1

36

35

36

37

38

39

40

41

8

9

10

11

18

13

14

15

17

16

12

19

20

21

PrintDate
V(G) = 1

58

59

6060

274 ◾ Software Engineering

Figure 12.20 Four MM-Paths for May 27, 2020.

isLeap V(G) = 4

LastDayOfMonth
V(G) = 4

22

23

24

25

26

27

28

29

30 31

32

33

34

Main V(G) = 1

2

1

3

4

5

6

7

IncrementDate
V(G) = 3

43

44

47

50

55

57

48

49

53

56

45

46 51

52

54

42

GetDate V(G) = 1

36

35

36

37

38

39

40

41

8

9

10

11

18

13

14

15

17

16

12

19

20

21

PrintDate
V(G) = 1

58

59

60

LastDayOfMonth
V(G) = 4

22

23

24

25

26

27

28

29

30 31

32

33

34

2

1

3

4

5

6

7

IncrementDate
V(G) = 3

43

44

47

50

55

57

48

49

53

56

45

46 51

52

54

42

36

35

36

37

38

39

40

41

8

9

10

11

18

13

14

15

17

16

12

19

20

21

PrintDate
V(G) = 1

58

59

60

Integration Testing ◾ 275

12.4.4 Observations and Recommendations

Table 12.3 summarizes the observations made in the preceding discussion. The signif-
icant improvement of MM-Paths as a basis for integration testing is due to their exact
representation of dynamic software behavior. MM-Paths are also the basis for present
research in data flow (define/use) approaches to integration testing. Integration test-
ing with MM-Paths requires extra effort. As a fallback position, perform integration
testing based on call graphs.

12.5 Example: O-O integrationNextDate
The pseudo-code version of Section 12.4 (integrationNextDate) is rewritten here as
Java code. Figures 12.17 and 12.18 show the functional decomposition and the call
graph, respectively. Figure 12.19 shows the program graphs of the units in integra-
tionNextDate. Figure 12.20 shows the MM-Path for the input date May 27, 2020.

import static org.junit.jupiter.api.Assertions.*;
import org.junit.jupiter.api.Test;

1 class DateTest {
2 @Test
2 void testSimple() {

3 Date date = new Date(Month.MAY, 27, 2020); /* msg 1 */
4 assertEquals("5-27-2020", date.getDate()); /* msg 2 */
5 date = date.nextDate(); /* msg 3 */
6 assertEquals("5-28-2020", date.getDate()); /* msg 4 */
7 }
7 }

8 public class Date {
9 private Day day;
10 private Month month;
11 private Year year;

12 public Date(int month, int day, int year) {
13 this.year = new Year(year); /* msg 5 */

Table 12.3 Comparison of Integration Testing Strategies

Strategy Basis
Ability to test

Interfaces
Ability to test

co-functionality
fault isolation

resolution

Functional
Decomposition

acceptable but can
be deceptive

limited to pairs of
units

good, to faulty unit

Call Graph acceptable limited to pairs of
units

good, to faulty unit

MM-Path excellent complete excellent, to faulty unit
execution path

276 ◾ Software Engineering

14 this.month = new Month(month, this.year); /* msg 6 */
15 this.day = new Day(day, this.month); /* msg 7 */
16 }

17 public String getDate() {
18 retu rn month.getMonth() + "-" + day.getDay() + "-" +

year.getYear();
19 } /* msg 8, msg 9, msg 10 */

20 public Date nextDate() {
21 Day nextDay = day.getNextDay(); /* msg 11 */
22 Month month = nextDay.getMonth(); /* msg 12 */
23 Year year = month.getYear(); /* msg 13 */
24 return new Date(month.getMonth(), nextDay.getDay(), year.

getYear()); /* msg14, msg15, msg16 */
25 }
26 }

27 public class Day {
28 private int day;
29 private Month month;

30 public Day(int day, Month month) {
31 this.day = day;
32 this.month = month;
33 }

34 public int getDay() {
35 return day;
36 }

37 public Day getNextDay() {
38 if(day < month.numberOfDays()) /* msg 17 */
39 return new Day(day + 1, month); /* msg1 8 */
40 else
41 return new Day(1, month.getNextMonth()); /* msg 19 */
42 }

43 public Month getMonth() {
44 return month;
45 }
46 }

47 public class Month {
48 public static final int JANUARY = 1;
49 public static final int FEBRUARY = 2;
50 public static final int MARCH = 3;
51 public static final int APRIL = 4;
52 public static final int MAY = 5;
53 public static final int JUNE = 6;
54 public static final int JULY = 7;
55 public static final int AUGUST = 8;
56 public static final int SEPTEMBER = 9;
57 public static final int OCTOBER = 10;
58 public static final int NOVEMBER = 11;

Integration Testing ◾ 277

59 public static final int DECEMBER = 12;

60 private int month;
61 private Year year;

62 public Month(int month, Year year) {
63 this.month = month;
64 this.year = year;
65 }

66 public int getMonth() {
67 return month;
68 }

69 public int numberOfDays() {
70 int numberOfDays = 0;
71 switch (month) {
 // 31 day months
72 case 1: case 3: case 5: case 7: case 8: case 10: case 12:
73 numberOfDays = 31;
74 break;
 // 30 day months
75 case 4: case 6: case 9: case 11:
76 numberOfDays = 30;
77 break;
 // February
78 case 2:
79 if(year.isLeapYear()) /* msg 20 */
80 numberOfDays = 29;
81 else
82 numberOfDays = 28;
84 break;
85 }
86 return numberOfDays;
87 }

88 public Month getNextMonth() {
89 if(month < 12)
90 return new Month(month + 1, year); /* msg 21 */
91 else
92 return new Month(1, year.getNextYear()); /* msg

22, msg 23 */
93 }

94 public Year getYear() {
95 return year;
96 }
97 }

98 public class Year {
99 private int year;

100 public Year(int year) {
101 this.year = year;
102 }

278 ◾ Software Engineering

103 public int getYear() {
104 return year;
105 }

106 public boolean isLeapYear() {
107 boolean isLeapYear = true;

108 if(year % 4 != 0)
109 isLeapYear = false;
110 else if(year % 100 != 0)
111 isLeapYear = true;
112 else if(year % 400 != 0)
113 isLeapYear = false;
114 return isLeapYear;
115 }

116 public Year getNextYear() {
117 return new Year(year + 1); /* msg 24 */
118 }
119 }

We can make some interesting observations between the procedural (VBA pseudo-
code) and the Java implementations of the integration versions of the nextDate func-
tion (see Table 12.4). This table indicates that the total complexity stays about the
same but is shifted from the procedural unit level to the object-oriented integration
level. Take a minute to compare the program graphs of the procedural (Figure 12.19)
and object-oriented implementations of integrationNextDate (Figure 12.21).

Since most of the object-oriented methods are simple, unit testing at the method
level is (or should be) correspondingly simple. This shifts the burden in two ways:
unit level testing of object-oriented code should be at the class level, and integration
testing is increasingly important for object-oriented code.

Table 12.5 lists the sources, destinations, and line numbers of the 24 messages in
the object-oriented implementation of integrationNextDate.

Figure 12.21 is the program graph of the five classes that implement the Java ver-
sion of integrationNextDate. (Notice that the methods internal to a class are present
in the overall class program graph. The cyclomatic complexity of each class is given.

Figure 12.22 shows the 24 message flows among the five classes, and Figure 12.23
shows the message flows for May 27, 2020.

Table 12.4 Comparison of Procedural and object-oriented Implementations

Procedural Object-oriented

Number of units 6 5 classes, 17 methods

Sum of unit complexities 14 40

Number of lines of code 90 119

Number of messages 7 25

Integration Testing ◾ 279

Figure 12.21 Program Graphs of 5 integrationNextDate Classes.

1 2 3 4 5 6 DateTest V(G) = 171 2 3 4 5 6 DateTest V(G) = 17

114

119

107

106

98

99

100

101

102

103

104

105

Year V(G) = 6

108

109

110

111

112

113

115

116

117

118

114

119

107

106

98

99

100

101

102

103

104

105

Year V(G) = 6

108

109

110

111

112

113

115

116

117

118

42

40

41

39

46

38

37

27

28

29

30

31

32

33

34

35

36

43

44

45

Day V(G) = 5

42

40

41

39

46

38

37

27

28

29

30

31

32

33

34

35

36

43

44

45

Day V(G) = 5

Date V(G) = 3

8

9

10

11

13

14

15

16

12

18

19

17

21

22

23

24

20

25

26

Date V(G) = 3

8

9

10

11

13

14

15

16

12

18

19

17

21

22

23

24

20

25

26

47

48

49

50

52

53

51

54

55

57

58

56

60

61

59

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77 81

79

78

80

82

83

84

85

86
Month V(G) = 10

90

88

87

89

91

92

93

94

95

96 97

47

48

49

50

52

53

51

54

55

57

58

56

60

61

59

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77 81

79

78

80

82

83

84

85

86
Month V(G) = 10

90

88

87

89

91

92

93

94

95

96 97

1 2 3 4 5 6 7

114

119

107

106

98

99

100

101

102

103

104

105 108

109

110

111

112

113

115

116

117

118

42

40

41

39

46

38

37

27

28

29

30

31

32

33

34

35

36

43

44

45

8

9

10

11

13

14

15

16

12

18

19

17

21

22

23

24

20

25

26

47

48

49

50

52

53

51

54

55

57

58

56

60

61

59

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77 81

79

78

80

82

83

84

85

86

90

88

87

89

91

92

93

94

95

96 97

280 ◾ Software Engineering

12.6 Model-Based Integration Testing
In this section, we extend the code-based ideas of integration testing to the level
of Model-Based Testing. As an example, please refer to Appendix B: The Foodies
Wish List web-based application. Our starting point is the message-based interac-
tion among models, in this case, finite state machines. For convenience, Figure B.2 is
repeated here as Figure 12.24. It is a direct analog of the Call Graph we used earlier
in this chapter.

Table 12.5 Messages in the object-oriented implementation of integrationNextDate

Message Source Destination At line

msg 1 DateTest Date 3

msg 2 DateTest date.getDate() 4

msg 3 DateTest date.nextDate() 5

msg 4 DateTest date.getDate() 6

msg 5 Date Year 13

msg 6 Date Month 14

msg 7 Date Day 15

msg 8 Date.getDate month.getMonth() 18

msg 9 Date.getDate day.getDay() 18

msg 10 Date.getDate year.getYear() 18

msg 11 Date.nextDate day.getNextDay() 21

msg 12 Date.nextDate nextDay.getMonth() 22

msg 13 Date.nextDate month.getYear() 23

msg 14 Date.nextDate month.getMonth() 24

msg 15 Date.nextDate nextDay.getDay() 24

msg 16 Date.nextDate year.getYear() 24

msg 17 Day.getNextDay month.numberOfDays() 38

msg 18 Day.getNextDay Day(day+1,month) 39

msg 19 Day.getNextDay month.getNextMonth() 41

msg 20 Month.numberOfDays() year.isLeapYear() 79

msg 21 Month.getNextMonth() Month(month+1,year) 90

msg 22 Month.getNextMonth() Month() 92

msg 23 Month.getNextMonth() Month(year.getNextYear()) 92

msg 24 Year.getNextYear() Year(year+1) 117

Integration Testing ◾ 281

12.6.1 Message Communication

The simplest form of model-based integration testing is to verify that every message
has been sent to, and received by, the correct ricipient. Figure 12.21 shows 38 mes-
sages that support the communication among the eight finite state machines. This
level of testing would be most easily performed with a language-specific program
such as JUnit. The ASSERT statements can be used to check the sending and receiv-
ing ends of each message. We can postulate these simple test coverage metrics:

	 ◾	 Test Cover 1: every message sent to the correct recipient
	 ◾	 Test Cover 2: every message received by the correct recipient

Figure 12.22 Message flows among 5 integrationNextDate Classes.

DateTest

testSimple

Year

Year()

getYear()

isLeapYear()

getNextYear()

Month

Month()

numberOfDays()

getNextMonth()

getMonth()

getYear()

msg24

Date

Date()

getDate()

nextDate()

Day

Day()

getNextDay()

getMonth()

getDay()

282 ◾ Software Engineering

12.6.2 Pairwise Integration

There are eight pairs of finite state machines (Excluding the external communi-
cation via the credit card interface) that share messages in Figure 12.24. Pairwise
Integration examines each pair of message-sharing finite state machines. Here we
take a closer look at the pair that includes Account Creation and Administration.
They communicate using messages m7, m11, m12, m13, and m16. The message com-
munication described in Section 12.6.1 would check that each of these five messages
would have been sent and received correctly. That level of checking is a good analog
of unit testing based on a program graph, in which there is no “semantic content”
to the test cases. In fact, there are two responses to message m7: messages m11
and m12, depending on whether or not m7 communicated a new UserID. Pairwise
Integration begins to answer “why” a response message is sent—clearly moving in

Figure 12.23 Message Flows for May 27, 2020.

DateTest

testSimple

Year

Year()

getYear()

isLeapYear()

getNextYear()

Month

Month()

numberOfDays()

getNextMonth()

getMonth()

getYear()

Date

Date()

getDate()

nextDate()

Day

Day()

getNextDay()

getMonth()

getDay()

Integration Testing ◾ 283

the direction of increased semantic content. We can go a step further with the obser-
vation that a new personal identification number (PIN) can be sent only after the
UserID is approved by message m11.

To test this pair, we need two new objects: CreateAccountDriver, to provide user
inputs to Account Creation, and FoodieDBStub to provide responses to messages
sent to FoodieDB fsm by the Administration fsm. We can reduce FoodieDBStub by
focusing on just the messages begun by Account Creation (See the reduced fsm in
Figure 12.25). CreateAccountDriver will need to send input events e11, e12, and e13

Figure 12.24 Message communication among finite state machines.

m9,m10,m15
m33,m34, m35

Foodie
Database

m22,m25

m11,m12,m16

Login

Account
Creation

Shopping
List

Shopping
List

Administration

Shopping
Cart

m7,m13

m23,m26

m2
Foodie
Home

m30,m31

m17,m37

m18,m19,
m20,m21

m8,m14,
m36,m38

m5

Credit Card
Interface

m9,m10,m15
m33,m34, m35

Foodie
Database

m22,m25

m11,m12,m16

Login

Account

Shopping
List

Administration

Shopping
Cart

m7,m13

m23,m26

m2
Foodie
Home

m30,m31

m17,m37

m18,m19,
m20,m21

m8,m14,
m36,m38

m5

Credit Card
Interface

Figure 12.25 Reduced Foodie Finite State Machines.

m1/a11

S1 Foodie
Home

S10 Account
Creation

S11 UserID
to Admin

e11/m7

S14 PIN to
Admin

S12 UserID
Approved

S13 UserID
Rejecteded

m7/m8,a41

S41: Admin
Home

S42: Check
New Member

S43: Member
Approved

m15/m16

S45: PIN
Confirmation

S46: User PIN
in FoodieDB

S44: Member
Rejected

S1: FoodieDB
Home

S61: UserID
Create

S62: Await
User PIN

m8/a61

e61/m9

e62/m10

284 ◾ Software Engineering

to the AccountCreation finite state machine. FoodieDBStub will need to send mes-
sages m9, m10, and m15 to the Administration fsm. Given this set of four classes, we
can test longer, semantically correct message sequences. As a caution, there is an ana-
log of the infeasible paths we saw in program graph-based unit testing. Looking at
the descriptions of the Foodie Wish List messages in Appendix B, message m12 from
Admin to Account Creation rejects the proposed UserID. So any sequence containing
the subsequence <m12, m13 > is logically impossible.

To identify longer pairwise integration test cases, we begin with the individual
fsms, as shown in Figure 12.25. Starting at state S1 (Foodie Home), message m1
moves control to state S10 in AccountCreation. We will need AccountCreationDriver
to generate message m1 (Open AccountCreation). Once opened, the AccountCreation
driver can generate the input event e11 (Enter UserID), which causes the transition to
state S11 and sends message m7 (Proposed UserID) to Admin. Since Admin does not
know if this is an original UserID, the proposed UserID is sent to the FoodieDBStub
(message m8). Since it is a stub, FoodieDBStub must have pre-programmed knowl-
edge that the proposed UserID is either new or already in the FoodieDB. The tes-
ter will have to insure this when building FoodieDBStub. If it is a new UserID,
FoodieDBStub will return message m9 (Approve New Member UserID). The Admin
fsm then sends m11 (Proposed USerID Approved) back to AccountCreation. All of
this is in Pairwise Test Case 1.

Pairwise Test Case 1:

Test Case Name Original UserID Entered

Test Case ID pw1

Description User enters an original UserID

Preconditions The entered USerID is not in FoodieDB

Message Sequence

Source Message or Input Destination

AccountCreationDriver m1 Account Creation

AccountCreationDriver e11 Account Creation

Account Creation m7 Admin

AccountCreationDriver e12 Account Creation

Admin m8 FoodieDBStub

FoodieDBStub m9 Admin

Admin m11 Account Creation

This test case is very analagous to the MM-Paths we discussed in Section 12.4.3. The
difference is that the path does not send return messages as done in the original

Integration Testing ◾ 285

MM-Paths. The path “ends” when control is returned to the FSM that sent the mes-
sage that originated the path—in this case, CreateAccount.

Pairwise Test Case 2:

Test Case Name Original UserID and PIN entry

Test Case ID pw2

Description User enters an original UserID and a PIN

Preconditions Entered USerID is not in FoodieDB, PIN is OK

Message Sequence

Source Message or Input Destination

AccountCreationDriver e11 Account Creation

AccountCreationDriver e12 Account Creation

Account Creation m7 Admin

Admin m8 FoodieDBStub

FoodieDBStub m9 Admin

Admin m11 Account Creation

AccountCreationDriver e13 Account Creation

Account Creation m13 Admin

Admin m14 FoodieDBStub

FoodieDBStub m15 Admin

Admin m16 Account Creation

Pairwise Test Case 2 is actually a sequence of two FSM/M Paths—the first contains
the message sequence <m7, m8, m9, m11>, and the second contains the message
sequence <m13, m14, m15, m16>. This example shows that FSM/M Paths can be
concatenated into full end-to-end transactions that are almost at the level of a system
test case.

Pairwise Test Case 3

Test Case Name Duplicate UserID Entered

Test Case ID pw3

Description User enters a duplicate UserID

Preconditions The entered USerID is in FoodieDB

286 ◾ Software Engineering

Message Sequence

Source Message or Input Destination

AccountCreationDriver e11 Account Creation

AccountCreationDriver e12 Account Creation

Account Creation m7 Admin

Admin m8 FoodieDBStub

FoodieDBStub m10 Admin

Admin m12 Account Creation

12.6.3 FSM/M Path Integration

In this subsection, we expand the pairwise test cases from Section 12.6.2 into full
FSM/M Paths. To clarify this distinction, we will refer to them as scenarios (as in
Appendix B). We still need driver classes for input events in AccountCreation (events
e11 and e12) and event e61 in FoodieDB. Scenarios 1 and 2 are very detailed and
complete. The interactions connected with the Foodie database are more complex
(three other fsms), so those scenarios will be expressed both as state sequences and
as message sequences.

Definition

A Finite State Machine Message Path (FSM/M) is a path that originates and terminates
with a Finite State Machine and connects to other FSMs using messages.

Notation

An FSM/M Path is denoted by the (interior) sequence of messages. The FSM/M Path
in Pairwise Test Case 1 is the message sequence <m7, m8, m9, m11 >.

12.6.4 Scenario 1: Normal Account Creation

A Foodie User creates a UserID, sends it to Admin. Admin sends the potential UserID
to the FoodieDB. The FoodieDB checks and finds no duplicate, so it approves the
new UserID, and confirms this to Admin. In turn, Admin confirms this to Account
Creation. The newly approved User then creates a PIN and sends it to Admin. (No
check is made on validity of a PIN, since it is local to a User.) Admin sends the PIN
to the FoodieDB, so that the FoodieDB can send it as the “Expected PIN” to Login.

Figure 12.26 is derived from Figure 12.25 by deleting anything not involved with
Scenario 1. By examining Figure 12.26, we can derive sequence of messages and
input events in scenario 1:<m1, e11, m7, m8, m9, e61, m11, e12, m13, m14, m15, e44,
m16, m4>. The reason for making the state numbers global is so we can describe a
scenario as a state sequence across swim lanes. The state sequence for scenario 1 is:
S1, S10, S41, S60, S61, S42, S11, S12, S43, S62, S60, S45, S41, S14, S1.

Integration Testing ◾ 287

For this discussion, we postulate an integration testing tool that allows a tester to
“execute” paths through a set of communicating finite state machines. The verbs CAUSE
and VERIFY are used as follows. A CAUSE statement can do any of the following:

	 ◾	 cause an event local to a fsm (e.g., e11),
	 ◾	 cause message to be sent to an adjacent fsm, with parameters as needed, and
	 ◾	 cause a state transition.

In an almost symmetric way, VERIFY statements can:

	 ◾	 recognize the present state of the fsm in which it occurs,
	 ◾	 report the name of the present state,
	 ◾	 verify the value of VERIFY parameters

With just these CAUSE and VERIFY capabilities, an integration tester can define an
FSM/M Path integration test procedure. Table 12.7 is derived from Figure 12.26. Steps 1
through 4 in Table 12.6 would be expressed as the test procedure in Table 12.7.

Exercises
 1. Find the source and sink nodes in the DateTest class.
 2. Consider some possible complexity metrics for MM-Paths:

 ◾ V(G) = e – n
 ◾ V(G) = 0.5e – n + 2
 ◾ sum of the outdegrees of the nodes
 ◾ sum of the nodes plus the sum of the edges

Figure 12.26 Message and state flow in Scenario 1.

m1/a11

S1 Foodie
Home

S10 Account
Creation

S11 UserID
to Admin

e11/m7

m11

S14 PIN to
Admin

S12 UserID
Approved

e12/m13,a12

m7/m8,a41

S41: Admin
Home

S42: Check
New Member

S43: Member
Approved

m9/m11

m13/m14

m15/m16

S45: PIN
Confirmation

S46: User PIN
in FoodieDB

S60: FoodieDB
Home

S61: UserID
Create

S62: Await
User PIN

m8/a61

e61/m9

m9

m1/a11

S1 Foodie
Home

S10 Account
Creation

S11 UserID
to Admin

e11/m7

m11

S14 PIN to
Admin

S12 UserID
Approved

e12/m13,a12

m7/m8,a41

S41: Admin
Home

S42: Check
New Member

S43: Member
Approved

m9/m11

m13/m14

m15/m16

S45: PIN
Confirmation

S46: User PIN
in FoodieDB

S60: FoodieDB
Home

S61: UserID
Create

S62: Await
User PIN

m8/a61

e61/m9

m9

288 ◾ Software Engineering

Table 12.7 Partial FSM/M Test Procedure

Step Description

1 VERIFY (InState(S1))

2 CAUSE (SendMessage(m1))

3 VERIFY (InState(S10))

4 VERIFY (StateName = AccountCreation)

5 CAUSE (InputEvent(e11))

6 VERIFY (InState(S11))

7 CAUSE (SendMessage(m7) UserID = ‘Paul”)

8 VERIFY (InState(S41))

9 VERIFY (UserID = ‘Paul’)

Table 12.6 Scenario 1 FSM/M Path Description

Step In State CAUSE Event/ Message NextState VERIFY (Result)

1 S1 m1 S10 in AccountCreation

2 S10 e11 S11 in AccountCreation

3 S10 m7: propose UserID = 'Paul' S41 in Admin; UserID = 'Paul'

4 S41 m7 S42 in Admin;

5 S41 m8 S60 in FoodieDB; UserID = 'Paul'

6 S60 m8 S61 in FoodieDB;

7 S61 e61 S62 in FoodieDB;

8 S61 m9: Approve UserID = 'Paul' S42 in Admin, UserID = 'Paul' OK

9 S42 m9 S43 in Admin

10 S42 m11 S11 in AccountCreation

11 S11 m11 S12 UserID = 'Paul' approved

12 S12 e12 S14 in AccountCreation

13 S12 m13: UserPIN defined S43 in Admin: pass on UserPIN

14 S43 m14: UserPIN to FoodieDB S62 UserPIN stored in FoodieDB

15 S62 m15: Confirm UserPIN S45 in Admin

16 S45 m15 S46 in Admin

17 S45 m16: Defined PIN accepted S14 in AccountCreation

18 S46 e44 S41 in Admin Home

19 S14 m16: Defined PIN accepted S1 in Foodie Home

Integration Testing ◾ 289

 Apply these to the second MM-Path in Figure 12.22 (begins with message msg2).
Do they have any explanatory value?

 3. Make up a few test cases, interpret them as MM-Paths, and then see what por-
tions of the unit program graphs in Figure 12.20 are traversed by your MM-Paths.
Try to devise a “coverage metric” for MM-Path-based integration testing.

 4. One of the goals of integration testing is to be able to isolate faults when a test
case causes a failure. Consider integration testing for a program written in a
procedural programming language. Rate the relative fault isolation capabilities
of the following integration strategies:
A = Decomposition-based top-down integration.
B = Decomposition-based bottom-up integration.
C = Decomposition-based sandwich integration.
D = Decomposition-based “big bang” integration.
E = Call graph-based pairwise integration.
F = Call graph-based neighborhood integration (radius = 2).
G = Call graph-based neighborhood integration (radius = 1).

 Show your ratings graphically by placing the letters corresponding to a strategy
on the continuum in Figure 12.27. As an example, suppose Strategies X and Y
are about equal and not very effective, and Strategy Z is very effective.

 5. Consider the process of writing an important paper (e.g. a formal paper or a
proposal). In the (dark) days before word processors, students were encour-
aged to develop detailed outlines, then a draft that might be reviewed, make
final changes, and TYPE a final version (ouch!). Discuss how technology has
changed this process, then relate it to the life cycle models we have studied. Can
you think of other situations where moving from a Waterfall-like approach to a
different life cycle has improved the process?

References
Matthew Fordahl, Elementary Mistake Doomed Mars Probe, The Associated Press, Oct. 1, 1999;

also, http://mars.jpl.nasa.gov/msp98/news/mco990930.html.
Michael S. Deutsch, Software Verification and Validation-Realistic Project Approaches,

Prentice-Hall, Englewood Cliffs, NJ 1982.
Bill Hetzel, The Complete Guide to SOFTWARE TESTING, 2nd Edition, QED Information

Sciences, Inc., Wellesley, MA, 1988.

Figure 12.27 continuum of Fault Isolation Capabilities.

Potential for Fault Isolation
Low High

X

Y

Z

http://mars.jpl.nasa.gov

290 ◾ Software Engineering

Paul C. Jorgensen, The Use of MM-Paths in Constructive Software Development, Ph.D. disserta-
tion, Arizona State University, Tempe, AZ, 1985.

Paul C. Jorgensen and Carl Erickson, “Object-Oriented Integration Testing”, Communications
of the ACM, Sept. 1994.

Cem Kaner, Jack Falk, & Hung Quoc Nguyen, Testing Computer Software, 2nd Edition, Van
Nostrand Reinhold, New York, 1993.

Daniel J. Mosley, The Handbook of MIS Application Software Testing, Yourdon Press, Prentice-
Hall, Englewood Cliffs, NJ 1993.

Roger S. Pressman, Software Engineering: A Practitioner’s Approach, McGraw-Hill, New York,
1982.

Stephen R. Schach, Software Engineering, 2nd ed., Richard D. Irwin, Inc., and Aksen Associates,
Inc., 1993.

291

Chapter 13

System Testing

Of the three levels of testing, the system level is closest to everyday experience. We
test many things: a used car before we buy it, an online network service before we
subscribe, and so on. A common pattern in these familiar forms is that we evaluate
a product in terms of our expectations—not with respect to a specification or a stan-
dard. Consequently, the goal is not to find faults, but to demonstrate desired behavior.
Because of this, we tend to approach system testing from a specification-based stand-
point instead of from a code-based one. Because it is so intuitively familiar, system
testing in practice tends to be less formal than it might be; and this is compounded
by the reduced testing interval that usually remains before a delivery deadline.

The craftsperson metaphor continues to serve us. We need a better understanding
of the medium; we will view system testing in terms of threads of system-level behav-
ior. We begin with a new construct—an Atomic System Function (ASF)—and develop
the thread concept, highlighting some of the practical problems of thread-based test-
ing. System testing is closely coupled with requirements specification; therefore, we
shall use appropriate system level models to enjoy the benefits of model-based test-
ing. Common to all of these is the idea of “threads,” so we shall see how to identify
system level threads in a variety of common models. We will apply the strategy to a
portion of the Foodies Wish List example (see Appendix B).

13.1 Threads
Threads are hard to define; in fact, some published definitions are either counterpro-
ductive, misleading, or wrong. We will use examples to develop a “shared vision” of
a thread. Here are several views:

A scenario of normal usage
A system-level test case
A stimulus/response pair
Behavior that results from a sequence of system-level inputs
An interleaved sequence of port input and output events
A sequence of transitions in a state machine description of the system

292 ◾ Software Engineering

An interleaved sequence of object messages and method executions
A sequence of machine instructions
A sequence of source instructions
A sequence of MM-paths
A sequence of atomic system funct.ions (to be defined in this chapter)

Threads have distinct levels. A unit-level thread is usefully understood as an execu-
tion-time path of source instructions or, alternatively, as a sequence of DD-Paths. An
integration-level thread is an MM-Path—that is, an alternating sequence of methods/
module execution paths and messages. If we continue this pattern, a system-level
thread is a sequence of atomic system functions. Because atomic system functions
have port events as their inputs and outputs, a sequence of atomic system functions
implies an interleaved sequence of port input and output events. The end result is
that threads provide a unifying view of our three levels of testing. Unit testing tests
individual functions; integration testing examines interactions among units; and sys-
tem testing examines interactions among atomic system functions. In this chapter,
we focus on system-level threads and answer some fundamental questions, such as,
“How big is a thread? Where do we find them? How do we test them?”

13.1.1 Thread Possibilities

Defining the endpoints of a system-level thread is a bit awkward. We motivate a tidy,
graph theory-based definition by working backward from where we want to go with
threads. Here are four candidate threads in our Foodie Wish List example:

	 ◾	 Entry of a digit
	 ◾	 Entry of a personal identification number (PIN)
	 ◾	 A simple Foodies Wish List shopping transaction: Login (includes UserID Entry

and PIN Entry), Select a FoodeItem from the Shopping List, move the item to
the Shopping Cart, and tender a credit card payment.

	 ◾	 A shopping session containing two or more simple transactions.

Digit entry is a good example of a minimal atomic system function. It begins with a
port input event (the digit keystroke) and ends with a port output event (the screen
digit echo), so it qualifies as a stimulus/response pair. This level of granularity is too
fine for the purposes of system testing.

The second candidate, Personal Identification Number (PIN) Entry, is a good
example of an upper limit to integration testing and, at the same time, a starting
point of system testing. PIN Entry is a good example of an atomic system function. It
is also a good example of a family of stimulus/response pairs (system-level behavior
that is initiated by a port input event, traverses some programmed logic, and termi-
nates in one of several possible responses (port output events)). PIN Entry entails a
sequence of system-level inputs and outputs.

 1. A screen requesting PIN digits
 2. An interleaved sequence of digit keystrokes and system responses
 3. The possibility of cancellation by the customer before the full PIN is entered
 4. A system disposition: A customer has three chances to enter the correct PIN. Once

a correct PIN has been entered, the Foodie customer has access to the Shopping
List function. If the user fails the third PIN entry attempt, the Login fails.

System Testing ◾ 293

Several stimulus/response pairs are evident, putting ASFs clearly in the domain of
system-level testing. Other examples of ASFs include Account Creation, Shopping List
item selection, Shopping Cart processing, payment processing, and Foodie database
updating.

The third candidate, the simple transaction, has a sense of “end-to-end” comple-
tion. A customer could never execute PIN Entry alone (a UserID Entry is needed), but
a full simple shopping transaction is commonly executed. This is a good example of
a system-level thread; note that it involves the interaction of several ASFs.

The last possibility (the session) is a sequence of threads. This is also properly a
part of system testing; at this level, we are interested in the interactions among threads.
Unfortunately, most system testing efforts never reach the level of thread interaction.

13.1.2 Thread Definitions

We simplify our discussion by defining a new term that helps us get to our desired goal.

Definition

An Atomic System Function (ASF) is an action that is observable at the system level
in terms of port input and output events.

In an event-driven system, ASFs are separated by points of event quiescence;
these occur when a system is (nearly) idle, waiting for a port input event to trigger
further processing. Event quiescence has an interesting Petri net insight. In a tradi-
tional Petri net, deadlock occurs when no transition is enabled. In an Event-Driven
Petri net (as in Chapter 4), event quiescence is similar to deadlock; but an input event
can bring new life to the net. The Foodie Wish List system exhibits event quiescence
in several places: one is at the beginning of a Foodie Wish List session, where the
system has displayed a Login screen and is waiting for a UserID and User PIN to be
entered. Event quiescence is a system-level property; it is a direct analog of message
quiescence at the integration level.

Definition

Given a system defined in terms of atomic system functions, the ASF Graph of the
system is the directed graph in which nodes are ASFs and edges represent sequential
flow.

Definition

A source ASF is an Atomic System Function that appears as a source node in the ASF
graph of a system; similarly, a sink ASF is an Atomic System Function that appears as
a sink node in the ASF graph.

In the Foodie Wish List system, the UserID Entry is a source ASF, and the payment
ASF is a sink ASF. Notice that intermediary ASFs could never be tested at the system
level by themselves—they need the predecessor ASFs to “get there.”

Definition

A system thread is a path from a source ASF to a sink ASF in the ASF graph of a system.

294 ◾ Software Engineering

These definitions provide a coherent set of increasingly broader views of threads,
starting with very short threads (within a unit) and ending with interactions among
system-level threads. We can use these views much like the ocular on a microscope,
switching among them to see different levels of granularity. Having these concepts is
only part of the problem; supporting them is another. We next take a tester’s view of
requirements specification to see how to identify threads.

13.2 Identifying Threads in Single-Processor Applications
There are three main ways to identify threads: by using user stories and use cases,
finding them in models, and building them up from a set of atomic system functions.
We consider each of these next, using a portion of the Foodies Wish List example.

13.2.1 User Stories/Use Cases

Use Cases are a central part of the Unified Modeling Language (UML). Their main
advantage is that they are easily understood by both customers/users and develop-
ers. They capture the “does view” that emphasizes behavior, rather than the “is view”
that emphasizes structure. Customers and testers both tend to naturally think of a
system in terms of the does view, so use cases are a natural choice.

Decades ago, one author [Larman 2001] defined a hierarchy of use cases in which
each level adds information to the predecessor level. Larman named these levels as
follows:

	 ◾	 High level (very similar to an agile User Story)
	 ◾	 Essential
	 ◾	 Expanded Essential
	 ◾	 Real

The information content of these variations is shown in Venn diagram form in
Figure 13.1. Tables (Use Cases) 13.2 through 13.4 show the gradual increase in
Larman’s use case hierarchy for the example in Table 13.1. High level use cases are
at the level of the user stories used in agile development. A set of high level use cases
gives a quick overview of the does view of a system. Essential use cases add the
sequence of port input and output events. At this stage, the port boundary begins to
become clear to both the customer/user and the developer.

Expanded essential use cases add pre- and post-conditions. We shall see that
these are key to linking use cases when they are expressed as system test cases.

Figure 13.1 Larman’s levels of Use Cases.

High Level

Essential

Real

Expanded Essential

System Testing ◾ 295

Real use cases are at the actual system test case level. Abstract names for port
events, such as “invalid PIN” are replaced by an actual invalid PIN character string.
This presumes that some form of testing database has been assembled. In our Foodie
Wish List system, this would likely include several user accounts with UserIDs and
associated PINs.

13.2.2 How Many Use Cases?

When a project is driven by use cases, there is the inevitable question as to how
many use cases are needed. Use case-driven development is inherently a bottom-
up process. In the agile world, the answer is easy—the customer/user decides how
many use cases are needed. But what happens in a non-agile project? Use case-driven
development is still (or can be) an attractive option. In this section, we examine
strategies to help decide how many bottom-up use cases are needed. Each strategy
employs an incidence matrix (see Chapter 4).

Table 13.1 High level Use Case for Correct PIN on First Try

Use Case Name Correct PIN entry on first try

Use Case ID HLUC-1

Description A customer enters the PIN number correctly on the first attempt.

Table 13.2 Essential Use Case for Correct PIN on First Try

Use Case Name Correct PIN entry on first try

Use Case ID EUC-1

Description A customer enters the PIN number correctly on the first attempt.

Event Sequence

Input events Output events

1. Login Screen shows '- - - - '

2. Customer touches 1st digit

3. Login Screen shows '- - - * '

4. Customer touches 2nd digit

5. Login Screen shows '- - * * '

6. Customer touches 3rd digit

7. Login Screen shows '- * * * '

8. Customer touches 4th digit

9. Login Screen shows '* * * * '

296 ◾ Software Engineering

Table 13.3 Expanded Essential Use Case for Correct PIN on First Try

Use Case Name Correct PIN entry on first try

Use Case ID EEUC-1

Description A customer enters the PIN
. number correctly on the first attempt.

Pre-Conditions 1. The expected PIN is known

2. Login Screen is displayed

Event Sequence

Input events Output events

1. Login Screen shows '- - - - '

2. Customer touches 1st digit

3. Login Screen shows '- - - * '

4. Customer touches 2nd digit

5. Login Screen shows '- - * * '

6. Customer touches 3rd digit

7. Login Screen shows '- * * * '

8. Customer touches 4th digit

9. Login Screen shows '* * * * '

10. Customer touches Enter

11. Login Screen shows 'Correct PIN'

Post conditions Select Transaction screen is active

Table 13.4 Real Use Case for Correct PIN on First Try

Use Case Name Correct PIN entry on first try

Use Case ID RUC-1

Description A customer enters the PIN number
correctly on the first attempt.

Pre-Conditions 1. The expected PIN is '2468'

Event Sequence

Input events Output events

1. Login Screen shows '- - - - '

2. Customer touches digit 2 3. Login Screen shows '- - - * '

4. Customer touches digit 4 5. Login Screen shows '- - * * '

(Continued)

System Testing ◾ 297

13.2.2.1 Incidence with Input Events and Messages

As use cases are identified jointly between the customer/user and developers, both
parties gradually identify inputs (events and messages). This very likely is an iterative
process, in which use cases provoke the recognition of inputs, and they, in turn, sug-
gest additional use cases. These are kept in an incidence matrix showing which use
cases require which inputs. As the process continues, both parties reach a point where
the existing set of inputs is adequate for any new use case. Once this point is reached,
it is reasonable to assume that the existing set of use cases covers all the inputs.

We will use the Login constituent to illustrate the process. In the five examples
used here, messages from the FoodieDB (please see Appendix B) are inputs to the
Login constituent; similarly, messages to the FoodieDB are considered as outputs.
The natural first use case is a valid Login with the correct PIN. The final form is
Scenario 2.1; the steps are numbered to make the flow clearer:

Scenario 2.1: Valid Login, PIN correct on 1st try

Pre-Condition: The UserID and PIN are in FoodieDB

Account Creation FoodieDB

1. e21: Enter valid UserID

2. Send m17: Entered UserID to FoodieDB 3. Receive m17

5. Receive m18 4. Send m18: User ID OK; expected PIN

6. e23: Enter User PIN = expected PIN

7. Send m37: Entered PIN 8. Receive m37

10. Receive m20 9. Send m20: User PIN OK

11. Send m5: Close Login

Post-Condition: The UserID is logged in

After the first step, we begin to recognize user inputs, messages, and their sources
and destinations. Gradually building a spreadsheet is a convenient way to start this.
The next (bottom-up) steps would probably be an exploration of the three allowed
PIN entry attempts, followed by one last use case for a PIN entry failure. Since incor-
rect behavior is often not recognized right away, the scenario 2.5 is a failed UserID
entry. As a side note, if these scenarios were used to gradually build a decision table,

6. Customer touches digit 6 7. Login Screen shows '- * * * '

8. Customer touches digit 8 9. Login Screen shows '* * * * '

10. Customer touches Enter 11. Login Screen shows 'Correct PIN'

Post conditions Correct PIN

Table 13.4 (Continued)

298 ◾ Software Engineering

the identification of all five scenarios would have been facilitated. These are pre-
sented in their final form as scenarios 2.2, 2.3, 2.4, and 2.5.

Scenario 2.2: Valid Login, PIN correct on 2nd try

Pre-Condition: The UserID and PIN are in FoodieDB

Account Creation FoodieDB

1. e21: Enter valid UserID

2. Send m17: Entered UserID to FoodieDB 3. Receive m17

5. Receive m18 4. Send m18: User ID OK; expected PIN

6. e24: Enter User PIN ≠ expected PIN

7. Send m37: Entered PIN 8. Receive m37

10. Receive m21 9. Send m21: User PIN failed

11. e23: Enter User PIN = expected PIN

12. Send m37: Entered PIN 13. Receive m37

15. Receive m20 14. Send m20: User PIN OK

16. Send m5: Close Login

Post-Condition: The UserID is logged in

Scenario 2.3: Valid Login, PIN correct on 3rd try

Pre-Condition: The UserID and PIN are in FoodieDB

Account Creation FoodieDB

1. e21: Enter valid UserID

2. Send m17: Entered UserID to FoodieDB 3. Receive m17

5. Receive m18 4. Send m18: User ID OK; expected PIN

6. e24: Enter User PIN ≠ expected PIN

7. Send m37: Entered PIN 8. Receive m37

10. Receive m21 9. Send m21: User PIN failed

11. e24: Enter User PIN ≠ expected PIN

12. Send m37: Entered PIN 13. Receive m37

15. Receive m21 14. Send m21: User PIN failed

16. e23: Enter User PIN = expected PIN

17. Send m37: Entered PIN 18. Receive m37

20. Receive m20 19. Send m20: User PIN OK

21. Send m5: Close Login

Post-Condition: The UserID is logged in

System Testing ◾ 299

Scenario 2.4: Invalid Login, PIN failed on 3rd try

Pre-Condition: The UserID and PIN are in FoodieDB

Account Creation FoodieDB

1. e21: Enter valid UserID

2. Send m17: Entered UserID to FoodieDB 3. Receive m17

5. Receive m18 4. Send m18: User ID OK; expected PIN

6. e24: Enter User PIN ≠ expected PIN

7. Send m37: Entered PIN 8. Receive m37

10. Receive m21 9. Send m21: User PIN failed

11. e24: Enter User PIN ≠ expected PIN

12. Send m37: Entered PIN 13. Receive m37

15. Receive m21 14. Send m21: User PIN failed

16. e24: Enter User PIN ≠ expected PIN

17. Send m37: Entered PIN 18. Receive m37

20. Receive m21 19. Send m21: User PIN failed

21. Send m5: Close Login

Post-Condition: The UserID is NOT logged in

Scenario 2.5: Invalid Login, no PIN try

Pre-Condition: The UserID and PIN are in FoodieDB

Account Creation FoodieDB

1. e22: Enter invalid UserID

2. Send m17: Entered UserID to FoodieDB 3. Receive m17

5. Receive m19 4. Send m19: User ID not recognized

6. Send m5: Close Login

Post-Condition: The UserID is not logged in

At this point, the list of messages would appear as in Table 13.5.
The progression in Table 13.5 shows how the recognition of input events and

messages expands with added use cases. The next steps in an actual development
would be to explore the remaining aspects of the System of Systems. Once no new
inputs are recognized, they can be reorganized, either by source or by destination.
At some point, we would assign message numbers as we did for the full set of 38
messages for the Foodies Wish List in Appendix B. (If you look carefully, you will
see that messages m36, m37, and m38 seem to be out of place. That is because they
were identified late, after much other work had been done.) Table 13.6 shows the
incidence between scenarios and input events and messages.

300 ◾ Software Engineering

13.2.2.2 Incidence with Output Actions and Messages

The matrix showing the incidence of use cases with port output actions and mes-
sages is developed in the same iterative way as that for input events and messages.
The results are in Table 13.7 below.

It is a natural step to combine both input and output recognition into one table
(Table 13.8). Table 13.8 also supports test coverage metrics.

13.2.2.3 Incidence with Classes

There is a perennial debate among object-oriented developers as to how to begin—
use cases first, or classes first. One of my colleagues (a very classy person) insists on
the class-first approach, while others are more comfortable with the use case first
view. A good compromise is to develop an incidence matrix showing which classes
are needed to support which use cases. Often, it is easier to identify classes for a use

Table 13.5 Order in Which Messages are Recognized in Login Use Cases

Message From To Content

First recognized in scenario 2.1

Login FoodieDB Entered UserID to FoodieDB

FoodieDB Login User ID OK; expected PIN

Login FoodieDB Entered PIN

FoodieDB Login User PIN OK

First recognized in scenario 2.2

FoodieDB Login User PIN failed

First recognized in scenario 2.4

Login Foodie Home Close Login

First recognized in scenario 2.5

FoodieDB Login UserID not recognized

Table 13.6 Incidence of Input Events and Input Messages with Login Scenarios

Port Inputs Message Inputs

Scenario e21 e22 e23 e24 m2 m18 m19 m20 m21

2.1 x x x x x

2.2 x x x x x x x

2.3 x x x x x x x

2.4 x x x x x

2.5 x x x

System Testing ◾ 301

case, rather than for a full system. As with the other incidence matrices, this approach
provides a good answer to when a sufficient set of classes has been identified.

13.2.3 Threads in Finite State Machines

In this section, we use the Foodies Wish List system details to illustrate how threads
can be identified from models. Finite state machine models of our example system
are the best place to look for system testing threads. We will start with a hierarchy
of state machines; the upper level is shown in Figure 13.2; it shows the highest level
view of a shopping transaction.

13.2.3.1 Paths in a Finite State Machine

It is good practice to define state machines in which transitions are caused by
actual port input events, and the actions on transitions are port output events. If we
have such a finite state machine, generating system test cases for these threads is
a mechanical process—simply follow a path of transitions and note the port inputs
and outputs as they occur along the path. Table 13.9 traces one such path through
the PIN try finite state machine in Figure 13.4. This path corresponds to a thread in
which a PIN is correctly entered on the first try. To make the test case explicit, we
assume a precondition that the expected PIN is ‘2468’. The event in parentheses in

Table 13.7 Incidence of Output Events and
Output Messages with Login Scenarios

Port Outputs Message Outputs

Scenario a21 a22 m5 m17 m37

2.1 x x x x x

2.2 x x x x x

2.3 x x x x x

2.4 x x x x

2.5 x x x

Table 13.8 Inputs and Outputs of the Login Scenarios

Inputs Outputs

Events Messages Actions Messages

Scenario e 21 e 22 e 23 e 24 m2 m 18 m 19 m 20 m 21 a 21 a 22 m5 m 17 m 37

2.1 x x x x x x x x x x

2.2 x x x x x x x x x x x x

2.3 x x x x x x x x x x x x

2.4 x x x x x x x x x

2.5 x x x x x x

302 ◾ Software Engineering

the last row of Table 13.9 is the logical event that “bumps up” to the parent state
machine and causes a transition there to the Shopping List Browsing state.

The PIN Entry state S2 is decomposed into the more detailed view in Figure 13.3.
The adjacent states are shown because they are sources and destinations of transi-
tions from the PIN Entry state at the upper level. (This approach to decomposition
is reminiscent of the old dataflow diagramming idea of balanced decomposition.)

Table 13.9 Port Event Sequence for Correct PIN on First Try

Port Event Sequence for Correct PIN on First Try

Input Event Output Event

Login Screen displayed with ‘- - - -’

2 pressed

Login Screen displayed with ‘- - - *’

4 pressed

Login Screen displayed with ‘- - * *’

6 pressed

Login Screen displayed with ‘- * * *’

8 pressed

Login Screen displayed with ‘* * * *’

(valid PIN)

Shopping List displayed

Figure 13.2 Highest Level of Foodie Wish List Shopping Session.

S1: Login
Screen

S2: PIN
Entry

S3: Shopping
List Browsing

S4: Another
Selection?

S5: Payment

Valid UserID

Valid PIN

3rd PIN attempt
failed

Quit

Item selected

No

Yes

System Testing ◾ 303

Figure 13.4 decomposes the PIN try states to the penultimate level needed for
system testing. (The inputs are still logical rather than actual, but the output events
are representative of what the user/system tester would see.) This final state decom-
position is applied to see the details of PIN entry tries (see Figure 13.3). Each PIN
try is identical, so the lower level states are numbered S2.n, where n signifies the nth
PIN attempt. We almost have true input events. If we knew that the expected PIN was
“2468” and if we replaced the digit entries, e.g., “1st digit”, with “2”, then we would
finally have true port input events. A few abstract inputs remain—those referring to
valid and invalid PINs and conditions on the number of tries. The result of this pro-
cess is in Table 13.9. Observe that this is exactly the Event Sequence of a use case,
and also, the sequence of events and actions in a corresponding system test case.

13.2.3.2 How Many Paths?

The most common products for Model-Based Testing start with a finite state machine
description of the system to be tested and then generate all paths through the graph.
If there are loops, these are (or should be) replaced by two paths, as we did at the
program graph level in Chapter 8. Given such a path, the port inputs that cause
transitions are events in a system test case; similarly for port outputs that occur as
actions on transitions. There are 21 paths from the Login screen to the Shopping List
screen: three PIN attempts, one successful PIN entry attempt, and six ways to fail
each attempt. Does this mean we would have to create 21 test cases to test the Login
constituent? We will discuss system coverage metrics later.

Here is a hard lesson from industrial experience. A telephone switching system
lab tried defining a small telephone system with finite state machines. The system,
a Private Automatic Branch Exchange (PABX) was chosen because, as switching
systems go, it is quite simple. There was a grizzled veteran system tester, Casimir,

Figure 13.3 Details of the PIN Entry State.

Invalid PIN

S1: Login
Screen

S2: 1st PIN try

S2: 2nd PIN try

S2: PIN Entry

S4: 3rd PIN try

S3: Shopping
List Browsing

Invalid PIN

304 ◾ Software Engineering

assigned to help with the development of the model. He was well named. (According
to wikipedia, his name means “someone who destroys opponent’s prestige/glory dur-
ing battle” [http://en.wikipedia.org/wiki/Casimir]). Throughout the process, Casimir
was very suspicious, even untrusting. The team reassured him that, once the proj-
ect was finished, a tool would generate literally several thousand system test cases.
Even better, this provided a mechanism to trace system testing directly back to the
requirements specification model. The actual finite state machine had over 200 states,
and the tool generated more than 3000 test cases. Finally, Casimir was impressed,
until one day when he discovered an automatically generated test case that was logi-
cally impossible. On further, very detailed analysis, the invalid test case was derived
from a pair of states that had a subtle dependency (and finite state machines must
have independent states). Out of 200-plus states, recognizing such dependencies is
extremely difficult. The team explained to Casimir that the tool could analyze any
thread that traversed the pair of dependent states, thereby identifying any other
impossible threads. This technical triumph was short-lived, however, when Casimir
asked if the tool could identify any other pairs of dependent states. No tool can do
this because this would be equivalent to the famous Halting Problem. The lesson:
generating threads from finite state machines is attractive and can be quite effective,
but care must be taken to avoid both memory and dependence issues.

Figure 13.4 Details of the PIN Try States.

S3: Shopping
List Browsing

1st digit
echo ‘---*’

S1: Login
Screen

S2.n: nth PIN try

S2.n.1: 1 digit
received

S2.n.2: 2 digits
received

S2.n.3: 3 digits
received

S2.n.4: 4 digits
received

2nd digit
echo ‘--**’

3rd digit
echo ‘-***’

4th digit
echo ‘****’

S2.n.0: 0 digits
received

S2.n.6: Retry
decision

http://en.wikipedia.org

System Testing ◾ 305

13.2.4 Atomic System Functions

Atomic System Functions (ASFs) work well in single-processor applications, and less
well in our swim lane architecture. We define 19 ASFs that pertain to various shop-
ping scenarios.

 ASF-1: Enter Existing (in FoodieDB) UserID
 ASF-2: Enter New UserID
 ASF-3: Enter Existing (in FoodieDB) User PIN
 ASF-4: Enter New (not in FoodieDB) User PIN
 ASF-5: Approve UserID
 ASF-6: Reject UserID
 ASF-7: Approve User PIN Entry
 ASF-8: Reject User PIN Entry
 ASF-9: Browse Shopping List
 ASF-10: Cancel Shopping List Browsing
 ASF-11: Move Shopping List item to Shopping Cart
 ASF-12: Remove Shopping List item from Shopping Cart
 ASF-13: Move Shopping Cart to Checkout
 ASF-14: Cancel Checkout
 ASF-15: Checkout with valid credit card payment
 ASF-16: Checkout with invalid credit card payment
 ASF-17: FoodieDB inventory update
 ASF-18: FoodieDB ledger update
 ASF-19: FoodieDB query response

Here are the five Login scenarios expressed as sequences of ASFs:

 Scenario 2.1 < ASF-1, ASF-19, ASF-5, ASF-3, ASF-19, ASF-7>
 Scenario 2.2 < ASF-1, ASF-19, ASF-5, ASF-4, ASF-8, ASF-3, ASF-19, ASF-7>
 Scenario 2.3 < ASF-1, ASF-19, ASF-5, ASF-4, ASF-8, ASF-4, ASF-8, ASF-3, ASF-19,

ASF-7>
 Scenario 2.4 < ASF-1, ASF-19, ASF-5, ASF-4, ASF-8, ASF-4, ASF-8, ASF-4, ASF-8, ASF-3,

ASF-19, ASF-7>
 Scenario 2.5 < ASF-2, ASF-19, ASF-19, ASF-6>

13.3 Identifying Threads in Systems of Systems
By definition, a system of systems (sometimes abbreviated SoS) contains at least two
constituents, there are seven in the Foodies Wish List system. The three ways we
used to identify threads in a single-processor system also apply to system level SoS
threads: as dialogues among constituents, as communicating finite state machines,
and as sequences of ASFs.

13.3.1 Dialogues

Use cases are pre-disposed to single processor systems, although the inputs and
outputs can be annotated to show processor residence. In this section, we introduce
the idea of “dialogues” among constituents. A dialogue has one column for each

306 ◾ Software Engineering

constituent—it seems that four constituents are a maximum for this book. In practice,
it is easier to use columns in a spreadsheet. The dialogue below is our first example;
as with use cases, dialogues describe how the user and customer think/assume the
eventual system will operate. Dialogues begin in natural language, very much like
User Stories. They eventually are formalized as scenarios.

In Scenario 1.1, a new Foodie User proposes a UserID, sends it to Admin. Admin
sends the proposed UserID to the FoodieDB. The FoodieDB checks and finds no
duplicate, so it approves the new UserID, and confirms this to Admin. In turn, Admin
confirms this to Account Creation. The newly approved User then creates a PIN and
sends it to Admin. (No check is made on validity of a PIN, since it is local to a User.)
Admin sends the PIN to the FoodieDB, so that the FoodieDB can send it as the
“Expected PIN” to Login. The numbers show the sequential flow of actions across
constituents (and therefore across swim lanes).

Scenario 1.1: Create a valid account

Pre-Condition: The UserID is not in FoodieDB

Account Creation Admin FoodieDB

1. e11: Enter UserID (original)

2. Send m7: Propose UserID to
Admin

3. Receive m7

4. Send m8: Submit UserID
to FoodieDB

5. Receive m8

7. Receive m9
6. Send m9: Approve New
Member UserID

9. Receive m11
8. Send m11: Proposed
UserID Approved

10. e12: Create User PIN

11. Send m13: Defined User
PIN to Admin

12. Receive m13

13. Send m14: Send User
PIN to FoodieDB

14. Receive m14

16. Receive m15
15. Send m15: Confirm User
PIN in FoodieDB

18. Receive m15
17. Send m16: Defined User
PIN Accepted

19. Send m4: Account
Creation complete

Post-Condition: The UserID is in FoodieDB

We will revisit Scenario 1.1 when we discuss test cases derived from dialogues.
Here is a closely related dialogue.

System Testing ◾ 307

Scenario 1.2: Create an invalid account

Pre-Condition: The UserID is already in FoodieDB

Account Creation Admin FoodieDB

1. e11: Enter UserID (duplicate)

2. Send m7: Propose UserID to Admin 3. Receive m7

4. Send m8: Submit
UserID to FoodieDB

5. Receive m8

7. Receive m10 6. Send m10: Reject
New Member UserID

9. Receive m12 8. Send m12: Proposed
UserID Rejected

10. e13: Click on Exit

11. Send m4: Account Creation complete

Post-Condition: Attempt failed.

13.3.2 Communicating FSMs

Finite state machines for each of the seven Foodie Wish List constituents are given in
Appendix B. Figure 13.5 shows the finite state machines needed for Scenario 1.1. For
clarity, only the states, and messages needed for Scenario 1.1, are shown in Figure

Figure 13.5 Reduced finite state machines for scenario 1.1.

m1/a11

S1 Foodie
Home

S10 Account
Creation

S11 UserID
to Admin

e11/m7

m11

S14 PIN to
Admin

S12 UserID
Approved

e12/m13,a12

m7/m8,a41

S41: Admin
Home

S42: Check
New Member

S43: Member
Approved

m9/m11

m13/m14

m15/m16

S45: PIN
Confirmation

S46: User PIN
in FoodieDB

S60: FoodieDB
Home

S61: UserID
Create

S62: Await
User PIN

m8/a61

e61/m9

m8

m9

308 ◾ Software Engineering

13.5. It is easier to see the flow among constituents in the dialogue for Scenario 1.1.
Looking at the message sequence, Scenario 1.1 has the message sequence below:

<m7, m8, m9, m11, m13, m14, m15, m16>

From the message sequence, we can construct the full state sequence of Scenario 1.1.:

<: S1, S10, S41, S1, S61, S62, S42, S11, S12, S43, S62, S45, S14, S1, S41, S1>

We will use state sequences later when we discuss test coverage metrics for dialogues.
Scenario 3.1 is a dialogue that involves four constituents:

Scenario 3.1: Normal purchase of One FoodieItem, payment accepted

Web Swim Lane Controlling Swim Lane FoodieDB Swim Lane

Shopping List Shopping Cart/
Credit Card

Admin FoodieDB

e31: Cursor movement

e32: Select Foodie item

e33: Move Foodie item
to Shopping Cart

Send m22: Add item to
Shopping Cart

Receive m22

Receive m23 Send m23: Item
added to Shopping
Cart

Send m24: Reduce
FoodieItem Count

Receive m24

Send m38: Decrease
FoodieItem
inventory

Receive m38

Receive m33 Send m33:
FoodieItem
inventory decreased

Send m31: Shopping
Cart contents

Receive m31 Receive
m31

e53: Click on Credit
Card Interface

Send m27: Payment
tendered

Receive m27

(Continued)

System Testing ◾ 309

Receive m28:
Payment accepted

Credit Card sends
m28:

Payment accepted

Receive m30 Send m30: Payment
amount

Receive m35 Send m35: Payment
entered in FoodieDB

Receive m33 Send m33:
FoodieItem
inventory decreased

e36: Done shopping e54: Shopping Cart
done

e41: Click on Admin
Done

e66: Click on Done

13.3.3 Dialogues as Sequences of ASFs

The 19 atomic system functions identified in Section 13.2.4 can express the more
complex dialogues; however, these scenarios can get quite long. Scenario 3.1 can
begin only when one of Scenarios 2.1, 2.2, or 2.3 has executed. Here we use the
simplest of these, Scenario 2.1 as a prerequisite for the same Scenario 3.1 discussed
in Sections 13.3.1 and 13.3.2.

Scenario 2.1 < ASF-1, ASF-19, ASF-5, ASF-3, ASF-19, ASF-7>
Scenario 3.1 < ASF-9, ASF-11, ASF-13, ASF-15, ASF-17, ASF-18>

We can make a slight change to scenario 3.1: this time the shopper moves a second
item to the Shopping Cart:

Scenario 3.2 < ASF-9, ASF-11, ASF-9, ASF-11, ASF-13, ASF-15, ASF-17, ASF-18>

Another slight change to scenario 3.1, this time with an invalid credit card payment:

Scenario 3.3 < ASF-9, ASF-11, ASF-13, ASF-16>

13.4 System Level Test Cases
A system level test case contains all the information a system tester (or test automa-
tion system) needs to perform a system level test case. In Chapter 12, we saw that
some test cases spanned several Foodie Wish List constituents, apparently at the sys-
tem level. This can be a helpful practice, particularly on projects in which the devel-
opment machine and the delivery platform are different. In such situations, much
of the burden (and difficulty) is shifted from the eventual SoS to the development
environment. While this is convenient, it is still necessary to perform system level
tests on the actual platform to be delivered.

310 ◾ Software Engineering

13.4.1 An Industrial Test Execution System

This section describes a system for automatic test execution that one of the authors was
responsible for in the early 1980s. It was intended for executing regression test cases
on a telephone switching system (a very boring manual assignment); it was named
the Automatic Regression Testing System (ARTS). The system had a human readable
system test case language that was interpretively executed on a personal computer. In
the ARTS language, there were two verbs: CAUSE would cause a port input event to
occur and VERIFY would observe a port output event. In addition, a tester could refer
to a limited number of devices and to a limited number of input events associated with
those devices. Here is a small paraphrased excerpt of a typical ARTS test case.

CAUSE Go-Offhook On Line 4
VERIFY Dialtone On Line 4
CAUSE TouchDigit '3' On Line 4
VERIFY NoDialtone On Line 4

The physical connection to a telephone prototype required a harness that connected
the personal computer with actual system ports. On the input side, the harness
accomplished a logical-to-physical transformation, with the symmetric physical-to-
logical transformation on output side. The basic architecture is shown in Figure 13.6.

There was an interesting lesson in human factors engineering. The test case lan-
guage was intentionally free form, and the interpreter eliminated noise words. The
freedom to add noise words was intended to give test case designers a place to put
additional notes that would not be executed but would be kept in the test execution
report. The result was test cases like this (so much for test designer freedom):

As long as it is not raining, see if you can CAUSE a Go-Offhook event right away
On Line 4, and then, see if you can VERIFY that some variation of Dialtone hap-
pened to occur On Line 4. Then, if you are in a good mood, why not CAUSE a
TouchDigit '3' action On Line 4. Finally, (at last!), see if you can VERIFY that
NoDialtone is present On Line 4.

In retrospect, the ARTS system predated the advent of use cases. Notice how the
event sequence portion of a real use case is dangerously close to an ARTS test case.
(The ARTS system evolved into a commercial product that had a 15-year lifetime.)

To extend the ARTS system to our system of systems example, we presume a
system testing tool that has the capabilities to send and receive events and messages

Figure 13.6 Automated Test Execution System Architecture.

Personal
Computer Harness

System
Under
Test

Port Input Events

Port Output EventsVERIFY statements

Port Input Events

Port Output EventsVERIFY statements

System Testing ◾ 311

between separate swim lane constituents. We use the following test sequence com-
mands (keywords are in all capitals):

VERIFY PRE-CONDITION
VERIFY POST-CONDITION
CAUSE (<eventID>, <value>) IN <SoS constituent>
SEND (<messageID>, <value>) FROM <SoS constituent> TO <SoS constituent>
VERIFY RECEIPT (<messageID>, <value>) FROM <SoS constituent>

Since our intent is to use this extension for progression and regression testing, we
will refer to it as the Automatic Test Execution (ATE) system. The automation part can
be done either manually, as in the past, or by an engine that executes test scenarios
and records the results. The VERIFY portion of such an engine needs, among other
things, two additional verbs—EXPECTED and OBSERVED. As other forms of testing,
if the expected and observed results are equal (or at least compatible), the test case
passes; otherwise it fails. The engine can continue running tests that pass but must
stop and report the first point of failure of a failing test scenario. After reporting, the
engine can continue running test scenarios.

13.4.2 Use Cases to Test Cases

Recall from Section 13.2.2, there is a hierarchy of ever more detailed use cases: High
Level, Essential, Expanded Essential, and Real. Each of these levels is illustrated with
an example, Correct PIN on First Try. The conversion process is almost mechanical.
An Expanded Essential Use Case converts directly to an abstract system test case—
abstract in the sense that there are parameters, not actual values. Because the conver-
sions are so simple, here we show the process for the Real Use Case for Correct PIN
on the First Try (see Table 13.4).

Use Case names, Use Case IDs, and Descriptions become system test case names,
IDs, and descriptions. Similarly, the pre- and post-conditions of a use case become
the pre-and post-conditions of the corresponding system test case. The remainder of
a use case is the interleaved sequence of system level inputs and expected system
level outputs. Table (Use case) 13.10 is the Real Use Case for Correct PIN on First Try.
The system test cases use the CAUSE and VERIFY statements of the Extended ATE
system described in Section 13.4.1.

Extended ATE Test Case

Test Case: Correct PIN entry on first try (PIN-1)
Description: A customer enters the PIN number correctly on the first attempt.
Pre-condition: The expected PIN is '2468'
VERIFY Login Screen display (- - - -) Pass/Fail?
CAUSE Keystroke(2)
VERIFY Login Screen display (- - - *) Pass/Fail?
CAUSE Keystroke(4)
VERIFY Login Screen display (- - * *) Pass/Fail?
CAUSE Keystroke(6)
VERIFY Login Screen display (- * * *) Pass/Fail?
CAUSE Keystroke(8)

312 ◾ Software Engineering

VERIFY Login Screen display (* * * *) Pass/Fail?
VERIFY Login Screen display (Correct PIN) Pass/Fail?

We added a test result column to this test case. In practice, it is sometimes possible
to organize a sequence of test cases such that the post-conditions of one test case set
up the pre-conditions of a successor test case. This can save a lot of test setup time.

The Extended ATE system can recognize when a VERIFY statement fails. Once a
test case fails, the system continues with the next test case. Unfortunately, this can
lead to a domino effect of failing test cases if successor test cases are dependent on
predecessors.

13.4.3 Finite State Machine Paths to Test Cases

The finite state machine in Figure 13.4 is at the level of an abstract expanded essen-
tial use case. To convert a finite state machine to a system test case, the abstract
inputs must be converted to ones with real values, in our case the Expected PIN is
‘2468’. Replacing the transition causes (e.g., 1st digit) with the actual digit values, and
then replacing the echo actions (e.g., echo ‘- - - *’) with expected screen contents,
we derive a system test case identical to that from the use case. It traverses the state
sequence <S2.n.0, S2.n.1, S2.n.2, S2.n.3, S2.n.4, S3>.

Test Case: Correct PIN entry on first try (PIN-1)
Description: A customer enters the PIN number correctly on the first attempt.
Pre-condition: The expected PIN is '2468'
VERIFY Login Screen display (- - - -) Pass/Fail?
CAUSE Keystroke(2)
VERIFY Login Screen display (- - - *) Pass/Fail?

Table 13.10 The Real Use Case for Correct PIN on First Try

Use Case Name Correct PIN entry on first try

Use Case ID RUC-1

Description A customer enters the PIN number correctly on the first attempt.

Pre-Conditions 1. The expected PIN is '2468'

Event Sequence

Input events Output events

1. Login Screen shows '- - - - '

2. Customer touches digit 2 3. Login Screen shows '- - - * '

4. Customer touches digit 4 5. Login Screen shows '- - * * '

6. Customer touches digit 6 7. Login Screen shows '- * * * '

8. Customer touches digit 8 9. Login Screen shows '* * * * '

10. Customer touches Enter 11. Login Screen shows 'Correct PIN'

Post conditions Correct PIN

System Testing ◾ 313

CAUSE Keystroke(4)
VERIFY Login Screen display (- - * *) Pass/Fail?
CAUSE Keystroke(6)
VERIFY Login Screen display (- * * *) Pass/Fail?
CAUSE Keystroke(8)
VERIFY Login Screen display (* * * *) Pass/Fail?
VERIFY Login Screen display (Correct PIN) Pass/Fail?

13.4.4 Dialogue Scenarios to Test Cases

The Extended ATE test case given next is derived from Scenario 1.1; the abstract
parameters are replaced with actual values. The first ten test case steps correspond-
ing with the numbering in Scenario 1.1 are as follows:

 0. Extended ATE Test Case 1.1
 1. VERIFY PRE-CONDITION ‘Paul DeVries’ is not in FoodieDB
 2. CAUSE (e11, ‘Paul DeVries’) IN Account Creation
 3. SEND (m7, Propose UserID to Admin) FROM Account Creation TO Admin
 4. VERIFY RECEIPT (m7, Propose UserID to Admin) FROM Account Creation
 5. SEND (m8, Submit UserID to FoodieDB) FROM Admin TO FoodieDB
 6. VERIFY RECEIPT (m8, Submit UserID to FoodieDB) FROM Admin
 7. SEND (m9, Approve New Member UserID) FROM FoodieDB TO Admin
 8. VERIFY RECEIPT (m9, Approve New Member UserID FROM FoodieDB
 9. SEND (m11, Proposed UserID Approved) FROM Admin TO Account Creation
 10. VERIFY RECEIPT (m11, Proposed UserID Approved) FROM Admin

13.4.5 Communicating Finite State Machines to Test Cases

Figure 13.7 contains just the portion of Figure 13.5 that pertains to the ten Extended
ATE steps completed in Section 13.4.3.

Here we illustrate the use of noise words (italic font) in conjunction with the
Extended ATE test case in Section 13.4.3.

Figure 13.7 A Portion of Figure 13.5.

m1/a11

S1 Foodie
Home

S10 Account
Creation

S11 UserID
to Admin

e11/m7

m7/m8,a41

S41: Admin
Home

S42: Check
New Member

S60: FoodieDB
Home

S61: UserID
Create

m8/a61

m8

m9

e11/m7

314 ◾ Software Engineering

Extended ATE Test Case 1.1

Please refer to the finite state machine definition for creating a new UserID. Actual
user activity begins at the Foodie Home state (S1) and the user input event that
causes transition to state S10. Before executing this test case, assure that the
UserID ‘Paul DeVries’ is not present in the FoodieDB.

VERIFY PRE-CONDITION ‘Paul DeVries’ is not in FoodieDB
In state S10, CAUSE (e11, ‘Paul DeVries’) IN Account Creation which sends a

message.
SEND (m7, Propose UserID to Admin) FROM Account Creation TO Admin
and causes a transition to state S11.
Once message m7 is sent, Admin transitions from its initial state, S41, to state S42

where it awaits a response from FoodieDB.
VERIFY RECEIPT (m7, Propose UserID to Admin) FROM Account Creation
While in state S41, Admin forwards the proposed UserID to the FoodieDB and

awaits a response in state S42.
SEND (m8, Submit UserID to FoodieDB) FROM Admin TO FoodieDB.
FoodieDB is transitions from its initial state S60 to state S61 where it checks of the

string ‘Paul DeVries”.
On receipt of m8, VERIFY RECEIPT (m8, Submit UserID to FoodieDB) FROM

Admin, FoodieDB transitions from its initial state S60 to state S61 where it checks
of the string ‘Paul DeVries”.

Since it is not present, FoodieDB, SEND (m9, Approve New Member UserID) FROM
FoodieDB TO Admin,

In state S42, Admin VERIFY RECEIPT (m9, Approve New Member UserID FROM
FoodieDB

Next, Admin performs a SEND (m11, Proposed UserID Approved) FROM Admin
TO Account Creation.

On receipt of message m11, VERIFY RECEIPT (m11, Proposed UserID Approved)
FROM Admin, the Account Creation fsm is in state S11.

13.5 Coverage Metrics for System Testing
In Part II, we saw the advantage of combining specification-based and code-based
testing techniques, because they are complementary. We are in the same position
now with system testing: model-based approaches can be combined with use case-
based approaches. In this section, we first give an overview of test coverage metrics
and associated best practices. The section concludes with two sets of system test
coverage metrics: use case-based and model based. But first, we echo some advice
from Robert Binder in his blog “Don’t Play Developer Testing Roulette: How to Use
Test Coverage” [Binder 2019].

In his blog, Binder criticizes organizations that accept less than 100% test cover-
age of a given metric. Accepting 85% coverage with respect to a chosen metric is very
analogous to playing Russian Roulette with a six-shooter. The probabilities of a bad
outcome are nearly equal. This is absolutely correct, assuming that the chosen test

System Testing ◾ 315

coverage metric makes sense in a given situation. Test coverage metrics are seldom
one-size-fits-all; they need to be mindfully, intentionally chosen based on the nature
of the item being tested.

“MBA-Think” refers to management personnel who reduce complex questions
to simplified numbers. Test coverage metrics are vulnerable to MBA-Think—they
should be mindfully applied. Consider the metric “All program paths for code with
no loops”: 100% coverage seems like a good idea, but what about infeasible paths? A
more mindful metric would be “All feasible program paths for code with no loops.”
At the other extreme, consider “All program statements”: acceptance of anything less
than 100% coverage is truly Binder’s Russian Roulette.

Best practice? Consider the nature of the item being tested and use that to man-
date a test coverage metric. Some examples:

	 ◾	 For code that contains some form of repetition, use Loop Coverage,
	 ◾	 For computational code, use data flow testing, e.g., every definition-clear path

for every variable in a calculation,
	 ◾	 For event-driven systems, use test cases that cover: all input events, all output

events, and possibly all input events in every context in which they occur.

In other words, the punishment should fit the crime, or more positively, the medicine
should fit the disease.

13.5.1 Use Case-Based Test Coverage

In Section 13.2, we saw the process in which customers and developers move from
“user stories” to use cases, and then to lists of input events, output actions, and, in the
case of systems of systems, messages among constituents. That information serves as
a natural basis for our first set of system test coverage metrics.

Consider the space of port input events. Five port input thread coverage metrics
are easily defined. Attaining these levels of system test coverage requires a set of
threads such that:

Port Input 1: each port input event occurs
Port Input 2: common sequences of port input events occur
Port Input 3: each port input event occurs in every “relevant” data context
Port Input 4: for a given context, all “inappropriate” input events occur
Port Input 5: for a given context, all possible input events occur

The Port Input 1 metric is a bare minimum and is inadequate for most systems. Port
Input 2 coverage is the most common, and it corresponds to the intuitive view of
system testing because it deals with “normal use.” It is difficult to quantify, however.
What is a common sequence of input events? Answer: these are probably already
present in the use cases. What is an uncommon one? This is more difficult—how do
we list things that should not happen? Where does this process end?

316 ◾ Software Engineering

The last three metrics are defined in terms of a “context.” The best view of a
context is that it is a point of event quiescence. In the Foodie Wish List system,
screen displays occur at the points of event quiescence. The Port Input 3 metric
deals with context-sensitive port input events. These are physical input events that
have logical meanings determined by the context within which they occur. In the
Foodie Wish List system, for example, the system response to a digit keystroke
that occurs in PIN entry is a string on dashes and asterisks (e.g., ‘- - * *’), but in
the Checkout state, the response is the actual digit. The key to this metric is that
it is driven by an event in all of its contexts. The Port Input 4 and Port Input 5
metrics are converses: they start with a context and seek a variety of events. The
Port Input 4 metric is often used on an informal basis by testers who try to break
a system. At a given context, they want to supply unanticipated input events just
to see what happens.

This is a specification problem: we are discussing the difference between pre-
scribed behavior (things that should happen) and proscribed behavior (things that
should not happen). Most requirements specifications have a hard time even describ-
ing prescribed behavior; it is usually testers who find proscribed behavior. The
designer who maintains my local ATM system told me that once someone inserted
a fish sandwich in the deposit envelope slot. (Apparently someone thought it was a
waste receptacle.) At any rate, no one at the bank ever anticipated insertion of a fish
sandwich as a port input event. The Port Input 4 and Port Input 5 metrics are usually
very effective, but they raise one curious difficulty. How does the tester know what
the expected response should be to a proscribed input? Are they simply ignored?
Should there be an output warning message? Usually, this is left to the tester’s intu-
ition. If time permits, this is a powerful point of feedback to requirements specifi-
cation. It is also a highly desirable focus for either rapid prototyping or executable
specifications.

The situation for output events is simpler—we define two coverage metrics based
on port output events:

Port Output 1: each port output event occurs
Port Output 2: each port output event occurs for each cause

Port Output 1 coverage is an acceptable minimum. It is particularly effective when a
system has a rich variety of output messages for error conditions. (Our Foodie Wish
List system does not.) Port Output 2 coverage is a good goal, but it is hard to quan-
tify. For now, note that Port Output 2 coverage refers to threads that interact with
respect to a port output event. Usually, a given output event only has a small number
of causes.

In practice, some of the most difficult faults found in field trouble reports are
those in which an output occurs for an unsuspected cause. Here is one example: My
local ATM system (not the Foodie Wish List) has a screen that informs me that “Your
daily withdrawal limit has been reached.” This screen should occur when I attempt
to withdraw more than the daily withdrawal limit. One Friday afternoon, I tried to
withdraw $100 from my local ATM machine. When I saw the daily limit exceeded
message, I assumed that my wife had made a large withdrawal. I requested $50 and

System Testing ◾ 317

found out that the ATM also allows a user to request another transaction. With my
tester’s mindset, I requested and received another $50. I learned later that the system
produces the daily limit exceeded message when the amount of cash in the dispenser
is low. Instead of providing a lot of cash to the first users, the central bank prefers to
provide less cash to more users.

Table 13.11 shows the incidence of our continuing Login scenarios example with
input events and output actions.

From Table 13.11, we see that any of scenarios 2.2, 2.3, or 22.4, together with
scenario 2.5 provide both Port Input 1 and Port Input 2 coverage. Because failed PIN
entry attempts are contexts, we need all five scenarios for Port Input 3 coverage. If
we refined our events down to the level of digit keystrokes and the Escape keystroke,
as in Figure 13.4, we could postulate the behaviors associated with the point at which
an Escape keystroke occurs. We could attain the Port Inputs 4 and 5 coverage. (This
raises the number of use cases from 5 to 25.) It might be a better idea to push this
down to either the unit or the integration level. Incidentally, this is the intent of the
“Shift Left” and “Shift Down” recommendations.

Table 13.12 shows the incidence of our continuing Login scenarios example with
messages.

As we saw with event coverage, any of Scenarios 2.2, 2.3, or 22.4, together with
scenario 2.5 provide full message coverage.

Table 13.11 Input Event/Action Coverage

Scenario e21 e22 e23 e24 a21 a22

2.1 x — x — x x

2.2 x — x x x x

2.3 x — x x x x

2.4 x — x x x x

2.5 — x — — x —

Table 13.12 Message Coverage

Scenario m2 m5 m17 m18 m19 m20 m21 m37

2.1 x x x x — x — x

2.2 x x x x — x x x

2.3 x x x x — x x x

2.4 x x x x — — x x

2.5 x x x — x — — —

318 ◾ Software Engineering

13.5.2 Model-Based Test Coverage

We can use model-based metrics as a cross-check on use case-based threads in much
the same way that we used DD-Paths at the unit level to identify gaps and redun-
dancies in specification-based test cases. We really have pseudo-structural testing
[Jorgensen, 1994] because the node and edge coverage metrics are defined in terms of
a model of a system, not derived directly from the system implementation. In general,
behavioral models are only approximations of a system’s reality—they might miss
important details that should be tested. Computations are a good example of this.

The big weakness of model-based metrics is that the underlying model may be
a poor choice. The three most common behavioral models (decision tables, finite
state machines, and Petri nets) are appropriate, respectively, to transformational,
interactive, and concurrent systems. Decision tables and finite state machines are
good choices for testing single processor applications. If a system is described using
a decision table, conditions typically include port input events, and actions are port
output events. We can then devise test cases that cover every condition, every action,
or, most completely, every rule. For finite state machine models, test cases can cover
every state, every transition, or every path.

Thread testing based on decision tables is cumbersome. We might describe threads
as sequences of rules (even from different decision tables), but this becomes very
messy to track in terms of coverage. We need finite state machines as a minimum,
and if any form of interaction occurs, Petri nets are a better choice (see Chapter 15).

The finite state machine for the Login constituent is revised to show transition
numbers in Figure 13.8. We use it to derive the two most common model-based test
coverage metrics: state coverage and transition (edge) coverage. We can identify four
test coverage metrics based on finite state machines. Attaining these levels of system
test coverage requires a set of threads such that:

 FSM1: Every state is traversed
 FSM2: Every state transition is traversed
 FSM3: Every feasible path (in a finite state machine with no loops) is traversed
 FSM4: FSM3 plus every loop is traversed twice, once to enter, and once to exit the

loop.
 FSM5: Every path (in a finite state machine with no loops) is traversed
 FSM6: FSM5 plus every loop is traversed twice, once to enter, and once to exit the

loop.

These echo the graph-based coverage metrics we postulated in Chapter 8. They
should—finite state machines are an example of directed graphs.

Table 13.13 shows the state coverage of the five Login scenarios. Columns that
have only one “x” entry are a quick way to determine FSM1 coverage. Scenarios 2.1,
2.2, 2.3, and 2.4 provide state coverage. Looking at Table 13.14 with the same strat-
egy shows that all five scenarios are necessary for FSM2 coverage. In this example,
the five scenarios provide FSM3 coverage (there no loops in the Login FSM.). Because
every path beginning with transitions 1, 3, 5 is infeasible, and similarly, the path of
transitions 1, 2, 4 is infeasible, the FSM5 and FSM6 test covers cannot be attained.
FSM4 coverage is moot for the Login case because there are no loops of states.

System Testing ◾ 319

Figure 13.8 Login FSM with numbered transitions.

S26: PIN Validity
Check 2nd try

1. m2/a21

S1: Foodie Home

S21: UserID Entry

S29: PIN Validity
Check 3rd try

2. e21/m17

S23: PIN Validity
Check 1st try

5. m18/a22

3. e22/m17

S22: UserID
Validity Check

S24: PIN OK
1st try

S25: Wrong
PIN 1st try

S27: PIN OK
2nd try

S28: Wrong
PIN 2nd try

S30: PIN OK
3rd try

S31: Wrong
PIN 3rd try

S32: Link to
Shopping Browse

Table 13.13 State coverage of the five Login scenarios State Coverage

Scenario S1 S 21 S 22 S 23 S 24 S 25 S 26 S 27 S 28 S 29 S 30 S 31 S 32

2.1 x x x x x — — — — — — — x

2.2 x x x x — x x x — — — — x

2.3 x x x x — x x — x x x — x

2.4 x x x x — x x — x x — x —

2.5 x x x — — — — — — — — — —

320 ◾ Software Engineering

13.6 Long Versus Short Test Cases
There is an element of foreshadowing in the preceding material. Early on, we spoke of
various thread candidates. In that discussion, we saw a range of very short to very long
threads. Most writers of use case development consider what we call here “long use
cases”—those that are “end-to-end” transactions. We have seen that a system test case
can be derived, almost automatically, from a well-formed use case. Since system level
test cases traverse some path in the set of communicating finite state machines, these
“end-to-end” test cases correspond directly to long use cases. Tables 13.15 and 13.16
show the total number of paths in the two main sets of constituents—some of these are
feasible, others are infeasible. The infeasible paths result from dependencies, for exam-
ple, a rejected Login path cannot be connected to later permissible Shopping List paths.

In this section, we will focus on the main part of the Foodie Wish List applica-
tion, namely the interactions among Login, Shopping List, Shopping Cart, Admin, and
FoodieDB. Of the 5400 total paths in Table 13.16 many are infeasible, leaving 1080

Table 13.15 Paths in Account Creation to Admin to FoodieDB

Constituent Distinct Paths Feasible Paths

Account Creation 2 2

Admin 2 2

FoodieDB 2 2

Total paths 8 8

Table 13.14 Transition Coverage of the five Login scenarios.

Scenario e1 e2 e3 e4 e5 e6 e7 e8 e9

2.1 x x — — x x — — x

2.2 x x — — x — x x —

2.3 x x — — x — x x —

2.4 x x — — x — x x —

2.5 x — x x — — — — —

Scenario e10 e11 e12 e13 e14 e15 e16 e17

2.1 — — — — — — — —

2.2 x — — x — — — —

2.3 — x x — x — x —

2.4 — x x — — x — x

2.5 — — — — — — — —

System Testing ◾ 321

feasible paths. Clearly, developing and more importantly, testing 1080 feasible test
cases is an example of what me might call the test case explosion. To reduce this
burden, here we postulate the notion of “short test cases.” If we develop short test
cases carefully, they can be sequenced by having the pre-conditions of one short test
case compatible with the post-conditions of a predecessor short test case.

Seventeen short test cases (abbreviated STC-i) are defined here with short descrip-
tions, pre- and post-conditions, and state sequences.

Login Constituent
STC-1 Rejected UserID
Pre-conditions UserID not in database, not logged in
State sequence S1, s21, S22, S1
Post-conditions UserID not in database, User not logged in

STC-2 Valid UserID, PIN correct on 1st try
Pre-conditions UserID not in database, not logged in
State sequence S1, S21, S22, S23, S24, S32
Post-conditions UserID not in database, User logged in

STC-3 Valid UserID, PIN correct on 2nd try
Pre-conditions UserID not in database, not logged in
State sequence S1, s21, S22, S23, S25, S26, S27, S32
Post-conditions UserID not in database, User logged in

STC-4 Valid UserID, PIN correct on 3rd try
Pre-conditions UserID not in database, not logged in
State sequence S1, s21, S22, S23, S25, S26, S28, S29, S30, S32
Post-conditions UserID not in database, User logged in

STC-5 Valid UserID, PIN failed on 3rd try
Pre-conditions UserID not in database, not logged in
State sequence S1, s21, S22, S23, S25, S26, S28, S29, S31, S1
Post-conditions UserID not in database, User not logged in

Table 13.16 Login to Shopping List to Shopping
Cart to Admin to FoodieDB

Constituent Distinct Paths Feasible Paths

Login 8 5

Shopping List 5 5

Shopping Cart 5 6

Admin 6 3

FoodieDB 3 3

Total paths 2700 1080

322 ◾ Software Engineering

Shopping List Constituent
STC-6 User logged in, decides to not shop.
Pre-conditions User Logged in, ready to shop
State sequence S1, S32, S1
Post-conditions User Logged in, ready to shop

STC-7 User logged in, 1 item to Shopping Cart
Pre-conditions User Logged in, ready to shop
State sequence S1, S32, S33, S34, S36, S1
Post-conditions User Logged in, Shopping Cart contents known

STC-8 User logged in, 2nd item to Shopping Cart
Pre-conditions User Logged in, ready to shop
State sequence S1, S32, S33, S34, S36, S32, S33, S34, S36, S1
Post-conditions User Logged in, Shopping Cart contents known

STC-9 User logged in, 1 item selected and then deleted from
Shopping cart

Continues shopping.
Pre-conditions User Logged in, ready to shop
State sequence S1, S32, S33, S34, S35, S36, S32
Post-conditions User Logged in, ready to shop

STC-10 User logged in, 1 item selected and then deleted from
Shopping cart.

Done shopping.
Pre-conditions User Logged in, ready to shop
State sequence S1, S32, S33, S34, S35, S36, S1
Post-conditions User Logged in, abort shopping.

Shopping Cart Constituent
STC-11 Confirm added item
Pre-conditions Shopping Cart contents updated
State sequence S51, S52, S54
Post-conditions Ready for payment

STC-12 Confirm deleted item
Pre-conditions Shopping Cart contents updated
State sequence s51, s53, s54
Post-conditions Ready for payment

STC-13 Ready for payment, no payment
Pre-conditions Ready for payment
State sequence S54, S51
Post-conditions Shopping cancelled

STC-14 Ready for payment, payment accepted
Pre-conditions Ready for payment

System Testing ◾ 323

State sequence S54, S55, S56, S51
Post-conditions Payment accepted, inventory reduced

STC-15 Ready for payment, payment rejected
Pre-conditions Ready for payment
State sequence S54, S55, S54, S51
Post-conditions Payment rejected, inventory unchanged

FoodieDB Constituent
STC-16 Payment accepted, inventory reduced
Pre-conditions Payment accepted, inventory reduced
State sequence S60, S68, S60, S65, S66, S60
Post-conditions Payment recorded, inventory changed

STC-17 Payment rejected, inventory unchanged
Pre-conditions Payment rejected, inventory unchanged
State sequence S60, S68, S60, S65, S67, S60
Post-conditions Transaction cancelled

The huge advantage of the short test cases is that they can be chained to express all
the long test cases. Figure 13.9 depicts this interconnectivity.

Figure 13.9 108 Locally feasible sequences of short test cases.

Start

End

STC
1

STC
2

STC
3

STC
4

STC
5

STC
6 STC

7
STC

8
STC

9
STC
10

STC
11

STC
12

STC
13

STC
14

STC
15

STC
16

STC
17

324 ◾ Software Engineering

As a quick example of a long use case, consider a story with the following
sequence:

A Foodie Wish List customer enters a valid UserID, followed by a valid PIN entry
on the first try. The customer selects browses the Shopping list, selects an item,
and moves it to the Shopping cart. On seeing the price, the customer removes
the item and returns to the Shopping List. Once there, the customer selects a
less expensive FoodieITem and moves it to the Shopping Cart. The credit card
payment is accepted and the Foodie database records both the payment and the
reduction in inventory.

As a sequence of short test cases, this becomes the sequence:

<STC-2, STC-9, STC-7, STC-14, STC-16, STC-17>

13.6.1 Supplemental Approaches to System Testing

All model-based testing approaches have been open to the criticism that the test-
ing is only as good as the underlying model. There is no escaping this. In response,
some authorities recommend various “random” supplements. One such technique,
mutation testing is discussed in Chapter 8. In this section, we consider two fallback
strategies, each of which has thread execution probability as a starting point. Both
operational profiling and risk-based testing are responses to the “squeeze” on avail-
able system testing time.

13.6.2 Operational Profiles

In its most general form, Zipf’s Law (also called the Pareto Principle) holds that 80%
of the activities occur in 20% of the space. Activities and space can be interpreted in
numerous ways: people with messy desks hardly ever use most of their desktop clutter;
programmers seldom use more than 20% of the features of their favorite programming
language; and Shakespeare (whose writings contain an enormous vocabulary) uses a
small fraction of his vocabulary most of the time. Zipf’s Law applies to software (and
testing) in several ways. The most useful interpretation for testers is that the space con-
sists of all possible threads, and activities are thread executions (or traversals). Thus, for
a system with many threads, 80% of the execution traverses only 20% of the threads.

Recall that a failure occurs when a fault is executed. The whole idea of testing
is to execute test cases such that, when a failure occurs, the presence of a fault is
revealed. We can make an important distinction: the distribution of faults in a system
is only indirectly related to the reliability of the system. The simplest view of system
reliability is the probability that no failure occurs during a specific time interval.
(Notice that no mention is even made of faults, the number of faults, or fault density.)
If the only faults are “in the corners” of threads that are seldom traversed, the overall
reliability is higher than if the same number of faults were on “high-traffic” threads.
The idea of operational profiles is to determine the execution frequencies of various
threads and to use this information to select threads for system testing. Particularly
when test time is limited (usually the case in many projects), operational profiles

System Testing ◾ 325

maximize the probability of finding faults by inducing failures in the most frequently
traversed threads. Here we use our Foodie Wish List system. In Figure 13.13, the
short use case labels on the transitions in Figure 13.12 are replaced by estimated
transition probabilities.

Finite state machines are the preferred model for identifying thread execution
probabilities. The mathematics behind this is that the transition probabilities can be
expressed is a “transition matrix” where the element in row i, column j is the prob-
ability of the transition from state i to state j. Powers of the transition matrix are
analogous to the powers of the adjacency matrix when we discussed reachability
in Chapter 4. Once the thread probabilities are known, they sorted according to
execution probability, most to least probable. This is done in Tables 13.17 and 13.19.
Figure 13.10 shows the connectivity of Login and Shopping List short test cases.

Just as the quality of model-based testing is limited by the correctness of the
underlying model, the analysis of operational profiles is limited by the validity of the
transition probability estimates. There are strategies to develop these estimates. One
is to use historical data from similar systems. Another is to use customer supplied
estimates. Still another is to use a Delphi approach in which a group of experts give
their guesses, and some average is determined. This might be based on convergence
of a series of estimates, or possibly by having seven experts, and eliminating the

Table 13.17 Path Probabilities of Selected Short Test Cases

Test Case ID Description State Sequence Path Probability

STC-1 Rejected UserID S1, s21, S22, S1 0.01

STC-2 Valid UserID, PIN correct on
1st try

S1, s21, S22, S23, S24, S32 0.9702

STC-3 Valid UserID, PIN correct on
2nd try

S1, s21, S22, S23, S25, S26,
S27, S32

0.019404

STC-4 Valid UserID, PIN correct on
3rd try

S1, s21, S22, S23, S25, S26,
S28, S29, S30, S32

0.00038808

STC-5 Valid UserID, PIN failed on
3rd try

S1, s21, S22, S23, S25, S26,
S28, S29, S31, S1

0.00000792

STC-6 User decides to not shop. S1, S32, S1 0.2

STC-7 User sends 1 item to
Shopping Cart. Done.

S1, S32, S33, S34, S1 0.048

STC-8 User sends 1 item to
Shopping Cart. Browse.

S1, S32, S33, S34, S32 0.6

STC-9 User selects and deletes an
item from Shopping cart.
Browse.

S1, S32, S33, S34, S32 0.006

STC-10 User selects and deletes an
item from Shopping cart.
Done.

S1, S32, S33, S34, S35,
S34, S1

0.00192

326 ◾ Software Engineering

Table 13.18 Probabilities of Short Test Case Sequences

Path STCs Probability

1 STC-1 0.01

2 STC-5 0.00000792

3 STC-2, STC-6 0.19404

4 STC-3, STC-6 0.0038808

5 STC-4, STC-6 0.000077616

6 STC-2, STC-7 0.0465696

7 STC-3, STC-7 0.000931392

8 STC-4, STC-7 1.86278E-05

9 STC-2, STC-8 0.58212

10 STC-3, STC-8 0.0116424

11 STC-4, STC-8 0.000232848

12 STC-2, STC-9 0.0058212

13 STC-3, STC-9 0.000116424

14 STC-4, STC-9 2.32848E-06

15 STC-2, STC-10 0.001862784

16 STC-3, STC-10 3.72557E-05

17 STC-4, STC-10 7.45114E-07

Table 13.19 Descriptions of the Short Test Cases for the Login and
Shopping List constituents

STC ID Descriptions

STC-1 Rejected UserID

STC-2 Valid UserID, PIN correct on 1st try

STC-3 Valid UserID, PIN correct on 2nd try

STC-4 Valid UserID, PIN correct on 3rd try

STC-5 Valid UserID, PIN failed on 3rd try

STC-6 User decides to not shop.

STC-7 User sends 1 item to Shopping Cart. Done.

STC-8 User sends 1 item to Shopping Cart. Browse.

STC-9 User selects and deletes an item from Shopping cart. Browse.

STC-10 User selects and deletes an item from Shopping cart. Done.

System Testing ◾ 327

high and low estimates. Whatever approach is used, the final transition probabilities
are still estimates. On the positive side, we could do a sensitivity analysis. In this
situation, the overall ordering of probabilities is not particularly sensitive to small
variations in the individual transition probabilities. Operational profiles provide a
feeling for the traffic mix of a delivered system. This is helpful for reasons other
than only optimizing system testing. These profiles can also be used in conjunction
with simulators to get an early indication of execution time performance and system
transaction capacity.

Figure 13.11 shows the finite state machines for the Login and Shopping List
constituents, with the transition probabilities on necessary edges. (By default, the
unlabeled edges have probability of 1.00. Notice that the sum of probabilities on
outgoing edges is always 1.00.)

Table 13.20 is the list of short test case sequences ordered by probability.

13.6.2.1 Risk-Based Testing

Hans Schaefer, a consultant who specializes in risk-based testing, advises that the
first step is to group the system into risk categories. He advises four risk catego-
ries: Catastrophic, Damaging, Hindering, and Annoying [Schaefer and Software Test
Consulting, 2005]. Next, the cost weighting is assessed. He suggests a logarithmic
weighting: 1 for low cost of failure, 3 for medium, and 10 for high. Why logarithmic?
Psychologists are moving in this direction because subjects who are asked to rank
factors on linear scales, e.g., 1 for low and 5 for high, don’t make enough of a dis-
tinction in what is usually a subjective assessment. Table 13.21 is the result of this
process for our Foodie Wish List use cases in Table 13.20. In this assessment, risk fac-
tors include factors such as customer convenience, loss of revenue, and illicit access.

First, we need to consider the risk that failure of a single short test case contrib-
utes to the pairs of STCs. Contributions are on a low to high scale 3, 7, 12, 20.

Figure 13.10 Connectivity of Login and Shopping List Short Test Cases.

Start

End

STC
1

STC
2

STC
3

STC
4

STC
5

STC
6 STC

7
STC

8
STC

9
STC
10

328 ◾ Software Engineering

Failures in short test cases STC-1 and STC-5 are extremely damaging.

STC-1 Rejected UserID: If this test case fails, there is illicit access to the Foodies
Wish List system.

STC-5 Valid UserID, PIN failed on 3rd try: This is similar to, and presents a greater
risk, than STC-1. Not only does it allow illicit access to the Foodies Wish List
system, it could also be that the FoodieDB portion that contains PIN informa-
tion is corrupt.

Short test cases STC-2, −3, and − 4 all refer to the three PIN entry attempts. The prob-
abilities of STC-3 and STC-4 are greatly reduced due to prior failed attempts. (See
Figure 13.11)

STC-2 Valid UserID, PIN correct on 1st try: Failure of STC-2 is inconvenient for the
user, but the user still has another chance for PIN entry.

STC-3 Valid UserID, PIN correct on 2nd try: Failure of STC-3 is inconvenient for the
user, but the user still has another chance for PIN entry.

STC-4 Valid UserID, PIN correct on 3rd try: Failure of STC-2 is problematic, more
than inconvenient, the system would lose a legitimate customer.

Figure 13.11 Login and Shopping List Constituents with Transition Probabilities.

S26: PIN Validity
Check 2nd try

m2/a21

S1: Foodie Home

S21: UserID Entry

S22: UserID
Validity Check

S29: PIN Validity
Check 3rd try

e21/m17
0.99

S23: PIN Validity
Check 1st try

m18/a22

e22/m17
0.01

S24: PIN OK
1st try

S25: Wrong
PIN 1st try

S27: PIN OK
2nd try

S28: Wrong
PIN 2nd try

S30: PIN OK
3rd try

S31: Wrong
PIN 3rd try

S36: Contents
of Cart

S1: Foodie Home

S32: Browse
Window

S33: FoodieItem
selected

e31/a33
0.01

S34: Additions
to Cart

e32/a34
0.99

e34/m25
0.01

S35: Deletions
from Cart

System Testing ◾ 329

Table 13.20 Foodie Wish List Operational Profile

Path STCs Probability

9 STC-2, STC-8 0.58212

3 STC-2, STC-6 0.19404

6 STC-2, STC-7 0.0465696

10 STC-3, STC-8 0.0116424

1 STC-1 0.01

12 STC-2, STC-9 0.0058212

4 STC-3, STC-6 0.0038808

15 STC-2, STC-10 0.001862784

7 STC-3, STC-7 0.000931392

11 STC-4, STC-8 0.000232848

13 STC-3, STC-9 0.000116424

5 STC-4, STC-6 0.000077616

16 STC-3, STC-10 0.00003725568

8 STC-4, STC-7 0.00001862784

2 STC-5 0.00000792

14 STC-4, STC-9 0.00000232848

17 STC-4, STC-10 0.0000007451136

Table 13.21 Risk Contribution of Individual STCs

STC ID Descriptions Contribution to Risk

STC-1 Rejected UserID 20

STC-2 Valid UserID, PIN correct on 1st try 3

STC-3 Valid UserID, PIN correct on 2nd try 3

STC-4 Valid UserID, PIN correct on 3rd try 7

STC-5 Valid UserID, PIN failed on 3rd try 20

STC-6 User decides to not shop. 3

STC-7 User sends 1 item to Shopping Cart. Done. 3

STC-8 User sends 1 item to Shopping Cart. Browse. 3

STC-9 User selects and deletes an item from Shopping cart. Browse. 7

STC-10 User selects and deletes an item from Shopping cart. Done. 3

330 ◾ Software Engineering

Table 13.22 Risk Profile of STC Sequences

Path STCs Description Risk

1 STC-1 Rejected UserID 909494.7018

2 STC-5 Valid UserID, PIN failed on 3rd try 720.3198038

9 STC-2, STC-8
Valid UserID, PIN correct on 1st try; User sends 1 item to
Shopping Cart. Browse.

142.1191406

12 STC-2, STC-9
Valid UserID, PIN correct on 1st try; User selects and
deletes an item from Shopping cart. Browse.

55.51528931

3 STC-2, STC-6
Valid UserID, PIN correct on 1st try; User decides to not
shop.

47.37304688

6 STC-2, STC-7
Valid UserID, PIN correct on 1st try; User sends 1 item to
Shopping Cart. Done.

11.36953125

10 STC-3, STC-8
Valid UserID, PIN correct on 2nd try; User sends 1 item to
Shopping Cart. Browse.

2.842382813

13 STC-3, STC-9
Valid UserID, PIN correct on 2nd try; User selects and
deletes an item from Shopping cart. Browse.

1.110305786

4 STC-3, STC-6
Valid UserID, PIN correct on 2nd try; User decides to not
shop.

0.947460938

14 STC-4, STC-9
Valid UserID, PIN correct on 3rd try; User selects and
deletes an item from Shopping cart. Browse.

0.867426395

5 STC-4, STC-6
Valid UserID, PIN correct on 3rd try; User decides to not
shop.

0.740203857

15 STC-2, STC-10
Valid UserID, PIN correct on 1st try; User selects and
deletes an item from Shopping cart. Done.

0.45478125

7 STC-3, STC-7
Valid UserID, PIN correct on 2nd try; User sends 1 item to
Shopping Cart. Done.

0.227390625

8 STC-4, STC-7
Valid UserID, PIN correct on 3rd try; User sends 1 item to
Shopping Cart. Done.

0.177648926

11 STC-4, STC-8
Valid UserID, PIN correct on 3rd try; User sends 1 item to
Shopping Cart. Browse.

0.056847656

16 STC-3, STC-10
Valid UserID, PIN correct on 2nd try; User selects and
deletes an item from Shopping cart. Done.

0.009095625

17 STC-4, STC-10
Valid UserID, PIN correct on 3rd try; User selects and
deletes an item from Shopping cart. Done.

0.007105957

System Testing ◾ 331

Figure 13.12 Shopping List Following Correct Pin on the 1st try.

0.000000000

0.100000000

0.200000000

0.300000000

0.400000000

0.500000000

0.600000000

STC-2, 8 STC-2, 6 STC-2, 7 STC-2, 9 STC-2, 10

Shopping, 1st PIN Try

Figure 13.13 Shopping List Following Correct Pin on the 2nd try.

0.000000000000000

0.002000000000000

0.004000000000000

0.006000000000000

0.008000000000000

0.010000000000000

0.012000000000000

STC-3, 8 STC-3, 6 STC-3, 7 STC-3, 9 STC-3, 10

Shopping, 2nd PIN Try

Figure 13.14 Shopping List Following Correct Pin on the 3rd try.

0.000000000000000

0.000050000000000

0.000100000000000

0.000150000000000

0.000200000000000

0.000250000000000

STC-4, 8 STC-4, 6 STC-4, 7 STC-4, 9 STC-4, 10

Shopping, 3rd PIN Try

332 ◾ Software Engineering

Short test cases 6 through 10 deal with various choices a customer can make on the
Shopping List web page.

STC-6 User decides to not shop: If STC-6 fails, the user could be stuck in the
Shopping List constituent. The probable user reaction would be frustration fol-
lowed by some form of Forced Quit.

STC-10 User selects and deletes an item from Shopping cart. Done: This is similar
to STC-6; with a failure, the user could again be stuck in the Shopping List con-
stituent, with the same outcomes as STC-6.

STC-7 User sends 1 item to Shopping Cart. Done: This is normal activity, but if it
fails, the user might be stuck in the Shopping List constituent as with STC-6 and
STC-10.

STC-8 User sends 1 item to Shopping Cart. Browse: This is desirable activity and
can lead to additional purchases. Failure means loss of revenue.

STC-9 User selects and deletes an item from Shopping Cart. Browse: This is a “no
harm, no foul” case. However, failure might mean that the Foodie item cannot
be deleted from the Shopping Cart. An unintended purchase would certainly
aggravate the customer, and ultimately cause item return complexities.

The risk-ordered Foodie Wish List test cases in Table 13.22 differ significantly from
their operational profile in Table 13.20.

Operational Profile Order: 9, 3, 6, 10, 1, 12, 4, 15, 7, 11, 13, 5, 16, 8, 2, 14, 17
Risk-Based Testing Order: 1, 2, 9, 12, 3, 6, 10, 13, 4, 14, 5, 15, 7, 8, 11, 16, 17

The analysis of operational and risk-based testing orders is very dependent on the
transition probabilities that were used to compute the short test case probabilities.
Consider three sets of test case sequences. Their probabilities are graphed in
Figures 13.12, 13.13, and 13.14.

13.7 Non-functional System Testing
The system testing ideas thus far discussed have been based on specification-based,
or behavioral, requirements. Functional requirements are absolutely in the does view¸
as they describe what a system does (or should do). To generalize, non-functional
testing refers to how well a system performs its functional requirements. Many non-
functional requirements are categorized onto “-abilities”: reliability, maintainability,
scalability, usability, compatibility, and so on. While many practitioners have clear
ideas on the meaning of the -abilities in their product domains, there is not much
standardization of either the terms or the techniques. Here we consider the most
common form of non-functional testing—stress testing.

13.7.1 Stress Testing Strategies

Synonymously called performance testing, capacity testing, or load testing, this is
the most common, and maybe the most important form of non-functional testing.

System Testing ◾ 333

Because stress testing is so closely related to the nature of the system being tested,
stress testing techniques are also application dependent. Here we describe three
common strategies and illustrate them with examples.

13.7.1.1 Compression

Consider the performance of a system in the presence of extreme loads. A web-
based application may be very popular, and its server might not have the capacity.
Telephone switching systems use the term Busy Hour Call Attempts (BHCAs) to
refer to such offered traffic loads. The strategy in those systems is best understood
as compression.

A local switching system must recognize when a subscriber originates a call. Other
than sensing a change in subscriber line status from idle to active, the main indicator
of a call attempt is the entry of digits. Although some dial telephones still exist, most
subscribers use digit keys. The technical term is Dual Tone Multi-Frequency tones,
as the usual 3 × 4 array of digit keys has three frequencies for the columns and four
frequencies for the rows of digit keypads. Each digit is therefore represented by two
frequency tones, hence the name. The local switching system must convert the tones
to a digital form, and this is done with a DTMF receiver.

Here is a hypothetical example, with numbers, to help understand the compres-
sion strategy. Suppose a local switching system must support 50,000 BHCAs. To do
so, the system might have 5000 DTMF receivers. To test this traffic load, somehow
50,000 call originations must be generated in 60 minutes. The whole idea of com-
pression strategies it to reduce these numbers to more manageable sizes. If a proto-
type only has 50 DTMF receivers, the load testing would need to generate 500 call
attempts.

This pattern of compressing some form of traffic and associated devices to handle
the offered traffic occurs in many application domains, hence the general term, traf-
fic engineering.

13.7.1.2 Replication

Some non-functional requirements may be unusually difficult to actually perform.
Many times, actual performance would destroy the system being tested (destruc-
tive versus non-destructive testing.) There was a Calvin and Hobbes comic strip that
succinctly explained this form of testing. In the first frame, Calvin sees a sign on a
bridge: “Maximum weight 5 tons.” He asks his father how this is determined. The
father answers that successively heavier trucks are driven over the bridge until the
bridge collapses. In the last frame, Calvin has his standard shock/horror expression.
Rather than destroy a system, some form of replication can be tried. Two examples
follow.

One of the non-functional requirements for an army field telephone switching
center was that it had to be operational after a parachute drop. Doing this was both
very expensive and logistically complex. None of us system testers knew how to rep-
licate this, but in consultation with a former paratrooper, we learned that the impact
of a parachute drop is similar to jumping off a ten-foot (three meter) wall. We put a
prototype on a fork lift skid, lifted it to a height of 10 feet, and tilted it forward until

334 ◾ Software Engineering

it fell off the skid. After hitting the ground, the prototype was still operational, and
the test passed.

One of the most dangerous incidents for aircraft is a mid-air collision with a bird.
Here is an excerpt of a non-functional for the F 35 jet aircraft built by Lockheed
Martin [Owens et al., 2009].

The Canopy System Must Withstand Impact of a 4 lb. Bird at 480 Knots on the
Reinforced Windscreen and 350 Knots on the Canopy Crown Without:

	 ◾	 Breaking or Deflecting so as to Strike the Pilot When Seated in the Design Eye
“High” Position,

	 ◾	 Damage to The Canopy That Would Cause Incapacitating Injury to the Pilot, or.
	 ◾	 Damage That Would Preclude Safe Operation of, or Emergency Egress from the

Aircraft.

Clearly it would be impossible to arrange a mid-air bird collision, so the Lockheed
Martin testers replicated the problem with an elaborate cannon that would shoot a
dead chicken at the windscreen and at the canopy. The tests passed.

There is an urban legend, debunked on Snopes.com, about follow-up a British
(or French, or fill-in-your-favorite-country) firm that used the same idea for canopy
testing, but their tests all failed. When they asked the US testers why the failures
were so consistent, they received a terse answer: “you need to thaw the chicken first.”
Why mention this? If non-functional testing is done with a replication strategy, it is
important to replicate, as closely as possible, the actual test scenario. (But it is funny.)

13.7.2 Mathematical Approaches

In some cases, non-functional testing cannot be done either directly, indirectly, or
with commercial tools. There are three forms of analysis that might help—queueing
theory, reliability models, and simulation.

13.7.2.1 Queueing Theory

Queueing theory deals with servers and queues of tasks that use the service. The
mathematics behind queueing theory deals with task arrival rates, and service times,
as well as the number of queues and the number of servers. In everyday life, we see
examples of queueing situations: checkout lines in a grocery store, lines to buy tick-
ets at a movie theater, or lift lines at a ski area. Some settings, e.g., a local post office,
uses a single queue of patrons waiting for service at one of several clerk positions.
This happens to be the most efficient queueing discipline—single queue, multiple
server. Service times represent some form of system capacity, and queues represent
traffic (transactions) offered to the system.

13.7.2.2 Reliability Models

Reliability models are somewhat related to queueing theory. Reliability deals with
failure rates of components and computes characteristics such as likelihood of sys-
tem failure, mean time to failure (MTTF), mean time between failures (MTBF), and

http://Snopes.com

System Testing ◾ 335

mean time to repair (MTTR). Given actual or assumed failure rates of system compo-
nents, these quantities can be computed.

A telephone switching system has a reliability requirement of not more than two
hours of downtime in 40 years of continuous operation. This is an availability of
0.99999429, or stated negatively, failure rate of 5.7 x 10−6, (0.0000057). How can
this be guaranteed? Reliability models are the first choice. They can be expressed as
tree diagrams or as directed graphs, very similar to the approach used to compute
an operational profile. These models are based on failure rates of individual system
components that are linked together physically, and abstractly in the reliability model.

A digital end office intended for the rural U.S. market had to be certified by an
agency of the U.S. government, the Rural Electric Administration (REA). That body
followed a compression strategy and required an on-site test for six months. If the
system functioned with less than 30 minutes of downtime, it was certified. A few
months into the test interval, the system had less than two minutes of downtime. Then
a tornado hit the town and destroyed the building that contained the system. The
REA declared the test to be a failure. Only extreme pleading resulted in a re-test. The
second time, there was less than 30 seconds of downtime in the six-month interval.

Reliability models have a solid history of applicability to physical systems, but can
they be applied to software? Physical components can age and therefore deteriorate.
This is usually shown in the Weibull distribution, in which failures drop to nearly
zero rapidly. Some forms show an increase after an interval that represents the useful
life of a component. The problem is that software, once well tested, does not dete-
riorate. The main difference between reliability models applied to software versus
to hardware comes down to the arrival rate of failures. Testing based on operational
profiles, and the extension to risk-based testing is a good start, but no amount of
testing can guarantee the absence of software faults.

13.7.2.3 Monte Carlo Testing

Monte Carlo testing might be considered a last resort in the system tester’s arsenal.
The basic idea of Monte Carlo testing is to randomly generate a large number of
threads (transactions) and then see if anything unexpected happens. The Monte
Carlo part comes from the use of pseudo-random numbers, not from the fact that
the whole approach is a gamble. Monte Carlo testing has been successful in applica-
tions where computation involving physical (as opposed to logical, see Chapter 6)
variables are used. The major drawback to Monte Carlo testing is that the large num-
ber of random transactions requires a similarly large number of expected outputs in
order to determine whether a random test case passes or fails.

Exercises
 1. One of the problems of system testing, particularly with interactive systems, is to

anticipate all the strange things the user might do. What happens in the Foodie
Wish List system if a customer enters three digits of a PIN and then leaves?

 2. To remain “in control” of abnormal user behavior (the behavior is abnormal, not
the user), the Foodie Wish List system might introduce a timer with a 30-second

336 ◾ Software Engineering

time-out. When no port input event occurs for 30 seconds, the Foodie Wish List
system could ask if the user needs more time. The user can answer yes or no.
Devise a new screen and identify port events that would implement such a time-
out event.

 3. Suppose you add the time-out feature described in exercise 2 to the Foodie
Wish List system. What regression testing would you perform?

 4. Make an additional refinement to the PIN Try finite state machine (Figure 13.6)
to implement your time-out mechanism from exercise 2, then revise the thread
test case in Table 13.3.

 5. Complete the Extended ATE test case begun in Section 13.4.4..
 6. Does it make sense to use test coverage metrics in conjunction with operational

profiles? Same question for risk-based testing. Discuss this.
 7. Fill in the input and output events for the last four ASFs in Table 13.16.

References
Binder, Robert V., “Don’t Play Developer Testing Roulette: How to Use Test Coverage”, Software

Engineering Institute Blog, https://insights.sei.cmu.edu/sei_blog/2019/10, Oct. 14, 2019.
Jorgensen, Paul C., System testing with pseudo-structures, Amer. Programmer, Vol. 7, No. 4,

pp. 29–34, April 1994.
Jorgensen, Paul C. Modeling Software Behavior: A Craftsman’s Approach, CRC Press, New

York, 2009.
Larman, C., Applying UML and Patterns: An Introduction to Object-Oriented Analysis and

Design (2nd Edition), Prentice-Hall, Upper Saddle River, NJ, 2001.
Schaefer, Hans, Software Test Consulting, “Risk Based Testing, Strategies for Prioritizing Tests

against Deadlines“, http://home.c2i.net/schaefer/testing.html, 2005.
Owens, Steve D., Caldwell, Eric O., and Woodward, Mike R., “Birdstrike Certification Tests of

F-35 Canopy and Airframe Structure” 2009 Aircraft Structural Integrity Program (ASIP)
Conference, December 1–3, 2009, Jacksonville, FL. Also can be found at Trimble, Stephen,
July 28, 2010 4:58 PM. [http://www.flightglobal.com/blogs/the-dewline/2010/07/video-
f-35-birdstrike-test-via.html] and.[http://www.flightglobal.com/blogs/the-dewline/
Birdstrike%20Impact%20Studies.pdf.

https://insights.sei.cmu.edu
http://home.c2i.net
http://www.flightglobal.com
http://www.flightglobal.com
http://www.flightglobal.com
http://www.flightglobal.com

337

Chapter 14

Model-Based Testing

“By my faith! For more than forty years I have been speaking prose without knowing
anything about it....”

Monsieur Jourdain in Le Bourgeois Gentilhomme

We share the sentiment of Moliere’s Monsieur Jourdain; since the first edition, this
book has advocated what we now call Model-Based Testing (MBT). In this chapter, we
describe the basic mechanism, discuss how to choose appropriate models, consider
the pros and cons of MBT, and provide a short discussion of available tools. Actual
examples of MBT are (and have been in the earlier editions) scattered throughout
this book. The material in Section 14.3 is taken, almost directly, from The Craft of
Model-Based Testing (Jorgensen 2017).

There are two important views of a model—as a compromise with reality and as
a caricature of reality. Both are important for Model-Based Testing. When we under-
stand a model as a compromise with reality, we accept that the model is essentially
incomplete. Taken as a caricature of reality, it is important for the modeler to capture
the important aspects of the reality being modeled, much like caricatures of political
figures are easily recognized. Further, it is a mistake to force a model to reflect ALL of
reality; similarly, it is a mistake to omit important aspects of reality. Modeling, then, is
something of an art—it involves talent, understanding, and judgment.

14.1 Testing Based on Models
The main advantage of modeling system behavior is that the process of creating
a model usually results in deeper insights and understanding of the system being
modeled/tested. This is particularly true of executable models such as finite state
machines, Petri Nets, and Statecharts. In Chapter 13, we saw that threads of system
behavior, which are easily transformed into system level test cases, are readily derived
from many behavioral models. Given this, the adequacy of model-based testing will

338 ◾ Software Testing

always depend on the accuracy of the model. The essence of model-based testing is
this sequence of steps:

 1. Model the system.
 2. Identify threads of system behavior in the model.
 3. Transform these threads into test cases.
 4. Execute the test cases (on the actual system) and record the results.
 5. Revise the model(s) as needed and repeat the process.

14.2 Appropriate Models
Avvinare is an interesting Italian word. It refers to a process that many Italian families
perform in autumn when they bottle wine. After buying a demijohn of bulk wine, they
rinse out the empty bottles that they have saved during the year. There are always
small droplets of water clinging to the sides of a bottle, but it is difficult to remove
them. Instead, they fill a bottle about half full of the wine to be bottled and shake
it up to dissolve the water into the wine. Next, the wine is funneled into the next
bottle, shaken, and poured into another bottle. This continues until all the bottles
have been rinsed with wine, and they are ready for bottling. Question: would it be
the job of a tester to drink the watered-down wine? Avvinare is the verb that refers to
this entire process. How would you translate this word into English? This activity isn’t
very common in the English-speaking world. I really don’t know, but it won’t be easy.
Languages evolve to meet the expressive needs of their speakers, and models have
evolved to meet the complexity of the systems they describe. This is where Software
Engineering meets Epistemology. Since model-based testing begins with modeling,
choice of an appropriate model determines the ultimate success of the associated test-
ing. Making an appropriate choice depends on several things: the expressive power
of various models, the essential nature of the system being modeled, and the analyst’s
ability to use various models. We consider the first two of these next.

14.2.1 Peterson’s Lattice

James Peterson developed an elegant lattice of models of computation [Peterson
1981] which is summarized in Figure 14.1. The arrows in the lattice signify a “more
expressive than” relationship in which the model at the origin of an arrow is more
expressive than that at the end of an arrow. In his text, Peterson carefully develops
examples for each edge in the lattice. For example, he shows a semaphore system
that cannot be expressed as a finite state machine. Four models in his lattice obscure:
vector replacement systems, vector addition systems, UCLA graphs, and message sys-
tems. There are scores of extensions to Petri Nets; Peterson grouped these together
for simplicity. Marked graphs are a formalization of dataflow diagrams, and Peterson
shows them to be formal duals of finite state machines.

Peterson’s lattice is a good starting point for model-based testing. Given an appli-
cation, good practice dictates choosing a model that is both necessary and suffi-
cient—neither too weak nor too strong. If a model is too weak, important aspects of
the application will not be modeled, and hence not tested. If a model is too strong,
the extra effort to develop the model may be unnecessary.

Model-Based Testing ◾ 339

Peterson’s lattice predates the invention of Statecharts by David Harel, which
raises the question of where they fit in Peterson’s lattice. They are at least equivalent,
and probably more expressive than most extensions of Petri Nets. Several graduate
students at Grand Valley State University have explored this question, with a variety
of approaches. Their work is persuasive, but for a long time, I had no formal proof
of this potential equivalence. However, given a relatively complex Statechart, it can
always be expressed as an Event-Driven Petri Net (as defined in Chapter 4). The rich
language associated with Statecharts transitions will probably be difficult to express
in most Petri Net extensions. One promising approach offered by DeVries (co-author
of this book) [DeVries 2013] is that of “Swim Lane Petri Nets.”

Figure 14.2 shows the anticipated placement of Statecharts in Peterson’s Lattice.
The one-way arrow reflects the fact that a given Statechart can express concurrency
(by the concurrent regions), and true concurrency cannot be expressed in a Petri
Net, nor in most extensions. Part of the work by DeVries describes “Swim Lane Petri

Figure 14.1 Peterson’s lattice.

Extended
Petri Nets

Message Systems

Semaphore (P, V) Systems

Vector
Replacement

Systems

Vector
Addition
Systems

Petri Nets UCLA
Graphs

Marked
Graphs

Finite State
Machines

Figure 14.2 Placement of Statecharts in Peterson’s lattice.

Extended
Petri Nets

Message Systems

Semaphore (P, V) Systems

Vector
Replacement

Systems

Vector
Addition
Systems

Petri Nets UCLA
Graphs

Marked
Graphs

Finite State
Machines

StateCharts

340 ◾ Software Testing

Nets.” These use the UML notion of “swim lanes” to express parallel activities. We
will revisit this concept in Chapter 15 when we use it to describe interactions among
constituent systems in systems of systems. There we will use some of the prompts of
the Extended Systems Modeling Language to show cross-swim lane communication
of Event-Driven Petri Nets. Figure 14.3 shows the anticipated lattice among Event-
Driven Petri Nets, Swim Lane Event-Driven Petri Nets, and a sub-class of Statecharts.

14.2.2 Expressive Capabilities of Mainline Models

Peterson looked at four mainline models in terms of the kinds of behavioral issues
that they can represent. The Venn diagram in Figure 14.4 shows his summary.

14.2.3 Modeling Issues

Much of the information in this subsection is taken from [Jorgensen 2009]. There
are two fundamental types of requirements specification models: those that describe
structure, and those that describe behavior. These correspond to two fundamental
views of a system: what a system is, and what a system does. Dataflow diagrams,
Entity/Relation models, hierarchy charts, class diagrams, and object diagrams all
focus on what a system is—the components, their functionality, and interfaces among
them. They emphasize structure. The second type, including decision tables, finite

Figure 14.4 Expressive capabilities in Peterson’s Lattice.

Expressive capabilities of
Models in Peterson’s lattice

1. Data flow
2. Control flow
3. Conflict
4. Mutual exclusion
5. Fair scheduling
6. Communication
7. Synchronization

Petri Net 5, 6, 7

Semaphore
System 3, 4

Marked
Graph

Finite State
Machine

1 2

Figure 14.3 Addition to Peterson’s Lattice with Swim Lane Models.

Event-Driven
Petri Nets

UML
State Charts

Petri Nets

Swim Lane
Event-Driven

Petri Nets

Swim Lane
Petri Nets

?

Model-Based Testing ◾ 341

state machines, Statecharts, and Petri Nets, describes system behavior—what a sys-
tem does. Models of system behavior have varying degrees of expressive capability,
the technical equivalent of being able to express avvinare in another language.

The [Jorgensen 2009] reference identifies 19 behavioral modeling issues, sub-
divided into four groups: the first group contains the code structuring precepts of
Structured Programming: sequence, selection, and repetition. The next group is from
the Extended Systems Modeling Language group [Bruyn et al., 1988]: enable, disable,
trigger, activate, suspend, resume, and pause. These prompts will be used in our
modeling of systems of systems using Swim Lane Event Driven Petri Nets in Chapter
17. The task management category consists of the basic Petri Net mechanisms: con-
flict, priority, mutual exclusion, concurrent execution, and deadlock. The last group
deals with issues in event-driven systems: context sensitive input events, Multiple
context output events, asynchronous events, and event quiescence.

Table 14.1 maps the 19 behavioral issues to five executable models, each of which
is a candidate for model-based testing.

Table 14.1 Expressive Capability of Five Executable Models

Behavioral Issue
Decision

Tables FSMs Petri Nets EDPNs Statecharts

Sequence No Yes Yes Yes Yes

Selection Yes Yes Yes Yes Yes

Repetition Yes Yes Yes Yes Yes

Enable No No Yes Yes Yes

Disable No No Yes Yes Yes

Trigger No No Yes Yes Yes

Activate No No Yes Yes Yes

Suspend No No Yes Yes Yes

Resume No No Yes Yes Yes

Pause No No Yes Yes Yes

Conflict No No Yes Yes Yes

Priority No No Yes Yes Yes

Mutual exclusion Yes No Yes Yes Yes

Concurrent execution No No Yes Yes Yes

Deadlock No No Yes Yes Yes

Context sensitive input events Yes Yes Indirectly Yes Yes

Multiple context output events Yes Yes Indirectly Yes Yes

Asynchronous events No No Indirectly Yes Yes

Event quiescence No No Indirectly Yes Yes

342 ◾ Software Testing

14.2.4 Making Appropriate Choices

Choosing an appropriate model begins with understanding the essential nature of the
system to be modeled (and tested). Once these aspects are understood, they must be
related to the various capabilities just discussed, and then the appropriate choice is
simplified. The ultimate choice will always depend on other realities, such as company
policy, relevant standards, analyst capability, and available tools. Always choosing the
most powerful model is a simple-minded choice; a better choice might be to choose the
simplest model that can express all the important aspects of the system being modeled.

14.3 Commercial Tool Support for Model-Based Testing
There are several open source and commercial Model-Based Testing products avail-
able. Five open source MBT tools are briefly profiled in (Jorgensen 2017). More
importantly, six commercial MBT tool vendors cooperated in providing the results of
their products on two specific examples, a variation of the Insurance Premium prob-
lem, and a slight simplification of the Garage Door Controller. David Harel identifies
two fundamental types of applications—transformational and reactive (Harel 1988).
The Insurance Premium problem is an example of a transformational program; it
transforms data inputs into computed outputs. The Garage Door Controller is a reac-
tive system, in the sense that it reacts to input events as they occur. Generally speak-
ing, transformational applications are “one shot” programs that execute and finish.
Reactive programs may be long running; they maintain a relationship with the envi-
ronment in which they occur.

Selected portions of the responses from three of the commercial tools are given
here. The commercial tools use a variety of models for transformational applica-
tions. UML Activity Diagrams, Business Processing Models, Rule-Based (i.e., decision
tables) and flowcharts are the most common choices. The consensus among both
open-sourced and commercial MBT tools for reactive systems is some form of finite
state machines.

Most, if not all, commercial MBT systems are based on finite state machine mod-
els of the system being tested. In an ideal MBT world, some graphical form on the
system finite state machine would serve as input to the system. The reality is that
some form of textual definition is required—usually as code in an object-oriented
programming language.

14.3.1 TestOptimal

TestOptimal LLC is located near Rochester, Minnesota, USA. Their product line is
extensive and comprehensive, including a very sophisticated set of tools. The com-
pany website is [http://testoptimal.com/].

Their solution to the Insurance Premium Problem used the concept of orthogonal
arrays to generate a set of nine test cases (Table 14.2) which, taken together, exercise
every pair of input parameter values. The tool generates more test cases if three-wise
or four-wise orthogonal arrays are used.

The TestOptimal solution to the Garage Door Controller is based on a finite state
machine having the input events, input events, and states in Table 14.3. The state
diagram is in Figure 14.5.

http://testoptimal.com

Model-Based Testing ◾ 343

The tool generates 13 test cases, once again using the orthogonal array technique.
They are shown in Figure 14.5, where they are related to transitions in the finite state
machine.

14.3.2 Conformiq

Conformiq Software Oy is located in Espoo, FINLAND. Their product line, Conformiq
360° Test Automation, is very comprehensive and goes far beyond test generation,
by integrating with existing software development lifecycle tools in the testing pro-
cess starting from requirements management and Application Lifecycle Management
(ALM) through test management and documentation, and automatic test execution
tools. The company website is [https://www.conformiq.com/].

The Conformiq solution to the Insurance Premium Problem begins with a UML
Activity Diagram (Figure 14.6).

Based on the Activity Diagram, the Conformiq tool generates 64 test cases that
cover all control flows, activity chart nodes, and decisions. Taken together, they con-
stitute Worst Case Normal Equivalence Class testing. Table 14.4 shows the first 16 of
the generated test cases.

Table 14.2 Pairwise Abstract Test Cases (Full Set)

Test Case Age Claims Good Student Non-drinker Expected Premium

1 16 - 24 0 false false $775

2 16 - 24 1 - 3 true false $1000

3 16 - 24 4 - 10 false true $1150

4 25 - 64 0 true false $525

5 25 - 64 1 - 3 false true $575

6 25 - 64 4 - 10 true false $900

7 65 - 89 0 false true $770

8 65 - 89 1 - 3 true false $1125

9 65 - 89 4 - 10 false false $970

Table 14.3 Garage Door Controller Events and States

Input events Output events (actions) States

e1: control signal a1: start drive motor down s1: Door Up

e2: end of down track hit a2: start drive motor up s2: Door Down

e3: end of up track hit a3: stop drive motor s3: Door stopped going down

e4: laser beam crossed a4: reverse motor down to up s4: Door stopped going up

s5: Door closing

s6: Door opening

https://www.conformiq.com

344 ◾ Software Testing

The Conformiq solution to the Garage Door Controller begins with the UML Finite
State Machine shown in Figure 14.7.

The 17 test cases in Table 14.5 are derived from the finite state machine in
Figure 14.7.

The individual test cases are on state transition sequences. Table 14.6 shows the
generated test case 16.

Figure 14.5 TestOptimal FSM Related to Test Cases.

Figure 14.6 Conformiq UML Activity Diagram for the Insurance Premium Problem.

Model-Based Testing ◾ 345

Table 14.4 First 16 of 64 Generated Insurance Problem Test Cases

Test Case Age Claims Good Student Non-Drinker Approved? Premium

1 77 1 to 3 F T Yes $385

2 77 1 to 3 T F Yes $410

3 77 0 T T Yes $235

4 77 4 to 10 T T Yes $535

5 0 0 F F No

6 0 1 to 3 F F No

7 0 4 to 10 F F No

8 0 4 to 10 F T No

9 0 4 to 10 T F No

10 0 > 10 F F No

11 0 > 10 F T No

12 0 > 10 T F No

13 77 > 10 T T No

14 20 0 T T Yes $325

15 77 0 F T Yes $285

16 77 0 T F Yes $310

Figure 14.7 Conformiq Garage Door Controller State Machine Diagram.

346 ◾ Software Testing

As with the Insurance Premium Problem, the Conformiq tool provides extensive
tracking information.

14.3.3 Verified Systems International GmbH

Verified Systems International GmbH (https://www.verified.de) was established in
1998 as a spinoff company of the University of Bremen. The company specializes in
the verification and validation of safety-critical or business-critical embedded systems
and cyber-physical systems. Being a university product, it features the best technol-
ogy. Verified Systems’ main customers come from the avionics, railways, and automo-
tive domains.

Table 14.5 Conformiq Test Case Numbers

Test Case State Sequence Test Case State Sequence

1 s1, s5 10 s1, s5, s3, s5, s6

2 s1, s5, s3 11 s1, s5, s2, s6, s1

3 s1, s5, s2 12 s1, s5, s6, s1, s5

4 s1, s5, s3, s5 13 s1, s5, s6, s4

5 s1, s5, s6 14 s1, s5, s2, s6, s4

6 s1, s5, s2, s6 15 s1, s5, s6, s4, s6

7 s1, s5, s6, s1 16 s1, s5, s6, s4, s6, s4

8 s1, s5, s3, s5, s3 17 s1, s5, s6, s4, s6, s1

9 s1, s5, s3, s5, s2

Table 14.6 Sample Conformiq Generated Test Case

Test case 16: s1, s5, s6, s4, s6, s4

Step Action(s) Verification Point(s)

1 Provide system with input e1:
control signal

System performs action a1: start
drive motor “down”.

2 Provide system with input e4: laser
beam crossed.

System performs action a4: reverse
motor down to up.

3 Provide system with input e1:
control signal

System performs action a3: stop
drive motor.

4 Provide system with input e1:
control signal

System performs action a2: start
drive motor “up.”

5 Provide system with input e1:
control signal

https://www.verified.de

Model-Based Testing ◾ 347

Their solution to the Insurance Premium Problem begins with a UML/SysML
Activity Diagram (Figure 14.8). The product derives 37 equivalence classes from the
inputs. Here are a few sample classes:

(Age == 24) && (1 == Claims) &&!GoodStudent && NonDrinker.
(Age == 16) && (1 == Claims) &&!GoodStudent && NonDrinker.
(Age == 24) && (3 == Claims) &&!GoodStudent && NonDrinker.
(Age == 16) && (1 == Claims) &&!GoodStudent && NonDrinker.

Figure 14.8 UML/SysML Activity Diagram for the Insurance Premium Problem.

348 ◾ Software Testing

The RT-Tester solution to the Garage Door Controller begins with a UML/SysML
finite state machine diagram (Figure 14.9).

The tool derived 252 test cases from the finite state machine diagram. Some of
these are listed in Table 14.7. This large number of test cases checks both expected
and unexpected sequences of input events.

Figure 14.9 Garage Door Controller FSM.

Table 14.7 Selected Test Case Sequences for the Garage
Door Controller

Test Case Transition Named by Input/Output Event

1 1. (e1/a1).(e2/a3).(e1/a2).(e1/a3).(e1/a2).(e1/a3)

2 2. (e1/a1).(e2/a3).(e1/a2).(e1/a3).(e1/a2).(e2/−)

3 3. (e1/a1).(e2/a3).(e1/a2).(e1/a3).(e2/−).(e1/a2)

4 4. (e1/a1).(e2/a3).(e1/a2).(e1/a3).(e3/−).(e1/a2)

155 155. (e1/a1).(e4/a4).(e4/−).(e3/a3).(e1/a1).(e2/a3)

156 156. (e1/a1).(e4/a4).(e4/−).(e3/a3).(e2/−).(e1/a1)

157 157. (e1/a1).(e4/a4).(e4/−).(e3/a3).(e3/−).(e1/a1)

158 158. (e1/a1).(e4/a4).(e4/−).(e3/a3).(e4/−).(e1/a1)

159 159. (e1/a1).(e4/a4).(e4/−).(e4/−).(e1/a3).(e1/a2)

160 160. (e1/a1).(e4/a4).(e4/−).(e4/−).(e2/−).(e1/a3)

251 251. (e4/−).(e4/−).(e3/−).(e1/a1)

252 252. (e4/−).(e4/−).(e4/−).(e1/a1)

Model-Based Testing ◾ 349

Exercises
An automobile windshield wiper is controlled by a lever with a dial. The lever has
four positions: OFF, INT (for intermittent), LOW, and HIGH; and the dial has three
positions, numbered simply 1, 2, and 3. The dial positions indicate three intermittent
speeds, and the dial position is relevant only when the lever is at the INT position.
The decision table below shows the windshield wiper speeds (in wipes per minute)
for the lever and dial positions.

c1. Lever OFF INT INT INT LOW HIGH

c2. Dial n/a 1 2 3 n/a n/a

a1. Wiper 0 4 6 12 30 60

This may be the most important set of exercises in the 5th edition. Assume you have
a test bench for the Windshield Wiper Controller. It includes the following:

	 ◾	 an actual lever, dial and wiper motor (the wiper blades would be too cumbersome)
	 ◾	 the Windshield Wiper Controller
	 ◾	 a 12-V battery connected to the Windshield Wiper Controller with an On/Off

switch (replicates the ignition switch)
	 ◾	 a display device showing the number of wiper strokes per minute

In each of the following exercises, use the designated model to describe the sys-
tem. Use your model to develop test cases of the form:

Test Case ID, Test Case Description (including the underlying model)
Pre-condition(s)

Event Sequence

Input Event(s) Output Event(s)

Post-condition(s)
Here is one example:

 DT-1 Decision Table Lever moves from INT to OFF
Pre-conditions
 1. Lever at INT
 2. Dial at 1
 3. Wiper motor display shows 6

Event Sequence

Input Event(s) Output Event(s)

1. Move lever to OFF position 2. Wiper display shows 0

350 ◾ Software Testing

Post-conditions

 1. Lever at OFF
 2. Dial at 1
 3. Wiper motor display shows 0

Questions to be answered for each model in exercises 1 to 5.

 1. How many test cases do you have?
 2. Could you derive the event sequence from the model?
 3. Did your model contain the basis for identifying pre-conditions? If yes, describe

how.
 4. Did your model contain the basis for identifying post-conditions? If yes, describe

how.
 5. Did your model contain the basis for creating the test case description?

 1. Describe the Windshield Wiper Controller system with BDD scenarios, then
answer the following questions:
 1. How many test cases do you have?
 2. Could you derive the event sequence from the model?
 3. Did your model contain the basis for identifying pre-conditions? If yes,

describe how.
 4. Did your model contain the basis for identifying post-conditions? If yes,

describe how.
 5. Did your model contain the basis for creating the test case description?

 2. Describe the Windshield Wiper Controller system with an extended entry deci-
sion table, then answer the following questions:
 1. How many test cases do you have?
 2. Could you derive the event sequence from the model?
 3. Did your model contain the basis for identifying pre-conditions? If yes,

describe how.
 4. Did your model contain the basis for identifying post-conditions? If yes,

describe how.
 5. Did your model contain the basis for creating the test case description?

 3. Describe the Windshield Wiper Controller system as a finite state machine in
which states are of the form <lever position, dial position> and transitions are
caused either by a single lever event or a single dial event. Answer the following
questions:
 1. How many test cases do you have?
 2. Could you derive the event sequence from the model?
 3. Did your model contain the basis for identifying pre-conditions? If yes,

describe how.
 4. Did your model contain the basis for identifying post-conditions? If yes,

describe how.
 5. Did your model contain the basis for creating the test case description?

Model-Based Testing ◾ 351

 4. Describe the Windshield Wiper Controller system as a finite state machine in
which states show the wiper speed (0, 6, 12, 20, 30, 60) and transitions are
caused either by a single lever event or a single dial event. Answer the following
questions:
 1. How many test cases do you have?
 2. Could you derive the event sequence from the model?
 3. Did your model contain the basis for identifying pre-conditions? If yes,

describe how.
 4. Did your model contain the basis for identifying post-conditions? If yes,

describe how.
 5. Did your model contain the basis for creating the test case description?

 5. Describe the Windshield Wiper Controller system as an Event-Driven Petri Net.
Use your wiper speed states as places, lever and dial events as port input events,
and wiper motor speeds as output events. There is no compelling reason to give
names to your transitions, but you may. Answer the following questions:
 1. How many test cases do you have?
 2. Could you derive the event sequence from the model?
 3. Did your model contain the basis for identifying pre-conditions? If yes,

describe how.
 4. Did your model contain the basis for identifying post-conditions? If yes,

describe how.
 5. Did your model contain the basis for creating the test case description?

 6. Write a Retrospective of your answers to questions 1 through 5. Include your
conclusions on questions such as the following:
 1. Which models made test case development easy?
 2. Conversely, in which models was test case development awkward or

difficult?
 3. There are subtle issues in the Windshield Wiper Controller problem—mov-

ing the Lever to the INT position enables the Dial, and conversely, moving
the Lever from the INT position disables the Dial. Are these issues “visible”
in any of your models? Could your models be extended so they are?

 4. You could extend your finite state machine from question 3 so that each state
describes the enabled/disabled status of the Dial. This will double the size of
your finite state machine. Would this be helpful?

 5. If you added a condition to your extended entry decision table (question 2)
that refers to the enabled/disabled dichotomy, would this be helpful? This
change would also double the size of your model.

References
William Bruyn, Randall Jensen, Dinesh Keskar, Paul Ward. “An extended systems model-

ing language (ESML)”, Association for Computing Machinery, ACM SIGSOFT Software
Engineering Notes, Vol 13 No. 1, Jan. 1988, pp. 58–67.

Byron DeVries, “Mapping of UML Diagrams to Extended Petri Nets for Formal Verification”,
Master’s Thesis, Grand Valley State University, Allendale, Michigan, April, 2013.

352 ◾ Software Testing

D. Harel, “On Visual Formalisms”, Communications of the ACM, Vol.31, No. 5, May 1988, pp.
514–530.

Paul C. Jorgensen, Modeling Software Behavior: A Craftsman’s Approach, CRC Press, New
York, 2009.

Paul C. Jorgensen, The Craft of Model-Based Testing, CRC Press, New York, 2017.
James L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice Hall, Englewood

Cliffs, NJ, 1981.

353

Chapter 15

Software Complexity

Most discussions of software complexity focus on two main models—cyclomatic (or
decisional) complexity, and textual complexity as measured by the Halstead met-
rics. Both approaches are commonly used at the unit level—we will use cyclomatic
complexity also at the integration and system levels. Although not usually men-
tioned, program size is another contributor to software complexity. This is most
often seen in discussions of program comprehension—sheer size impedes program
comprehension.

We take a closer look at software complexity at all three levels—unit, integra-
tion, and system. At the unit level, the basic cyclomatic complexity model (also
known as McCabe complexity) is extended in two ways. Integration level com-
plexity applies cyclomatic complexity to a Call Graph (a directed graph in which
units are nodes and edges represent either object-oriented messages or procedural
calls). After discussing the complexities due to object-oriented practice, system
level complexity for single-processor applications is expressed in terms of an inci-
dence matrix that relates the is and does views of a software system. Systems of
Systems (SoS) introduce a whole new level of complexity, as we saw in Foodie Wish
List examples in Chapters 12 and 13.

Software complexity is usually analyzed as a static (i.e., compile-time) property
of source code, not an execution-time property. The approaches discussed here are
derived either directly from source code, or in the case of integration and system
complexity, from design- and specification-level models. Why worry about soft-
ware complexity? It has the most direct bearing on the extent of required software
testing, but also, it is an indicator of difficulty in software maintenance, particularly
program comprehension. As software complexity increases, development effort
also increases, although this is a little circular since much of the analysis is based
on the development of existing code (too late!). Finally, an awareness of software
complexity may lead to improved programming practices, and even better design
techniques.

354 ◾ Software Testing

15.1 Unit Level Complexity
We begin our description of unit level complexity with the notion of a program
graph from Chapter 8 (Code-Based Testing.) Recall that for a program written in an
imperative programming language, its program graph is a directed graph in which
nodes are either entire statements or statement fragments, and edges represent flow
of control. There is an edge from node i to node j if and only if the statement (frag-
ment) corresponding to node j can be executed immediately after the statement or
statement fragment corresponding to node i. Program graphs represent the control
flow structure of the source code, and this leads to the usual definition of cyclomatic
complexity.

15.1.1 Cyclomatic Complexity

Definition: In a strongly connected directed graph G, its cyclomatic complexity,
denoted by V(G), is given by V(G) = e – n + p, where

	 ◾	 e is the number of edges in G
	 ◾	 n is the number of nodes in G
	 ◾	 p is the number of connected regions in G

In code that conforms to structured programming (single entry, single exit), we
always have p = 1. There is some confusion in the literature about the formula for
V(G). There are two formulas commonly seen:

 V G e n p� � � � � (15.1)

and

 V G e n p� � � � � � (15.2)

Equation (15.1) refers to a directed graph G that is strongly connected, i.e., for
any two nodes nj and nk of G, there is a path from nj to nk, and a path from nk to
nj. Since the program graph of a structured program has a single entry node and a
single exit node, the graph is not quite strongly connected. (There is no path from
the sink node to the source node.) The usual way to apply the formula is to add an
edge from the sink node to the source node. If an edge is added, Equation (15.1)
applies, otherwise Equation (15.2) applies. With this definition, and given a program
graph, the cyclomatic complexity is determined by counting the nodes and edges,
and then applying Equation (15.2). This is fine for small programs, but what about a
program graph such as the one in Figure 15.1? Even for program graphs of this size,
counting nodes and edges is tedious. For that matter, drawing the program graph
is also tedious. Fortunately, there are more elegant ways, based on an insight from
directed graph theory. We next develop two shortcuts.

Software Complexity ◾ 355

15.1.1.1 “Cattle Pens” and Cyclomatic Complexity

Cyclomatic complexity refers to the number of independent cycles in a strongly
connected directed graph. When drawn in the usual way (as in Figure 15.1), these
cycles are easily identified visually, and this can be done for simple programs.
Rather than count all the nodes and edges in a larger graph, we can imagine nodes
to be fence posts, and edges to be fencing used in a cattle pen. Then the num-
ber of “cattle pens” can be counted visually. (The more esoteric term is “enclosed
regions,” which the topologists prefer.) In the program graph in Figure 15.1, there
are 37 edges and 31 nodes. Since the graph is not strongly connected, Equation
(15.2) applies, and V(G) = 37–31 + 2 = 8. The eight “cattle pens” are also numbered
(notice that one pen is “outside” all the others). Drawing the directed graph to
identify cattle pens is still tedious. Again, there is a more elegant way, based on
more definitions from graph theory.

Figure 15.1 A mildly complex program graph.

1

2 3

4

5

4

6

7

8

9

10

11

12

13

14 15

16

17

6

7

9

11 12 13

19

18

15

1

2

3

4

31

19

20

21

29

30

23

26

27

28

33

37

28
27

22

30

24

24

25

5

6

7

8

22

356 ◾ Software Testing

15.1.1.2 Node Outdegrees and Cyclomatic Complexity

As we saw in Chapter 4, the indegree of a node in a directed graph is the number
of edges that terminate on the node. Similarly, the outdegree of a node in a directed
graph is the number of edges that originate at the node. These are commonly denoted
for node n as inDeg(n) and outDeg(n). We need another definition to replace the
thinking that went into the cattle pen approach:

Definition

The reduced outdegree of node n in a directed graph is one less than the outdegree
of n.

Denote the reduced outdegree of node n as reducedOut(n); then we can write

 reducedOut n outDeg n 1.� � � �� �

We use the reduced outdegree of nodes in a program graph to compute its cyclo-
matic complexity. Notice that a cattle pen “begins” with a node with outDeg > = 2.
Table 15.1 shows the nodes in Figure 15.1 that satisfy this observation:

The sum of the reduced outdegrees is the number of cattle pens, but this doesn’t
count the “outside” cattle pen, which makes 8—the cyclomatic complexity of the
directed graph. The outdegrees can be determined from the source code, eliminat-
ing the need to draw the directed graph, and perform the other tedious steps. As
a guideline, a simple loop determines a cattle pen, as do the If, Then and If, Then,
Else statements. Switch (Case) statements with k alternatives determine k – 1 cattle
pens. So now, finding cyclomatic complexity is reduced to determining the reduced
outdegrees of all decision-making statements in the source code. We can state this as
a formal theorem (without proof).

Theorem: Given a directed graph G of n nodes, the cyclomatic complexity V(G) of
G is given by the sum of the reduced outdegrees of the nodes of G plus 1, i.e.

 V G i = 1..n reduced Out i� � � � � �� �1 �

Table 15.1 Reduced Outdegrees in Figure 15.1

Node outDeg reducedOut

1 2 1

7 3 2

13 2 1

19 3 2

26 2 1

Total = 7

Software Complexity ◾ 357

15.1.1.3 Decisional Complexity

Cyclomatic complexity is a start, but it is an oversimplification. Why? Because all
decision-making statements are not equal—compound conditions add complex-
ity. Consider the following code fragment from the discussion in Chapter 8 Section
8.3.4.3. (Figure 8.9 is repeated here as Figure 15.2.)

The program graph of this fragment is very simple—it has a cyclomatic complex-
ity of 2. From a software testing standpoint, we would apply multiple condition test-
ing, or we could rewrite the fragment as follows (see Figure 15.3), with the resulting
cyclomatic complexity of 4:

Notice that the compound condition in Figure 15.2 conceals the decisional com-
plexity that is shown in Figure 15.3. The added complexity of compound conditions
cannot be determined from a program graph—it must be derived from the source
code.

Doing a full multiple conditional testing analysis for a compound condition entails
making a truth table in which the simple conditions are considered as individual
propositions, and then finding the truth table of the compound expression. For now,

Figure 15.2 Fragment of the Triangle Program.

9. if ((a < b + c) && (b < a + c) && (c < a + b)) {
10. IsATriangle = true;
11. } else {
12. IsATriangle = false;
13. }

9

10 11

12

13

Figure 15.3 Triangle Program Fragment Rewritten with Nested If-Else Statements.

1. if (a < b + c) {
2. if (b < a + c) {
3. if (c < a + b) {
4. IsATriangle = true;
5. } else {
6. IsATriangle = false;
7. }
8. } else {
9. IsATriangle =false;
10. }
11. } else {
12. IsATriangle =false;
13. }

1

2

3

45

6

7

811

9

10

12

13

358 ◾ Software Testing

we choose to simplify this and just define the added complexity of compound con-
ditions to be one less than the number of simple conditions in the expression. Why
one less? The compound condition creates a unit of cyclomatic complexity, so this
avoids “double counting.”

15.1.2 Computational Complexity

Thus far, we have focused on what might be called control complexity, or maybe
decisional complexity—basically looking at the edges leaving nodes in a program
graph. But what about the nodes themselves? Just as with decisions, all nodes are
not “created equal.” We use the definitions of DD-Path and DD-Path Graph made in
Chapter 8.

Recall that DD-Path execution is like a sequence of dominoes, once the first state-
ment executes, every statement in the DD-Path executes, until the next decision point
is reached. At this point, we can begin to think about the length of a DD-Path. Since
a DD-Path contains no internal decision-making statements for any program P, the
cyclomatic complexity of P equals the cyclomatic complexity of the DD-Path graph
of P. Our problem is now reduced to considering the computational complexity of a
DD-Path, and this is where the Halstead Metrics are useful.

15.1.2.1 Halstead’s Metrics

For a given program (DD-Path), consider the operators and operands in the program
code. Operators include the usual arithmetic and logical operators, as well as built-
in functions such as Square Root. Operands are identifiers. The Halstead metrics
[Halstead 1977] are based on the following quantities, derived from the source code
of the program (DD-Path):

	 ◾	 the number of distinct operators, n1,
	 ◾	 the number of distinct operands, n2,
	 ◾	 the total number of operators, N1, and
	 ◾	 the total number of operands, N2.

Based on these, Halstead defines

	 ◾	 program length as N = N1 + N2

	 ◾	 program vocabulary as n = n1 + n2

	 ◾	 program volume as V = Nlog2(n)
	 ◾	 program difficulty as D = (n1N2)/2n2

Of these, the formula for program volume seems to make the most sense, but we
could choose to use program difficulty, as this seems to be linguistically related to
our goal of describing software complexity.

Software Complexity ◾ 359

15.1.2.2 Example: Day of Week with Zeller’s Congruence

Here we compare two slightly different implementations of Zeller’s Congruence,
which determines the day of the week of a given date. The inputs d, m, y respec-
tively are day, month, and year. Tables 15.2 and 15.3 show the values of the inputs
to Halstead’s metrics.

First implementation

if (m < 3) {
 m += 12;
 y -= 1;
}
int k = y % 100;
int j = y / 100;
int dayOfWeek = ((d+(((m+1)*26)/10)+k+(k/4)+(j/4))+(5*j))%7;

Second implementation

if (month < 3){
 month += 12;
 --year;
}
return dayray[(int)(day + (month + 1) * 26 / 10 + year +
 year / 4 + 6 * (year / 100) + year / 400) % 7];

Table 15.2 Halstead’s Metrics for the First Implementation

Operator
Number of
occurrences Operand

Number of
occurrences

If 1 m 3

< 1 y 3

+= 1 k 3

-= 1 j 3

= 3 dayOfWeek 1

% 2 d 1

/ 4 3 1

+ 6 12 1

* 2 1 1

n1 = 9 N1 = 21 100 2

26 1

10 1

4 2

5 1

7 1

n2 = 15 N2 = 25

360 ◾ Software Testing

Table 15.4 shows the Halstead metrics for the two implementations. Look at the
two versions and decide if you think these metrics are helpful. Remember that these
are small fragments.

The calculations in Table 15.4 are rounded to a reasonable precision. Both ver-
sions have nearly equal totals of distinct operators and operands. The big difference
is in the number of occurrences (21 vs. 16 and 25 vs. 20, yielding program lengths
of 46 and 36). However, the Microsoft Word editor provides the text statistics in
Table 15.5 which show that the first version is longer in two senses. Does sheer
length add complexity? It depends on what is being done with the code. Size, the

Table 15.3 Halstead’s Metrics for the Second Implementation

Operator
Number of
occurrences Operand

Number of
occurrences

If 1 month 3

< 1 year 5

+= 1 dayray 1

-- 1 day 1

return 1 3 1

+ 6 12 1

* 2 1 1

/ 2 26 1

% 1 10 1

n1 = 9 N1 = 16 4 1

6 1

100 1

400 1

7 1

n2 = 14 N2 = 20

Table 15.4 Halstead Metrics for the two Implementations

Halstead’s Metric Version 1 Version 2

program length, N = N1 + N2 21 + 25 = 46 16 + 20 = 36

program vocabulary, n = n1 + n2 9 + 15 = 24 9 + 14 = 23

program volume, V = Nlog2(n) 46 (log2(24)) = 46*4.58
= 210.68

36 (log2(23)) = 36*4.52
= 162.72

program difficulty, D = (n1N2)/2n2 (9*25)/2*15 = 7.500 (9*20)/2*14 = 6.428

Software Complexity ◾ 361

number of operators, and the number of operands have clear implications for pro-
gram comprehension and software maintenance. The testing for the two versions is
identical.

15.2 Integration Level Complexity
The entire discussion in Section 15.1 on unit level complexity applies to both proce-
dural code and to object-oriented methods. The differences in these two paradigms
are first noticed at the integration level—in fact they are restricted to that level. At
the integration testing level, the concern shifts from correctness of individual units
to correct function across units. One presumption of integration level testing is that
the units have been thoroughly tested “in isolation.” That shifts the attention to inter-
faces among units and what we might call “communication traffic.” As with unit level
complexity, we use directed graphs to help our discussion and analysis. The starting
point is the Call Graph (Figure 15.4) from Chapter 12.

Definition

Given a program written in an imperative programming language, its Call Graph is
a directed graph in which nodes correspond to methods, and edges correspond to
messages.

For object-oriented code, if method A sends a message to method B, there is an
edge from node A to node B. For procedural code, if unit A refers to unit B, there is

Table 15.5 Character Counts in the two Versions

Size Attribute Version 1 Version 2

Characters (no spaces) 99 107

Characters (with spaces) 147 157

Lines 7 7

Figure 15.4 Call Graph of Units in procedural integrationNextDate.

Main

Get Date

Valid Date

Increment Date

is Leaplast Day Of Month

print Date

msg3

msg7 msg8

msg5msg6

362 ◾ Software Testing

an edge from node A to node B. As a general rule, the integration level call graphs
of procedural code are less complex than those of functionally equivalent object-
oriented code. (We saw this in Chapter 12.) At the same time, the unit level com-
plexity of methods is typically less than that of procedures. This almost suggests
a “Law of Conservation of Complexity,” in which complexity does not disappear
from object-oriented code, it just relocates to the integration level. (This is beyond
the scope of this chapter, so it remains a conjecture based on minimal anecdotal
evidence.)

15.2.1 Integration Level Cyclomatic Complexity

Cyclomatic complexity at the integration level echoes the approach we took at the
unit level, only now we use a call graph instead of a program graph. As before, we
need to distinguish between strongly connected call graphs and call graphs that are
“almost” strongly connected. Recall we had two equations (15.1 and 15.2) for this
distinction:

 V G e n p for strongly connected call graphs and� � � � � , , (15.1)

V G e n 2p for call graphs that havea single source

node a

� � � ��
nnd multiple sink nodes. (15.2)

Notice that the next definitions apply to both object-oriented and procedural code.
We repeat two definitions from Chapter 4 next.

Definition

Given the Call Graph of a program (regardless of language paradigm), the integra-
tion level cyclomatic complexity is the cyclomatic complexity of the call graph.

Definition

Given a directed graph G with n nodes, its adjacency matrix is the n x n matrix A =
(ai,j), where ai,j = 1 if there is an edge from node i to node j, 0 otherwise.

As we saw in Chapter 4, all the information in a directed graph can be derived
from its (unique!) adjacency matrix, except for the geometric placement of nodes
and edges. For example, the sum of elements in row n is the outdegree of node n;
similarly, the sum of elements in column n is the indegree of node n. The sum of
the indegrees and outdegrees of a node is the degree of the node. Since every edge
contributes to the outdegree of some node, this, in turn, together with the number of
nodes yields the cyclomatic complexity V(G) = edges – nodes +2p.

Given this, many times it is simpler to provide an adjacency matrix rather than
a drawn call graph. Section 15.3 develops a full example of unit and integration
level complexity for a rewritten version of NextDate. The call graph of the VBA-like
pseudo-code version of integrationNextDate (see Figure 12.17) is in Figure 15.4, fol-
lowed by its adjacency matrix (Table 15.6).

Software Complexity ◾ 363

Integration level call graphs are seldom strongly connected, but we can still derive
everything we need from the adjacency matrix of a call graph. The sum of the row
sums (or column sums) is 7. Nodes with outdegree = 0 must be sink nodes, so for
each sink node, we would add an edge to make the call graph strongly connected.
There are two such nodes in would add an edge to make the call graph strongly
connected. There are two such nodes in Figure 15.4, so the calculation of Integration
Level Cyclomatic Complexity is:

 V G edges nodes� � � � ��� � � � ��� ��

We can derive a Call Graph for the object-oriented implementation of NextDate
(see Figure 12.19). There are 17 methods (nodes) and 25 messages (edges). Repeating
the previous calculation for procedural NextDate, we have

 V G edges nodes� � � � ��� �� ��� ��� �

15.2.2 Message Traffic Complexity

As we saw with unit level complexity, only considering cyclomatic complexity is
an oversimplification. Just as not all decisions are equal, neither are all interfaces.
Suppose, for example, that we find one method repeatedly sending messages to the
same destination—clearly this adds to the overall complexity, and we would like to
consider this in our integration testing. To do this, we use an extended adjacency
matrix of the call graph. In the extended version, rather than just 1’s and 0’s, an
element shows the number of times a method (or a unit) refers to another method
(unit). For the Figure 15.4 example, this only happens once, when the Main unit calls
printDate twice. We would have this extended adjacency matrix (Table 15.7):

Table 15.6 Adjacency Matrix of the Call Graph in Figure 15.4

M
ai

n

G
et

D
at

e

In
cr

em
en

t
D

at
e

p
ri

n
tD

at
e

Va
lid

D
at

e

la
st

D
ay

O
f

M
o

n
th

is
le

ap

ro
w

 s
u

m

(o
u

td
eg

re
e)

Main 1 1 1 3

GetDate 1 1

IncrementDate 1 1

printDate 0

ValidDate 1 1

lastDayOfMonth 1 1

isleap 0

column sum 0 1 1 1 1 2 1 7

364 ◾ Software Testing

15.3 Software Complexity Example
Table 15.8 compares three forms the NextDate program: as a single Java method,
as a procedural main program with six procedures, and as a Java implementation
with five classes. The Java single method is shown in Figure 15.5, together with its
program graph. The procedural and Java implementations of integrationNextDate
are taken directly from Chapter 12. When implemented as a single method, this
version of NextDate is almost equivalent to a strictly procedural implementation. If
you examine the line numbering carefully, you will see that the program graph is

Table 15.7 Extended Adjacency Matrix of the Call Graph in Figure 15.4

M
ai

n

G
et

D
at

e

In
cr

em
en

t
D

at
e

p
ri

n
tD

at
e

Va
lid

D
at

e

la
st

D
ay

O
f

M
o

n
th

is
le

ap

ro
w

 s
u

m

(o
u

td
eg

re
e)

Main 1 1 2 4

GetDate 1 1

IncrementDate 1 1

printDate 0

ValidDate 1 1

lastDayOfMonth 1 1

isleap 0

column sum 0 1 1 1 1 2 1 8

Table 15.8 Complexity of Three Implementations of NextDate

Java static method
nextDate

Pseudo-code
integration NextDate

Java integration
NextDate

Number of units 1 6 5 classes, 17
methods

Sum of unit complexities 10 14 21

Number of lines of code 55 81 119

Number of messages 7 25

Total unit level complexity 10 14 21

Total integration level
complexity

4 45

Total complexity 10 18 66

Software Complexity ◾ 365

Figure 15.5 NextDate as a Single Method.

1 public static int nextDate(int day, int month, int year) {
1 int tomorrowDay, tomorrowMonth, tomorrowYear;
2 switch (month) {

// 31 day months (except Dec.)
3 case 1:
3 case 3:
3 case 5:
3 case 7:
3 case 8:
3 case 10:
4 if (day < 31)
5 tomorrowDay = day + 1;
6 else {
7 tomorrowDay = 1;
8 tomorrowMonth = month + 1;
9 }
10 break;

// 30 day months
11 case 4:
11 case 6:
11 case 9:
11 case 11:
12 if (day < 30)
13 tomorrowDay = day + 1;
14 else {
15 tomorrowDay = 1;
16 tomorrowMonth = month + 1;
17 }
18 break;

// December
19 case 12:
20 if (day < 31)
21 tomorrowDay = day + 1;
22 else {
23 tomorrowDay = 1;
24 tomorrowMonth = 1;
25 if (year == 2042)
26 System.out.println("Date beyond 2042 ");
27 else
28 tomorrowYear = year + 1;
29 }
30 break;

// February
31 case 2:
32 if (day < 28)
33 tomorrowDay = day + 1;
34 else {
35 if (day == 28) {
36 if (isLeap(year))
37 tomorrowDay = 29;
38 else {
39 tomorrowDay = 1;
40 tomorrowMonth = 3;
41 }
42 }
43 }
44 break;
45 }
46 return new int[] {tomorrowMonth, tomorrowDay, tomorrowYear};
47 }

1

2

3

4

5

6

7

8

11

9

10

19 31

20 3212

13

14

15

16

17

18

45

22

23

24

2521

26 27

28

29

30

35

36 38

39

40

33

34

37

41

42

43

44

46

47

366 ◾ Software Testing

technically a DD-Path graph. This has no effect on cyclomatic complexity. There are
no complex conditions, so there is no additional decisional complexity.

15.4 Object-Oriented Complexity
The Chidamber/Kemerer (CK) metrics [Chidamber and Kemerer, 1994] are the best-
known metrics for object-oriented software. These metrics are discussed in Chapter
9. The names for the six CK metrics are almost self-explanatory; some can be derived
from a Call Graph, others use the unit level complexity discussed in Section 15.2.
Here we apply the CK metrics to the Java version of NextDate.

15.4.1 WMC—Weighted Methods per Class

Table 15.9 shows the Weighted Methods per Class for the Java version of NextDate
(in Chapter 12).

Table 15.9 WMC Metric for the Java Version of NextDate

Class Methods Method V(G) Weight WMC

DateTest Main 1 1 1

Date Date() 1 1 1

getDate() 1 1 1

nextDate() 1 1 1

Day Day() 1 1 1

getDay() 1 1 1

getNextDay() 2 2 4

Month Month() 1 1 1

getMonth() 1 1 1

numberOfDays() 4 1 4

getNextMonth() 2 1 2

getYear() 1 1 1

Year Year() 1 1 1

getYear() 1 1 1

isLeapYear() 4 4 16

getNextYear() 1 1 1

Software Complexity ◾ 367

15.4.2 DIT—Depth of Inheritance Tree

Current guidelines recommend a limit of DIT = 3. The Depth of the Inheritance Tree
for the Java version of NextDate is just 1.

15.4.3 NOC—Number of Child Classes

The Number of Child Classes for The Depth of the Inheritance Tree for the Java ver-
sion of NextDate is just 1.

just 1.

15.4.4 CBO—Coupling between Classes

The Coupling between Classes in the Java version of NextDate is restricted to data
coupling.

15.4.5 RFC—Response for Class

The RFC method refers to the length of the message sequence that results from an
initial message. In Chapter 12, we saw that this is also the “length” of the integration-
level testing construct, the MM-Path. The longest MM-Path in the Java version of
NextDate is 4.

15.4.6 LCOM—Lack of Cohesion on Methods

The methods in the Java version of NextDate all exhibit high cohesion.

15.5 System Level Complexity
Sheer system size is an obvious contributor to system level complexity, as is the
underlying system architecture. System vocabulary is another contributor—many sys-
tems have a glossary to define jargon and abbreviations. In terms of system mainte-
nance, the documentation of a system is another contributor. Is the document up to
date? Is it consistent with the reality of the implementation? Many construction teams
keep two definitions of a project, a blueprint (plan) and an “as built” description. We
don’t have a similar pairing for many systems, and this also contributes to system
complexity. In this section, we present a few ideas that can help understanding sys-
tem level complexity.

368 ◾ Software Testing

15.5.1 Cyclomatic Complexity of Source Code

While it is conceptually possible to consider cyclomatic complexity of the complete
program code at the system level, the program size makes this unwieldy. It can be
done, and there are commercial tools that support this, but the results are not partic-
ularly helpful. In the words of R. J. Hamming: “The purpose of computing is insight,
not numbers.”

15.5.2 Complexity of Specification Models

Many design models can serve as indicators of complexity, particularly those that can
be related to directed graphs (See Table 15.10).

15.5.3 Use Case Complexity

Part of system level complexity stems from how closely intertwined are the software
units. This is nicely shown in an incidence matrix that relates use cases to classes
(or even to methods) as we noted in Chapter 13. Rows correspond to use cases, and
columns to classes (or methods). Then an “x” in row i column j means that class
(method) j is used to support the execution of use case i. Note that for procedural
code, the incidence is between features and procedures or functions. Now consider
whether this matrix is sparse or dense—a sparse incidence indicates that much of the
software is only loosely interwoven, making maintenance and testing relatively easy.
Conversely, a dense incidence means that the units are tightly coupled and therefore
highly interdependent. With dense incidence, we can expect more ripple effect of
simple changes, and a greater need for rigorous regression testing after a change is
made. As an aside, the incidence matrix serves as a handy way to control the items
to be regression tested.

Table 15.10 Complexity Possibilities for Various System Models

Model Complexity Mechanism

Finite State Machines Cyclomatic Complexity

Decision Tables ▪ Size
 ▪ Density of action entries
 ▪ Connection with other decision tables

Program Design
Languages (PDL)

 ▪ Size
 ▪ Number of levels of abstraction
 ▪ Cyclomatic complexity of PDL units
 ▪ Coupling and cohesion of PDL units

Flowcharts Cyclomatic Complexity

Software Complexity ◾ 369

15.5.4 UML Complexity

Many of the UML models have been discussed in the preceding sections. The
Chidamber/Kemerer (CK) metrics apply directly to UML class diagrams. We can
extend the incidence idea Use Case Complexity (Section 15.5.3) to an incidence
matrix in which Use Cases are rows and classes are columns. A cell in this matrix has
an “x” if the class is required to implement the use case. As we saw in Section 15.5.3,
the density of such a matrix is a good indicator of system complexity.

Exercise
 1. Consider a calendar function that finds the zodiac sign for a given date. Compare

the total complexities of the Java implementations of zodiac1, zodiac2, and
zodiac3.

 2. Zodiac1 uses a procedure validEntry to check the valid ranges of month, day,
and year.

public String zodiac1(int month, int day, int year){
 if (validEntry(month, day, year)){
 if ((month == 3 && day >= 21) || (month == 4 && day <= 19)) {
 return "Aries";
 } else if ((month == 4 || month == 5) && day <= 20) {
 return "Taurus";
 } else if ((month == 5 || month == 6) && day <= 20) {
 return "Gemini";
 } else if ((month == 6 || month == 7) && day <= 22) {
 return "Cancer";
 } else if ((month == 7 || month == 8) && day <= 22) {
 return "Leo";
 } else if ((month == 8 || month == 9) && day <= 22) {
 return "Virgo";
 } else if ((month == 9 || month == 10) && day <= 22) {
 return "Libra";
 } else if ((month == 10 || month == 11) && day <= 21) {
 return "Scorpio";
 } else if ((month == 11 || month == 12) && day <= 21) {
 return "Sagittarius";
 } else if ((month == 12 || month == 1) && day <= 19) {
 return "Capricorn";
 } else if ((month == 1 || month == 2) && day <= 18) {
 return "Aquarius";
 } else {
 return "Pisces";
 }
 } else {
 return "Invalid Date";
 }

}

370 ◾ Software Testing

Zodiac2 presumes that the values of month, day, and year are valid. The zodiac signs
are assumed to be in an array zodiac(i).

public String zodiac2(int month, int day, int year){
 switch (month){
 case 1: {
 if (day >= 20)
 return zodiac[0];
 else
 return zodiac[3];
 }
 case 2: {
 if (day >= 19)
 return zodiac[7];
 else
 return zodiac[0];
 }
 case 3: {
 if (day >= 21)
 return zodiac[1];
 else
 return zodiac[7];
 }
 case 4: {
 if (day >= 20)
 return zodiac[10];
 else
 return zodiac[1];
 }
 case 5: {
 if (day >= 21)
 return zodiac[4];
 else
 return zodiac[10];
 }
 case 6: {
 if (day >= 21)
 return zodiac[2];
 else
 return zodiac[4];
 }
 case 7: {
 if (day >= 23)
 return zodiac[5];
 else
 return zodiac[2];
 }
 case 8: {
 if (day >= 23)
 return zodiac[11];
 else
 return zodiac[5];
 }

Software Complexity ◾ 371

 case 9: {
 if (day >= 23)
 return zodiac[6];
 else
 return zodiac[11];
 }
 case 10: {
 if (day >= 23)
 return zodiac[9];
 else
 return zodiac[6];
 }
 case 11: {
 if (day >= 22)
 return zodiac[8];
 else
 return zodiac[9];
 }
 case 12: {
 if (day >= 20)
 return zodiac[3];
 else
 return zodiac[8];
 }
 default:
 return zodiac[12];
 }

}

The design choice in zodiac3 uses the “ordinal day of the year”. Feb. 1 is ordinal day
32. It presumes a function that converts a date to the ordinal day of the year. This
version only works for common years. A one day correction would be needed for
leap years.

String zodiac3(int ordinalDay) {
 if (ordinalDay < 20)
 return "Capricorn";
 if (ordinalDay < 50)
 return "Aquarius";
 if (ordinalDay < 79)
 return "Pisces";
 if (ordinalDay < 109)
 return "Aries";
 if (ordinalDay <= 140)
 return "Taurus";
 if (ordinalDay < 171)
 return "Gemini";
 if (ordinalDay < 203)
 return "Cancer";
 if (ordinalDay < 234)
 return "Leo";
 if (ordinalDay < 265)
 return "Virgo";

372 ◾ Software Testing

 if (ordinalDay < 295)
 return "Libra";
 if (ordinalDay < 325)
 return "Scorpio";
 if (ordinalDay < 355)
 return "Sagittarius";
 else
 return "Capricorn";
}

References
S. R. Chidamber and C. F. Kemerer, (1994). “A metrics suite for object-oriented design,” IEEE

Transactions of Software Engineering Vol. 20, No. 6: pp. 476–493.
Maurice H. Halstead (1977). Elements of Software Science. Amsterdam: Elsevier North-Holland,

Inc. ISBN 0-444-00205-7.

373

Chapter 16

Testing Systems of Systems

On March 2, 2012, a Class EF-4 tornado struck the town of Henryville, Indiana (USA).
The tornado had winds of 170 mph and left a path of destruction 50 miles long. My
wife and I were driving south on Interstate 65; when we were about 50 miles north
of Henryville, we saw an Indiana state police car with a sign directing motorists to
move to the left lane of the highway. This was the beginning of a direct experience
with a “system of systems.” Soon, traffic came to a halt, and then impatient drivers
started using the right lane anyway, quickly bringing that lane also to a stop. Then we
saw emergency vehicles and heavy equipment heading south using the shoulder of
the road. We learned from a truck driver that a tornado had hit Henryville about an
hour earlier, and that the emergency vehicles and heavy equipment were attempting
to reach the devastated area. We noticed that there was very little northbound traffic
on Interstate 65, so clearly, northbound traffic south of Henryville was also stopped.
The next day, we saw that a highway rest area had been converted to a command
center for the Indiana National Guard to coordinate the disaster relief effort. This
effort involved:

	 ◾	 The Indiana state police,
	 ◾	 Local and county police departments
	 ◾	 Regional fire departments,
	 ◾	 Regional ambulance services
	 ◾	 Heavy (tree moving) equipment from the public utility companies
	 ◾	 The Indiana National Guard
	 ◾	 Traffic helicopters from Indianapolis television stations.
	 ◾	 The U.S. Weather Bureau
	 ◾	 (and probably many others)

Consider how this all happened. How did these disparate groups come together for
an emergency? How did they communicate? Was there any central coordination?

Systems of systems have become an increasingly important topic in several areas
of software engineering. In this chapter, we look at some of the early definitions

374 ◾ Software Testing

[Maier 1999], some SysML techniques to specify requirements of these systems, and
finally, we develop a new model to describe systems of systems and their model-
based testing.

16.1 Characteristics of Systems of Systems
We all experience complex systems every day, but what distinguishes a complex
system from a system of systems? Some early attempts to clarify this distinction are:

	 ◾	 A “super system”
	 ◾	 A collection of cooperating systems
	 ◾	 A collection of autonomous systems
	 ◾	 A set of component systems

These early attempts all get at the central idea, but they would also apply to sys-
tems such as an automobile, an integrated MIS system in a company, and even the
human body. There is a growing clarity of definitions for the underlying nature of
systems of systems. Maier begins his distinction by noting two fundamental differ-
ences—systems of systems are either directed or collaborative. Initially, he used
“collaborative systems” as a synonym for “systems of systems,” with the defining
characteristic that systems of systems are “built from components which are large
scale systems in their own right.” He offers air defense networks, the Internet, and
emergency response teams as better examples. Maier then provides some more
specific attributes:

	 ◾	 They are built from components that are (or can be) independent systems,
	 ◾	 They have managerial/administrative independence,
	 ◾	 They are usually developed in an evolutionary way, and
	 ◾	 They exhibit emergent (as opposed to pre-planned) behaviors.

In addition, he observes that the components may not be co-located, and this imposes
a constraint on information sharing. The generally accepted term for the components
is “constituent system,” and a general architecture is shown in Figure 16.1. Notice
that constituent systems may have links other than to the central control point. The
control center portion leads to three important distinctions that Maier makes regard-
ing the nature of cooperation among the constituent systems.

Definition

[Maier 1999]

A directed system of systems is designed, built, and managed for a specific purpose.
A collaborative system of systems has limited centralized management and

control.
A virtual system of systems has no centralized management and control.

Testing Systems of Systems ◾ 375

The dominant characteristic that distinguishes these categories is the way they com-
municate and control/cooperate. Maier further asserts that there are two essential
requirements that a potential system of systems must satisfy:

 1. The constituent systems must be stand-alone systems, and
 2. Each constituent has administrative independence from the other constituents.

Maier’s three categories were extended [Lane 2012] to include a fourth category:
acknowledged. In order from most to least controlling, we have directed, acknowl-
edged, collaborative, and virtual systems of systems.

Systems of Systems (abbreviated as SoS) can evolve. The Henryville tornado inci-
dent began as a virtual system of systems—there was no centralized control point.
When the Indiana state police arrived, it evolved into a collaborative system of sys-
tems. By the next morning, the Indiana National Guard had turned a rest area into
a command center, and it was then an acknowledged system of systems. Why is this
not a directed system of systems? The constituents are all independent systems that
can function, and each has separate administrative control; however, as a system of
systems, it was never created with that purpose in mind.

16.2 Sample Systems of Systems
To gain some insight into Maier’s categories of systems of systems, we consider one
example of each type. The emphasis in this section is how the constituent systems
communicate, and how they are, or might be, controlled.

16.2.1 The Garage Door Controller (Directed)

A nearly complete Garage Door Controller system (see Chapter 2) is shown as a
system of systems in Figure 16.2. Some elements must be present, namely the drive
motor, a wall-mount button, and the extreme limit sensors. The other constituents are

Figure 16.1 Generic view of a system of systems.

Constituent
System 1

Constituent
System 2

Constituent
System 3

Constituent
System 4

Control
Center

376 ◾ Software Testing

optional but common. The portable opener is usually kept in a car, and there may
be two or more of these. Sometimes a digit keypad is mounted on the outside of a
garage, possibly so children can enter after school. The openers and digit keypads
send weak radio signals to the wireless receiver, which in turn controls the drive
motor. A possible internet-based controller is not shown but could be added. Finally,
the light beam and resistance sensors are added as optional safety devices. Many of
the constituent systems are made by separate manufacturers and are integrated into
a commercial garage door opener system.

The Garage Door Controller satisfies most of Maier’s definitional criteria—there is
a true central controller, and commercial versions of the full system of systems can
evolve with the addition of some constituent systems (e.g., the Digit Keypad).

16.2.2 Air Traffic Management System (Acknowledged)

At a commercial airport (or at any controlled airfield), the Air Traffic Controllers use
an Air Traffic Management System (yet another ATM) to manage take-offs and land-
ings. Figure 16.3 shows the major constituent systems for an Air Traffic Control sys-
tem. The first decision an air traffic controller must make is runway allocation. This
depends mostly on the wind direction, but it may also consider local noise restric-
tions. Arriving aircraft generally has preference over departing aircraft, because an
aircraft on the ground can just stay out of the way of landing aircraft. Airborne
aircraft is subject to three forms of separation, each of which must be maintained—
vertical separation, lateral separation, and time separation. The only exception to
these protocols is that, in an emergency, the pilot of an arriving aircraft can request
emergency landing priority.

Why is this “acknowledged” and not “directed”? In general, the air traffic control-
lers, as the name implies, control everything involved with runway use, separation,
landing, and departing aircraft. But emergencies can occur, as we shall see later, mak-
ing this an acknowledged systems of systems.

Figure 16.2 Garage Door Controller Constituents.

Wireless
Receiver

Digit
Keypad

Portable
Opener

Lamp

Drive
Motor

Wall-mount
button

Light
Beam

Garage
Door

Controller

Obstacle
(Resistance)

Sensor

Extreme
Limit

Sensor

Testing Systems of Systems ◾ 377

16.2.3 The Foodie Wish List System

Our Foodie Wish List System is a good example of a system of systems. (See the full
description in Appendix B).

	 ◾	 three architectural layers of processors
	 ◾	 web services include account creation, login control, and shopping
	 ◾	 backend services are general administration and a shopping cart for orders
	 ◾	 everything is held together by a database.

Figure 16.4 shows the Swim Lane architecture, and Figure 16.5 shows the communi-
cation among constituents.

Figure 16.3 Air Traffic Management System Constituents.

Vertical
Separation

Air Traffic
Management

Lateral
Separation

Runways
Monitor

Weather
Instruments

Arriving
Aircraft

Departing
Aircraft

Figure 16.4 Swim Lane Architecture for the Foodies Wish List.

Web Interfaces
(Mul�ple in

Browser)

Backend Applica�ons
(Mul�ple on Server)

Data Store
(Single on

Server)

Shopper

Admin

Admin-
istration

Shopping
Cart

Account
Creation

Foodie
Database

Shopping
List Credit

Card

Login

378 ◾ Software Testing

16.3 Software Engineering for Systems of Systems
Very little published work exists to apply software engineering principles and tech-
niques to systems of systems. Some of the early work [Maier 1999] and [Lane 2012] is
described here, as well as some original material. We will refer to all of this as a UML
dialect. After illustrating how this UML dialect can represent systems of systems, we
will turn to an approach that supports model-based testing of systems of systems.

16.3.1 Requirements Elicitation

In a webinar, Jo Ann Lane described an emergency response system of systems that
dealt with grass fires in Southern California [Lane 2012]. Lane offers a waterfall-like
sequence of activities to describe general requirements of a given system of systems.
The steps include:

	 ◾	 Identifying resources—potential constituent systems, and modeling them with
SysML

	 ◾	 Determining options—responsibilities and dependencies
	 ◾	 Assessing options—expressed as Use Cases
	 ◾	 Identifying a workable combination of constituent systems
	 ◾	 Allocating responsibilities to constituent systems

In the next few sections, we revise and extend the standard UML practices to
make them work for systems of systems. These are illustrated with the examples in
Section 16.2.

16.3.2 Specification with a Dialect of UML

There are three parts to the UML dialect—class-like definitions of a constituent sys-
tem in terms of its responsibilities to other constituents and the services it provides.
Use Cases show the flow across constituents for overall system of system functions,

Figure 16.5 Communication among Foodies Wish List Constituents.

m9,m10,m15
m33,m34, m35

Foodie
Database

m22,m25

m11,m12,m16

Login

Account
Creation

Shopping
List

Administration

Shopping
Cart

m7,m13

m23,m26

m2Foodie
Home

m30,m31

m17,m37

m18,m19,
m20,m21

m8,m14,
m36,m38

m5

Credit Card
Interface

Testing Systems of Systems ◾ 379

and traditional UML sequence diagrams to show the incidence of these use cases
with constituent systems.

16.3.2.1 Air Traffic Management System Classes

The UML dialect extends and revises some of the traditional UML models. In the
UML dialect, constituent systems are modeled as classes in which responsibilities
with other classes occupy the position of attributes, and the services take the place
of class methods. Two of the constituent systems from Figure 16.3 are described as
“classes” in text format here.

Incoming Aircraft

Responsibilities to other constituents

	 ◾	 Communicate with air traffic controller Services
	 ◾	 Fly aircraft
	 ◾	 Land aircraft
	 ◾	 Remain prepared for emergency situations

Air Traffic Controller

Responsibilities to other constituents

	 	 Incoming aircraft
	 	 Departing aircraft
	 	 Runway (status)
	 	 Separation instruments
	 	 Weather instruments

Services

	 ◾	 Assign runways based on weather conditions
	 ◾	 Monitor separation instruments
	 ◾	 Assign landing clearance
	 ◾	 Assign take-off clearance
	 ◾	 Maintain runway status

16.3.2.2 Air Traffic Management System Use Cases and Sequence Diagrams

In both the standard UML and in the dialect used here, classes constitute the “is view”
that focuses on the structure and components of a system (and systems of systems).

The is view is most useful to developers, but less so for customer/users and
testers, who utilize the “does view” which focuses on behavior. Use cases are the
earliest UML model that relate to the does view, and they are widely recognized as
the preferred view of customer/users. The UML sequence diagram is the only place
where the does view is related to the is view. Figure 16.6 is a sequence diagram of
the Normal Landing use case. For our dialect, we added Actors (constituent systems)
to the use case format. Also, the usual Event Sequence of a standard UML use case is
replaced by the sequence of constituent system actions.

380 ◾ Software Testing

Normal Landing Use Case

10.5 SoS UC1: Normal aircraft landing

Description The procedure that governs an arriving aircraft
under normal conditions.

Actor(s) 1. Air Traffic Controller

2. Incoming aircraft

3. Separation sensors (vertical, lateral, and time)

Pre-conditions 1. Designated runway clear

2. Incoming aircraft ready to land

Action Sequence

Actor Action

Incoming aircraft 1. Requests clearance to land

Air Traffic Controller 2. Checks all separation sensors

Lateral Separation 3. OK

Vertical Separation 4. OK

Time Separation 5. OK

Air Traffic Controller 6. Landing clearance given

Incoming aircraft 7. Initiates landing procedures

Incoming aircraft 8. On assigned runway

Incoming aircraft 9. Taxi to assigned gate

Air Traffic Controller 10. Landing complete.

Figure 16.6 Sequence diagram of Normal Landing.

Landing Request

Vertical Separation OK?

Landing
Time

Separation
Sensor

Vertical
Separation

Sensor

Lateral
Separation

Sensor

Incoming
Aircraft

Air
Traffic

Controller

Testing Systems of Systems ◾ 381

In November, 1993, a commercial aircraft was on its final landing approach to a runway
at Chicago’s O’Hare International Airport. When the incoming aircraft was at an altitude
of about 100 feet, a pilot waiting to take off saw that the landing aircraft had not low-
ered its landing gear. There is no direct communication between landing and departing
aircraft, so the pilot contacted the O’Hare field control tower about the impending disas-
ter. The control tower waved off the landing aircraft, and a disaster was avoided. This
is the subject of our second use case and sequence diagram. In this use case, Aircraft L
is the landing aircraft, and aircraft G is the one on the ground. We can imagine that the
second use case could be a continuation of the first one at action step 7. We can also
imagine that everyone involved was very relieved once the post-condition was attained.

November 1993 Incident Use Case

ID, Name SoS UC2: November 1993 Incident at O'Hare Field

Description Aircraft on final approach had landing gear up. Pilot on
taxi way saw this and notified control tower.

Actor(s) 1. Air Traffic Controller

2. Incoming aircraft L

3. Aircraft G waiting to take off.

Pre-conditions 1. Aircraft L cleared to land

2. Aircraft G waiting to take off

3. Aircraft L has landing gear up

Action Sequence

Actor Action

Air Traffic Controller 1. Authorizes aircraft L to land

Aircraft L 2. Initiates landing preparation

Aircraft L 3. Fails to lower landing gear

Aircraft L 4. 100 feet above end of assigned runway

Aircraft G 5. Aircraft G pilot radios Air Traffic Controller

Air Traffic Controller 6. Terminates landing permission

Aircraft L 7. Aircraft L aborts landing

Aircraft L 8. Aircraft L regains altitude over runway

Air Traffic Controller 9. Instructs aircraft L to circle and land

Air Traffic Controller 10. Thanks pilot of aircraft G

Air Traffic Controller 11. Authorizes aircraft L to land

Aircraft L 12. Landing complete.

Post-conditions 1. Runway available to other aircraft

382 ◾ Software Testing

This incident happened when one of the authors arrived in Chicago to make a pre-
sentation on software technical reviews. Oddly enough, the topic of the day was the
importance of review checklists. Obviously, the pilot of the landing aircraft did not
pay attention to the landing checklist. In a television news report later, a Federal
Aviation Authority official commented that he was far more worried about routine
flights than flights during extreme conditions. His reason—people are far more atten-
tive in extreme situations. The sequence diagram for the November 1993 incident is
in Figure 16.7. Notice that many of the “internal” actions (2, 3, and 4) are important
to the use case, but they do not appear in the sequence diagram.

16.3.3 Testing

Testing for systems of systems must focus on the ways in which constituent systems
communicate. Just as integration testing presumes complete unit level testing, the
testing of systems of systems must presume that the constituent systems have been
thoroughly tested as stand-alone components. The UML dialect models are only gen-
eral guidelines for system of systems testing. The primary goal of testing for systems
of systems is to focus on the communication among constituents. In the next sec-
tion, we develop a set of primitives that describe the types of communication among
constituent systems. They will be presented as Petri nets, and we will use them to
describe the control distinctions that are the essence of the four levels of cooperation
(directed, acknowledged, voluntary, or virtual).

16.4 Communication Primitives for Systems of Systems
The distinctions among the four types of systems of systems reduce to the way the
constituents communicate with each other. In this section, we first map the prompts
of the Extended Systems Modeling Language (ESML) into Swim Lane Petri Nets.
In Section 16.5, we use the Petri net forms of the ESML prompts in swim lanes to
illustrate the communication mechanisms of the four types of systems of systems.
We understand swim lanes to be device oriented, like the orthogonal regions of stat-
echarts. More specifically, we will use swim lanes to represent constituent systems,
and the ESML prompts to represent the types of communication among constituents.

Figure 16.7 Sequence diagram of November 1993 Incident.

Incoming
Aircraft L

Air
Traffic

Controller

Waiting
Aircraft G

Landing Authorized

Landing Cancelled

New landing instructions

Pilot reports emergency

Testing Systems of Systems ◾ 383

Finally, in Section 16.5.1, we illustrate the systems of systems communication using
Swim Lane Event-Driven Petri Nets on the November 1993 incident.

The first candidate for a set of communication primitives is the set of ESML
prompts. Most of these express the power of the central controlling constituent,
so they are clearly applicable to directed systems of systems, and probably also
to acknowledged systems of systems. We need similar primitives for the collabora-
tive and virtual systems of systems. Here we propose four new primitives: Request,
Accept, Reject, and Postpone.

16.4.1 ESML Prompts as Petri Nets

The ESML real-time extension to Structured Analysis [Bruyn et al., 1988] was devel-
oped as a way to describe how one activity in a dataflow diagram can control another
activity. There are five basic ESML prompts: Enable, Disable, Trigger, Suspend, and
Resume, and they are most appropriate to directed and acknowledged systems of
systems. Two others are pairs of the original five: Activate is an Enable followed by a
Disable, and Pause is a Suspend followed by a Resume. The ESML prompts are rep-
resented as traditional Petri nets and briefly described in this section. The marking
and firing of Petri nets are described in Chapter 4.

16.4.1.1 Petri Net Conflict

We describe the Petri net conflict first, because it appears in some of the ESML prompts.
Figure 16.8 shows the basic Petri net conflict pattern—the place p2 is an input to both
the function 1 and function 2 transitions. All three places are marked, so both transi-
tions are enabled, in the Petri net sense. (“Enabling” is an overloaded term here—the
ESML sense refers to a prompt, and the Petri net transition sense refers to a property
of a transition.) If we choose to fire the function 1 transition, the tokens in places p1
and p2 are consumed, and this disables the function 2 transition, hence the conflict.

In the air traffic management and control example, two constituents, arriving and
departing aircraft, both use the same runway, putting them in contention for the
limited resource—a good example of Petri net conflict. Since arriving aircraft has
preference over departing aircraft, we have an instance of the interlock mechanism
described next.

16.4.1.2 Petri Net Interlock

An interlock is used to assure that one action precedes (or has priority over) another.
In Petri nets, this is accomplished by an interlock place, labeled “i” in Figure 16.9 that

Figure 16.8 Petri net conflict.

function 1 function 2

p2 p3p1

384 ◾ Software Testing

is an output of the preferred transition and is an input to the secondary transition.
The only way the interlock place can be marked is for the preferred transition to fire.

16.4.1.3 Enable, Disable, and Activate

The Enable prompt expresses the interaction in which one action permits another
action to occur. There is no requirement that the second action actually does occur,
just that it may occur. In the Petri net in Figure 16.10, the transition labeled “con-
trolled action” has two input places. In order to be an enabled transition, both its
input places must be marked. But the place labeled “e/d” can only be marked if the
enable transition is fired. The controlled action then has one of its prerequisites, but
it still needs to wait for the other input place to be marked. When the controlled
action transition fires, it marks the e/d place again, so that is remains enabled.

At a controlled airfield, the air traffic controller selects a runway, and then gives
permission to arriving aircraft to land. We can model this with the Enable prompt.
Due to the interlock relationship between arriving and departing aircraft, this effec-
tively causes a Disable prompt for the aircraft waiting to take off. Since aircraft land-
ings clearly begin and end, this can also be interpreted as an Activate prompt. The
air traffic controller “Activates” the landing process.

The Disable prompt depends on the Petri net conflict pattern. The disable transi-
tion and the controlled action transitions in Figure 16.10 are in conflict with respect
to the e/d place. If the disable transition fires, the controlled action transition cannot
fire. Also, the e/d place acts as an interlock between the enable and disable transi-
tions, so a controlled action can only be disabled after it has been enabled. The
original ESML team found that the Enable, Disable sequence occurred so frequently,
it acquired a name: Activate.

Figure 16.9 Petri net interlock.

preferred action i secondary action

p2p1

Figure 16.10 ESML Enable, Disable, and Activate.

controlled action

e/d

enable

disable

Testing Systems of Systems ◾ 385

16.4.1.4 Trigger

The Trigger prompt (Figure 16.11) is a stronger version of the Enable prompt—it
causes the controlled action to occur immediately. In ordinary language, we could
say that the effect of Enable is “you may” and that of Trigger is “you must, now!”
Notice that Trigger has the same renewal pattern that we saw with Enable. We could
modify this if necessary so that Trigger is a one-time action. Just removing the output
edge from the controlled action back to the trigger place (t) place suffices. The ESML
committee never made this distinction.

16.4.1.5 Suspend and Resume

The ESML Suspend and Resume prompts are shown in Figure 16.12. When they
occur together, their sequence is known as the ESML Pause prompt. Suspend has
the same interrupting power as the Trigger prompt—it can interrupt an ongoing
activity, and when the interrupting task is complete, the Resume prompt assures
that the interrupted activity does not have to start over—it resumes where it left off.
Conversationally, we could say “Stop what you are doing.”

Figure 16.11 ESML Trigger.

controlled action

t

trigger

Figure 16.12 ESML Suspend, Resume, and Pause.

resume

suspend

step 1

intermediate step

final step

s

386 ◾ Software Testing

As with the Enable/Disable pair, Suspend and Resume have an interlock place,
noted in Figure 16.12. An activity can only be resumed after it has been suspended.
The labelled s in Figure 16.12 an interlock between the Suspend and Resume actions.
Also, the Suspend action and the intermediate step action are in Petri net conflict with
respect to the marked input place of the intermediate step. Presumably, a Suspend
is followed by a Trigger to another required action which, when complete, leads to
a Resume prompt.

The November, 1993 incident described earlier, is a good example where the
Suspend and Resume prompts could be used. There is no direct communication
between landing and departing aircraft, so the pilot on the ground contacted the
O’Hare field control tower about the impending disaster. The control tower waved off
the landing aircraft (Suspend), and once the disaster was avoided, issued a Resume.

16.4.2 New Prompts as Swim Lane Petri Nets

The directed and acknowledged systems of systems are characterized by a strong,
usually central, controlling constituent. Collaborative and virtual systems of systems
do not have this strong position, the constituents are more autonomous. Can a con-
stituent in one of these systems of systems control another? Certainly, but it is more
likely that the communication is more collaborative than controlling. Four new primi-
tives are proposed here to capture this more collaborative communication—Request,
Accept, Reject, and Postpone. As with the ESML prompts, they can and should interact.

Parallel activities are shown in UML as “Swim Lanes” to connote that a swimmer
in one lane is separated from a swimmer in an adjacent lane. In Section 16.4.1, we
mapped each of the ESML prompts into Petri Nets. We understand swim lanes to be
device oriented, very similar to the orthogonal regions of statecharts.More specifi-
cally, we will use Swim Lanes to represent constituent systems, and the communica-
tion prompts to represent the types of communication among constituents. Finally,
we illustrate the systems of systems communication using Swim Lane Petri Nets on
the November 1999 incident. In this subsection, the constituent systems are all mem-
bers of either collaborative or virtual systems of systems.

16.4.2.1 Request

In Figure 16.13, constituent A requests a service from constituent B, and receives
a response to the request. The figure only shows the interaction from the point of
view of constituent A because the response choice of constituent B is not known. In
general, a response is either Accepted, Rejected, or Postponed.

16.4.2.2 Accept

The Accept and Reject primitives are nearly identical, except for the nature of the
response (see Figures 16.14 and 16.15).

16.4.2.3 Reject

The “not done” part of a Reject response could be problematic for testers. How can
something that does not happen be tested? The Accept and Reject responses are
often subject to a Petri net conflict in the receiving constituent, as in Figure 16.16.

Testing Systems of Systems ◾ 387

Figure 16.13 The Request Petri net.

request

Constituent
System B

make request

await response

request
pending

response

Constituent
System A

Figure 16.14 The Accept Petri net.

request

Constituent
System B

accept request

done

Constituent
System A

Figure 16.15 The Reject Petri net.

request

Constituent
System B

reject request

not done

Constituent
System A

388 ◾ Software Testing

Figure 16.17 shows a fairly complete picture of the Petri net conflicts in both con-
stituents. Constituent A makes a request of constituent B. In turn, B either accepts or
rejects the request, so either the “done” or the “not done” place is marked, and this
resolves the Petri net conflict in constituent A.

16.4.2.4 Postpone

What happens if constituent B is busy with an internal priority, and receives a request
from constituent A? The interlock pattern is how constituent B completes its pre-
ferred task before responding to the request from constituent A (see Figure 16.18).

Figure 16.16 Accept and Reject Petri net conflict.

request

Constituent System B

done

not done

accept requestreject request

Figure 16.17 The Connections among Request, Accept, and Reject Petri nets.

done

not done

accept request

reject request

Constituent System B

make request

request
pending

Constituent System A

request complete request denied

request

Testing Systems of Systems ◾ 389

16.4.2.5 Swim Lane Description of the November 1993 Incident (Figure 16.19)

16.5 Effect of Systems of Systems Levels on Prompts
When the ESML committee first defined the five prompts, there was some confusion
about sequences of prompts. For example, could a Suspend take precedence over
a Trigger? Part of the confusion was that the ESML committee was not thinking in
terms of systems of systems. To some extent, the definition of the four levels of sys-
tems of systems resolves these questions.

Figure 16.18 The Postpone Petri net.

done

postponed
request

request

Constituent System B

make request

request
pending

Constituent System A

request complete

preferred action i

p1

Figure 16.19 Swim Lane Petri net for the November 1993 incident.

lower landing gear

lower flaps

land aircraft

recognize emergency

Landing Aircraft

Landing Clearence

gear down

flaps down

resume

s

Trigger

Air Traffic Controller Pilot on Ground

suspend

390 ◾ Software Testing

One way to begin clarification of this is to postulate two types of communication—
commands and requests. The four new prompts are already known as requests, but
what about the original ESML prompts. The Trigger, Suspend, Disable, and Resume
prompts are all commands, whereas Enable is more of a request.

16.5.1 Directed and Acknowledged Systems of Systems

The central controllers in directed and acknowledged systems of systems are clearly
intended to have the “command” power of Trigger, Suspend, Disable, and Resume
with respect to their constituents. What about the reverse? Does it make sense for a
constituent to “control” the central controller? This seems appropriate when a con-
stituent communicates with what would be an interrupt in software. Consider the
safety features in the Garage Door Controller—when an obstacle is encountered, or
when the light beam is crossed, the motor immediately stops and reverses to open
the garage door.

16.5.2 Collaborative and Virtual Systems of Systems

Because they lack the strong central controlling constituent, both types of systems of
systems can use any of the prompts.

Exercises
 1. Discuss whether the Disable prompt should have the same interrupting power

as the Suspend prompt. Use examples if you wish.
 Questions 2 and 3 revisit the Windshield Wiper Controller in the exercises of

Chapter 14.
 2. Decide which of the four types of systems of systems best describes the

Windshield Wiper Controller.
 3. Use Swim Lane Petri Nets to show the interactions in the Windshield Wiper

Controller.

References
Bruyn, W., Jensen, D., Keskar Ward, P., “An Extended systems modeling language based on

the data flow diagram”, ACM Software Engineering Notes, vol. 13, no. 1, pp. 58–67, 1988.
Lane, Jo Ann, “System of Systems Capability-to-Requirements Engineering”, University of

Southern California, Viterbi School of Engineering, webinar given February, 2012.
Maier, Mark, “Architecting principles for systems-of-systems”, System Engineering, vol. 1 no. 4,

pp. 251–315, (1999).

391

Chapter 17

Feature Interaction Testing

Pamela Zave popularized the feature interaction problem while working at Bell Labs
[Zave 1993]. She observed that separately developed software features sometimes
interacted in unexpected ways. She offered a few, easily understood examples:

 1. the logical conflict between calling party identification service and unlisted
directory numbers.

 2. call forwarding and call blocking, in which subscriber A forwards calls to sub-
scriber B, and subscriber B rejects calls from subscriber A.

 3. the infamous call forwarding loop, in which subscriber A forwards calls to sub-
scriber B, subscriber B forwards calls to subscriber C, and subscriber C forwards
calls to subscriber A. What happens when a fourth party calls one of these sub-
scribers? (In fact, most telephone switching systems mark a call as forwarded,
and by protocol, a forwarded call cannot be forwarded again. A similar incident
once took down the ARPA net is its early days.)

17.1 Feature Interaction Problem Defined
In Chapter 13, we understood threads to be the “atomic element” of system testing.
Later, in Chapter 16, we saw system level threads expressed as Event-Dirven Petri Nets
(EDPNs). Recall that we described a set of communication primitives, Petri net conflict
and Petri net interlock. We also had a list of primitives based on the Extended System
Modeling Language (ESML): enable, disable, activate, trigger, suspend, and resume. In
addition, we introduced four communication primitives: request, accept, reject, and
postpone. All of these primitives are applicable to the feature interaction problem.

Since threads of feature behavior can be modeled as EDPNs, we note here that the
EDPNs can exhibit one of three topologically possible forms of connection. EDPN A
and EDPN B are:

	 ◾	 0-connected if there is no edge between any element of EDPN A and any ele-
ment of EDPN B.

	 ◾	 1-connected if EDPN A and EDPN B have a common event or place. The con-
nection can be a semi-path to either an ancestor or a descendent event or place.

392 ◾ Software Testing

	 ◾	 2-connected if EDPN A creates an output place that is also an input place to
EDPN B. Notice that 2-connection occurs only as data places—it is hard to imag-
ine an output event that is also an input event.

	 ◾	 3-connected if EDPN A is 2-connected to EDPN B, and EDPN B is 2-connected
to EDPN A.

Pamela Zave’s second example exhibits 2-connection, and her third example exhibits
3-connection. In the following examples, look for instances of n-connectivity among
feature threads, and also, for instances of our 12 communication primitives.

Fundamentally, software must be more than the sum of its parts. That is, the
individual component that makes up an integrated piece of software must operate
together to add more functionality than each one adds alone – without interacting
with the other individual components. This idea is not new. We have already seen
the case for integration testing in Chapter 12, which would not be necessary if unit
testing of individual components was sufficient. Even Aristotle wrote:

In the case of all things which have several parts and in which the totality
is not, as it were, a mere heap, but the whole is something beside the parts,
there is a cause; for even in bodies contact is the cause of unity in some
cases, and in others viscosity or some other such quality.

(http://classics.mit.edu/Aristotle/metaphysics.8.viii.html, n.d.)

In software, the unity that Aristotle writes of is the beneficial interactions between
individual components that enable software to be extended by the beneficial cooper-
ation between some additional functionality, or feature, and the existing functionality.
For example, a car’s cruise control system interacts with the accelerator functionality
to control the speed of the car. Similarly, the brake functionality interacts with the
cruise control to turn it off. The accelerator and brake now have more functionality
than they did when the cruise control system was not included.

However, not all interactions are beneficial. Consider the impact of a cruise con-
trol system that did not turn off when the car’s brakes were applied, but instead
required the driver to manually disable the cruise control through the cruise control
interface. There would be a significant impact on the existing accelerator and braking
functionality, reducing the safety of the vehicle.

Feature Interactions between features (F) and their expected behavior (ϕ) can be
formally described as when a feature, Fi, satisfies a property, ϕi, denoted as Fi ⊨ ϕi.
Features may be combined, or composed, via a composition operator (e.g., ⨁).
When two features are composed, such as F1 ⨁ F2, we expect that if each feature
would satisfy its own expected behavior independently (i.e., F1 ⊨ ϕ1 ∧ F2 ⊨ ϕ2) then
their composition should satisfy the combination of their respective behaviors (i.e.,
F1 ⨁ F2 ⊨ ϕ1 ∧ ϕ2). However, if the feature’s composition does not satisfy the combi-
nation of their behaviors, then a feature interaction exists (Calder et al., 2003). In the
case of a cruise control system, the existing accelerator and breaking functionality
may be a set of base functionality represented by a single feature (i.e., F1) where the
expected behavior is that speed is increased or decreased based on the application
of the accelerator or brake, respectively. Cruise control, our second feature (i.e., F2)
attempts to maintain a desired speed. A feature interaction exists if the behavior is
altered due to the composition of both features.

http://classics.mit.edu

Feature Interaction Testing ◾ 393

Consider Table 17.1, which includes behavior in terms of several cases. In the case
when the cruise control is not applied, we get the expected behavior when either the
brakes or the accelerator are applied. Similarly, if the brakes and accelerator are not
applied, but the cruise control is, we get the desired result of matching the desired
speed. However, when the brakes or accelerator is applied and the cruise control is
on, the accelerator still provides faster speed while the brakes still provide slower
speed. Additionally, the brakes impact the cruise control feature beyond slowing the
car, as the cruise control is also turned off. The difference between the FI Result and
the Correct Result is not if there is an interaction, but if the interaction is positive to
the system behavior.

While negative feature interactions are problematic for the system they exist in,
the feature interaction problem is not the individual interactions themselves, but the
comparative cost of dealing with feature interactions and the remainder of the devel-
opment activity. The feature interaction problem occurs when feature development is
overwhelmed by detecting, analyzing, and verifying feature interactions (Apel et al.,
n.d.). For every feature that is added to a system, the possible feature combinations are
doubled (i.e., is the feature included or excluded). Since feature interactions could occur
between any set of features, the number of system configurations that must be tested is
exponential (i.e., Ο(2n) where n is the number of features) to the number of features.

Exhaustive testing for feature interactions is infeasible for any sufficiently com-
plex system due to the feature interaction problem. The remainder of this chapter
discusses methods of narrowing down where feature interactions might occur and
how to reduce the number of tests in order to detect likely interactions.

17.2 Types of Feature Interactions
Detecting feature interactions depends on looking at all the possibilities, which
quickly becomes infeasible due to the feature interaction problem, or looking at the
right possibilities. A subset of likely feature interactions can be identified as interac-
tions on conflicting uses of an input, conflicting attempts at an output, or attempted
use of a limited resource. Specific examples are based on the Foodies Wishlist appli-
cation defined in Appendix B, where Figure 17.1 illustrates the messages passed
between the following features where a feature is “an increment of product function-
ality” (Batory et al., 2006):

	 ◾	 Foodie Home
	 ◾	 Account Creation

Table 17.1 Feature Interaction vs. Correct Behavior

Brakes or Accelerator Cruise Control FI Result Correct Result

Brakes Off Slower Slower

Accelerator Off Faster Faster

Brakes On Desired Speed Slower & Cruise Control Off

Accelerator On Desired Speed Faster (from Desired)

None On Desired Speed Desired Speed

394 ◾ Software Testing

	 ◾	 Login
	 ◾	 Shopping List
	 ◾	 Administration
	 ◾	 Foodie Database
	 ◾	 Shopping Card

Additionally, each of these increments of functionality may be duplicated, as neces-
sary, to support multiple users. The duplication also indicates an increment of prod-
uct functionality.

17.2.1 Input Conflict

When represented by a FSM, a conflict between features based on an input can be caused
by conflicting transitions based on the same or simultaneous input events or messages.

Consider Scenario 1: Normal Account Creation from Appendix B, B.3.1.1.

 1. A Foodie User creates a UserID, sends it to Admin.
 2. Admin sends the potential UserID to the FoodieDB.
 3. The FoodieDB checks and finds no duplicate, so it approves the new UserID,

and confirms this to Admin.
 4. In turn, Admin confirms this to Account Creation.
 5. The newly approved User then creates a PIN and sends it to Admin. (No check

is made on validity of a PIN, since it is local to a User.)
 6. Admin sends the PIN to the FoodieDB, so that the FoodieDB can send it as the

“Expected PIN” to Login.

The sequence of messages in scenario 1 is m1, m7, m8, m9, m11, m13, m14, m15,
m16, m4. The reason for making the state numbers global is so we can describe a

Figure 17.1 Message Communication in Scenario 1.

S1 Foodie
Home

S10 Account
Creation

S11 UserID
to Admin

S14 PIN to
Admin

S12 UserID
Approved

S41: Admin
Home

S42: Check
New Member

S43: Member
Approved

S45: PIN
Confirmation

S46: User PIN
in FoodieDB

S60: FoodieDB
Home

S61: UserID
Create

S62: Await
User PIN

m1/a11

e11/m7

m11

e12/m13,a12

m7/m8,a41

m9/m11

m13/m14

m15/m16

m8/a61

e61/m9

m8

m14

m9

Feature Interaction Testing ◾ 395

scenario as a state sequence across swim lanes. The state sequence for scenario 1 is:
S1, S10, S41, S1, S61, S62, S42, S11, S12, S43, S62, S45, S14, S1, S41, S1.

However, consider what could happen when two users creating conflicting
UserIDs (“FoodieFan”) in Table 17.2.

In this case, the two users are able to create the same account, since the first user’s
UserID is not stored in the FoodieDB until after the second user’s UserID is also
checked for duplication. Once both user’s UserIDs have been approved, both users
are able to set their PINs with no additional checks. This results in both users having
the last PIN set, which is the second user’s PIN of “1111.”

In this case, the additional functionality (i.e., feature) that caused a conflict was
the multi-user support. Since only one FoodieDB exists, but multiple instantiations
of the Admin functionality are created and operate in parallel, the additional Admin
thread caused an input conflict based on multiple messages sent to the FoodieDB
when the FoodieDB only expected one set of account creation messages at once.

While, from a design perspective, a single-user Foodie Wish List operates with
a single instance of the software in Figure 17.2, the reality includes more than one
instantiation.

Table 17.2 Conflicting UserIDs

Step User 1 User 2

1 A Foodie User (1) creates a UserID
(“FoodieFan”), sends it to Admin.

2 A Foodie User (2) creates a UserID
(“FoodieFan”), sends it to Admin.

3 The FoodieDB checks and finds no
duplicate, so it approves the new UserID
(“FoodieFan”), and confirms this to Admin.

4 The FoodieDB checks and finds no
duplicate within the database, so it
approves the new UserID (“FoodieFan”),
and confirms this to Admin.

5 Admin confirms this to Account Creation

6 Admin confirms this to Account Creation

7 The newly approved User then creates a
PIN (“1234”) and sends it to Admin.

8 The newly approved User then creates a
PIN (“1111”) and sends it to Admin.

9 Admin sends the PIN (“1234”) to the
FoodieDB, so that the FoodieDB can
send it as the “Expected PIN” to Login.

10 Admin sends the PIN (“1111”) to the
FoodieDB, so that the FoodieDB can send
it as the “Expected PIN” to Login.

396 ◾ Software Testing

In Figure 17.2 above, the set of possible interactions is based on the multiple
instantiations of Account Creation and Administration. The scenario detailed above
is caused by two m8 (“Submit UserID to FoodieDB”) and m14 (“Send User PIN to
FoodieDB”) messages from the Administration FSMs to the Foodie Database. Given
the duplication of the instantiations of Account Creation and Administration, the fol-
lowing messages would also be sources of potential duplicate messages Table 17.3:

Figure 17.2 Message Communication Among Multiple Instantiations of Finite State Machines.

Foodie
DatabaseLogin

Shopping
List

Shopping
Cart

AdministrationAccount
Creation

m9,m10,m15,m32
m33, m34,m35

m11,m12,m16

m7,m13

m23,m26

m2
Foodie
Home

m24,m30,m31

m17

m18,m19,
m20,m21

m8,m14,m36

m5

AdministrationAccount
Creation

Table 17.3 Input-Case Test Cases

Test Case Messages Source/Destination

1 m4 Account Creation/Foodie Home

2 m1 Foodie Home/Account Creation

3 m8 Administration/Foodie Database

4 m14 Administration/Foodie Database

5 m36 Administration/Foodie Database

6 m9 Foodie Database/Administration

7 m10 Foodie Database/Administration

8 m15 Foodie Database/Administration

9 m32 Foodie Database/Administration

10 m33 Foodie Database/Administration

11 m34 Foodie Database/Administration

12 m35 Foodie Database/Administration

Feature Interaction Testing ◾ 397

17.2.2 Output Conflict

Similar to input conflict, output-based conflict transpires when there are two conflicting
transitions. However, in the case of output-based conflict, it is the actions of two differ-
ent transitions that conflict, often in the form of output or assigning conflicting values,
rather than a conflict based on the same or simultaneous input events or messages.

For example, consider the Foodie Database. While the FSMs defined in Appendix B
document the behavior of the Foodies Wish List system, the Foodies Database is a
single storage point. Consider a family that shares a single Foodies Wish List account
where two people are adding and removing things from the card at the same time.
In this case, the Shopping List and Shopping Card FSMs have multiple instantiations,
one for each shopper, as shown in Figure 17.3.

In Figure 17.3 above, the set of possible interactions is based on the multiple
instantiations of Shopping List and Shopping Card. Given the duplication of the
instantiations of Shopping List and Shopping Card, the following messages would
also be sources of potential duplicate messages Table 17.4:

Figure 17.3 Message Communication Among Multiple Instantiations of Finite State Machines.

Foodie
Database

m22,m25

m11,m12,m16

Login

Shopping
List

Shopping
Cart

m23,m26

m2Foodie
Home

m24,m30,m31

m17

m18,m19,
m20,m21

m8,m14,m36

m5

Administration

Administration

m11,m12,m16

m7,m13Account
Creation

Account
Creation m7,m13

Table 17.4 Input-Case Test Cases

Test Case Messages Source/Destination

1 m6 Shopping List/Foodie Home

2 m3 Foodie Home/Shopping List

3 m24 Shopping Card/Foodie Database

4 m30 Shopping Card/Foodie Database

5 m31 Shopping Card/Foodie Database

398 ◾ Software Testing

Messages m30 (“Payment amount”) and m31 (“Shopping Cart Contents”) inform
the Foodie Database of the cost and the contents of the shopping card. Consider the
following events in Table 17.5:

Since the system cannot control the order of events between the parallel instantia-
tions of the shopping cart, it is possible that the price and cost is overwritten for the
same user due to a conflict that (in this case) greatly benefits the shopper. Instead
of paying $11,400 for a pound of Almas caviar, they are able to purchase it for the
price-per-pound of vanilla beans at only $112 a pound.

This output interaction caused by two conflicting actions could be fixed by either:

	 ◾	 Limiting each account to one user logged in at a time, or
	 ◾	 Assigning each order a unique order number rather than storing a single order

per customer.

While the FSMs and message view would still identify the possible interaction, test-
ing would indicate that the interaction does not take place and cause a negative
impact on the system.

17.2.3 Resource Conflict

Not all interactions are problematic. Often, a change in how the software behaves
based on previous or other changes is not only expected but required. Consider the
case of a coffee aficionado exploring unique coffee flavors. If the shopper purchased
Kopi Luwak coffee, the inventory would be updated to reduce the quantity of cof-
fee due to purchase. Table 17.6 shows the inventory before and after the purchase.

Since the unique Kopi Luwak Coffee made from the undigested coffee beans that
remain after the coffee cherry is eaten and digested by civet, replenishing stock is
a slow process. However, the shopper (or any other shopper) would be prevented
from purchasing the coffee due to a previous interaction that effects how the soft-
ware will continue to operate.

While not all resource conflicts are desirable, it is important to test for both the
negative and positive interactions within a system.

Table 17.5 Foodie Database Events

Event Shopping Cart 1 Shopping Cart 2 Foodie Database

1 User 1 adds Vanilla beans

2 User 2 adds Almas Caviar

3 m30 to Foodie Database $11,400.00 Price

4 m30 to Foodie Database $112.00 Price

5 m31 to Foodie Database $112.00 Price
Vanilla Beans Contents

6 m31 to Foodie Database $112.00 Price
Almas Caviar Contents

Feature Interaction Testing ◾ 399

17.3 A Taxonomy of Interactions
In addition to the types of interactions in the previous section, two aspects of loca-
tion, time and position, form the starting point of a useful taxonomy of interaction
to further classify the types of interactions. Certain interactions are completely inde-
pendent of time; for example, two data items that interact exhibit their interaction
regardless of time. Certain time-dependent interactions also occur, such as when
something is a prerequisite for something else. We will refer to time-independent
interactions as static and time-dependent interactions as dynamic. We can refine the
static/dynamic dichotomy with the distinction between single and multiple proces-
sors yielding four categories in which the previous types of interactions (i.e., input-,
output-, and resource-interactions) can occur:

Static interactions in a single processor
Static interactions in multiple processors
Dynamic interactions in a single processor
Dynamic interactions in multiple processors

17.3.1 Static Interactions in a Single Processor

Of the five basic constructs, only two have no duration — ports and data. Ports are
physical devices; therefore, we can view them as separate processors and thereby
simplify our discussion. Port devices interact in physical ways, such as space and
power consumption, but this is usually not important to testers. Data items interact
in logical ways (as opposed to physical), and these are important to testers. In an
informal way, we often speak of corrupt data and of maintaining the integrity of a
database. We sometimes get a bit more precise and speak of incompatible or even
inconsistent data. We can be very specific if we borrow some terms from Aristotle.
(We finally have a chance to use the propositional logic discussed in Chapter 3.)

Table 17.6 Foodies Wish List.inventory before and after purchase

Item ID Name Before Purchase After Purchase

1 Vanilla beans 14 14

2 Hop shoots 7 7

3 Italian white truffles: 10 10

4 Kobe beef 8 8

5 Kopi Luwak coffee 1 0

6 Moose House cheese 11 11

7 Saffron 7 7

8 Jamon Iberico de Belotta 3 3

9 Almas caviar 12 12

400 ◾ Software Testing

In the following definitions, let p and q be propositions about data items. As exam-
ples, we might take p and q to be:

 p: AccountBalance = $10.00
 q: CartBalance < $1800.00

Definition

Propositions p and q are:

Contraries if they cannot both be true
Sub-contraries if they cannot both be false
Contradictories if exactly one is true
q is a sub-altern of p if the truth of p guarantees the truth of q

These relationships are known to logicians as the “square of opposition,” which is
shown in Figure 17.4, where p, q, r, and s are all propositions.

Aristotelian logic seems arcane for software testers, but here are some situations
that are exactly characterized by data interactions in the square of opposition:

	 ◾	 When the precondition for a thread is a conjunction of data propositions, con-
trary or contradictory data values will prevent thread execution.

	 ◾	 Context-sensitive port input events usually involve contradictory (or at least,
contrary) data.

	 ◾	 If/else statements are contradictories.
	 ◾	 Rules in a decision table are contradictories.

Static interactions in a single processor are exactly analogous to combinatorial cir-
cuits; they are also well represented by decision tables and unmarked event-driven
Petri nets (EDPNs). Features in telephone systems are good examples of interaction
(Zave, 1993). One example is the logical conflict between a caller ID service and
unlisted directory numbers. With caller ID, the directory number of the source of a
telephone call is provided to the called party. A conflict occurs when a party with
an unlisted directory number makes a call to a party with caller ID. Which takes
precedence—the caller’s desire for privacy or the called party’s right to know who
is placing an incoming call? These two features are contraries: they cannot both
be satisfied, but either or both could be waived. Call waiting service and data line

Figure 17.4 Square of Opposition.

Contrariesp q

r s

Sub-alterns Sub-alterns

Subcontraries

Contradictories

Feature Interaction Testing ◾ 401

conditioning comprise another example of contrary features. In the past, when a
business (or home computing enthusiast) pays for a specially conditioned data line,
calls on that line are frequently used for the transmission of formatted binary data.
If such a line also has call waiting service, if a call is made to the line that is already
in use, a call waiting tone is superimposed onto the preexisting connection. If the
connection had been transmitting data, the transmission would be corrupted by the
call waiting tone. In this case, the resolution is easier. The customer disables the call
waiting service before making data transmission calls.

17.3.2 Static Interactions in Multiple Processors

The location of data helps resolve the contraries in the telephone system examples.
We would expect that the data for call waiting and data line conditioning are located
in the same processor because both refer to the same subscriber line. Thus, the
software that controls calls for that line could check for contrary line data. This is
an unreasonable expectation for the calling party identification problem, however.
Suppose the calling party is a line in an office remote from the office that serves the
line with calling party identification. Because these data are in separate locations
(processors), neither knows about the other; so their contrary nature can only be
detected when they are connected by a thread. To be very precise, we can say that
the contrary relationship exists as a static interaction across multiple processors, and
it becomes a failure when executing threads in the two telephone offices (proces-
sors) interact.

Call forwarding provides a better example of a static, distributed interaction.
Suppose we have three telephones in three separate locations for a single person:

Phone A is an office phone in Allendale, Michigan.
Phone B is a home phone in Rockford, Michigan.
Phone C is a cell phone with a mobile location.

We further suppose that each subscriber has call forwarding service, and that calls
are forwarded as follows: calls to A are forwarded to B, calls to B are forwarded to
C, and calls to C are forwarded to A.

This call forwarding data is contrary—they cannot all be true. Call forwarding data
is local to the telephone office that provides the service; it is set by a thread when a
subscriber defines a new forwarding destination. This means that none of the offices
knows of call forwarding data in the other offices; we have distributed contraries.
This is a fault, but it does not become a failure until someone (other than A, B, or C)
places a call to any phone in this call forwarding loop. Such a call, say to subscriber
B, generates a call forwarding thread in B’s local telephone office, which results in
a call to C’s directory number. This generates another thread in C’s telephone office,
and so on. For now, please note that the existence of the connecting threads moves
us out of the static quadrants and into dynamic interactions. The potential failure still
exists; it is just in a different part of our taxonomy.

The bottom line is that static interactions are essentially the same, whether they
are centralized into a single processor or distributed among multiple processors.
(They are harder to detect when they are distributed, however.) Another common

402 ◾ Software Testing

form of static interactions occurs with weak relationships and functional dependen-
cies in a database (centralized or distributed). Both of these interactions are forms
of subalternation.

17.3.3 Dynamic Interactions in a Single Processor

While static interactions occur regardless of timing, dynamic interactions require
consideration of the implications of time. Among other things, this means we must
expand from the data-only interactions to interactions among data, events, and
threads. We also must shift from the strictly declarative relationships in the square of
opposition to a more imperative view. The notion of n-connectedness in a directed
graph (see Chapter 4) serves perfectly. Figure 17.5 shows the four forms of n-con-
nectedness in a directed graph.

Even the data–data interactions exhibit forms of n-connectedness. Data that are
logically independent are 0-connected, and subalternates are 2-connected. The other
three relationships, contraries, contradictories, and sub-contraries, all pertain to 3-con-
nected data, because each of these is a bidirectional relationship. Six potential pairs
of concepts can interact: data–data, data–events, data–threads, events–events, events–
threads, and threads–threads. Each of these is further qualified by four degrees of
n-connectedness, resulting in 24 elements to our taxonomy for this quadrant. Take
some time to think through these interactions. Here are four examples:

1-connected data with data: occurs when two or more data items are inputs to the
same action

2-connected data with data: occurs when a data item is used in a computation (as
in dataflow testing)

3-connected data with data: occurs when data are deeply related, as in repetition
and semaphores

1-connected data with events: context-sensitive port input events

We do not need to analyze all 24 possibilities because faults of interaction only
become failures when threads establish some connection. The faults are latent; and
when a thread makes a connection, the latent fault becomes a failure. Threads can

Figure 17.5 Forms of n-connectedness.

i

j2-connected 3-connected

i

j

i j

0-connected

1-connected

i j

ji

Feature Interaction Testing ◾ 403

only interact in two ways, via events or via data. We will see this more clearly using
EDPNs after we make another definition.

Definition

In an EDPN, the external inputs (ports or data) are the places with indegree = 0, and
the external outputs are the places with outdegree = 0.

In the EDPN in Figure 17.6, p1, p2, and d1 are the only external inputs, and p3,
p4, and d3 are the only external outputs. As shown here, data places d1 and d3 are
preconditions and postconditions; they are external inputs and outputs, respectively.
The best description is that the indegrees of external inputs and the outdegrees of
external outputs are always 0.

Now we are at a key point: we can represent the interaction among threads by the
composition of their EDPNs. We do this as follows: each thread has its own (unique)
EDPN, and within each EDPN, the places and transitions have symbolic names. In
one sense, these names are local to the thread; but in a larger sense (when they are
composed), local names must be resolved into global synonyms. However, for the
input-, output-, and resource-conflicts explored above, we must first describe the
threads as EDPNs rather than FSMs. For example, the FSM fragment in Figure 17.7
represents a transition and action between two states (s1 to s2) when an event occurs
and causes an action.

As a petri-net, Figure 17.7 is represented in Figure 17.8 as two places that pass a
single token between them (s1 to s2) and trigger an output action (A) when an event
(E) occurs.

Figure 17.6 External inputs and outputs in an EDPN.

s1

s2

d1

d2

d3

p3
p1

p4

p1 p2

d4 p2

s3

s4

Figure 17.7 FSM Fragment.

s1 s2Event/Action

404 ◾ Software Testing

Consider the case of the resource-conflict in Section 17.2.3. We can model the
thread for each purchase of coffee in Figure 17.9. S represents the current supply and
P, the purchase event, respectively. When a purchase, P, occurs, the petri-net transi-
tion fires using the tokens in S and P and causing an output event (O) representing
the results of the purchase. As a single thread, no conflict exists in this instantia-
tion. However, the previously discussed resource-conflict chains two of these threads
together.

The same action: purchasing is attempted twice, in series, resulting in differing
results due to the interaction. The left side of Figure 17.10 is a petri-net that repre-
sents the initial state of two places (i.e., p1 and p2), each representing the purchase
event (P) of coffee. Place S represents a limited supply of coffee. Identical to our
resource-conflict, purchasing the single stock of coffee depletes the supply as shown
on the right side. Since firing the first purchase transition consumes the token in S
(and the coffee!), the second purchase attempt is disabled.

As expected, the second purchase is unable to occur due to the depleted resource.
Analyzing the connection between each of the nodes, and we can see that our supply
(S) is 1-connected to both purchase action transitions. Place p2 is an interlock that
forces the sequence of purchases, but the second purchase is prevented by place S
having no tokens.

Figure 17.8 Petri-Net Conversion of FSM Fragment.

s1
E

As2

Figure 17.9 Petri-Net Coffee Purchase.

S
P

O

S
P

O

Before purchase After purchase

Feature Interaction Testing ◾ 405

17.3.4 Dynamic Interactions in Multiple Processors

While the previous dynamic interaction in a single processor required petri-nets
to illustrate the resource-driven conflict over data, input- and output-conflicts can
be defined less formally. While still making using of the concept of connectedness,
consider the input- and output-conflicts presented above. As previously discussed,
the Foodies Wish List operates as multiple instances on potentially multiple proces-
sors. However, even on a single processor, the parallel threads of execution operate
independently and non-deterministically. For example, in the FSM fragment from
Figure 17.2, we can see that both the states Foodie Home and Foodie Database are
1-connected to multiple instances of Account Creation and Administration, respec-
tively. (Figure 17.11).

Figure 17.10 Dual Purchase Petri-Net.

S P

O

P

Before first purchase

First
purchase

Second
purchase

p1

Op3

p2

After first purchase

S
P

P

First
purchase

p1

p2

Op3

Second
purchase

O

Figure 17.11 FSM Fragment from Figure 17.2.

m9,m10,m15,m32
m33, m34,m35

Foodie
Database

m11,m12,m16

m7,m13

Foodie
Home

m8,m14,m36

Administration

Administration

Account
Creation

Account
Creation

406 ◾ Software Testing

Due to the parallel execution of the administration and account creation mod-
ules, but only one instance of the FoodieDB, the additional threads caused an
input-conflict due to conflicting messages sent to the Foodie Database in a nonde-
terministic order.

17.4 Interaction, Composition, and Determinism
The question of nondeterminism looms as a backdrop to deep questions in science
and philosophy. Einstein did not believe in nondeterminism; he once commented
that he doubted that God would play dice with the universe. Nondeterminism gen-
erally refers to consequences of random events, asking, in effect, if there are truly
random events (inputs), can we ever predict their consequences? The logical extreme
of this debate ends in the philosophical/theological question of free will versus pre-
destination. Fortunately for testers, the software version of nondeterminism is less
severe. You might want to consider this section to be a technical editorial. It is based
on our experience and analysis using the EDPN framework. We find it yields reason-
able answers to the problem of nondeterminism; you may too.

Let us start with a working definition if determinism; here are two possibilities:

A system is deterministic if, given its inputs, we can always predict its outputs.
A system is deterministic if it always produces the same outputs for a given set of

inputs.

The second view (repeatable outputs) is less stringent than the first (predictable
outputs), therefore, we will use it as our working definition. Then a nondetermin-
istic system is one in which there is at least one set of inputs that results in two
distinct sets of outputs. It is easy to devise a nondeterministic finite state machine;
Figure 17.12 is one example (we will see a better example inn Chapter 18).

If it is so easy to create a nondeterministic finite state machine, why all the fuss
about determinism in the first place? Recall that in Chapter 12, we took great pains
to separate the reality of a system from models of the system’s behavior. Finite state
machines are models of reality; they only approximate the behavior of a real system.
This is why it is so important to choose an appropriate model—we would like to use
the best approximation. Roughly speaking, decision tables are the model of choice
for static interactions, finite state machines suffice for dynamic interactions in a single
processor, and some form of Petri nets is needed for dynamic interactions in multiple
processors. Before going on, we should indicate instances of nondeterminism in the

Figure 17.12 A nondeterministic finite state machine.

s1

s2 s3

Feature Interaction Testing ◾ 407

other two models. A multiple-hit decision table is one in which the inputs (variables
in the condition stub) are such that more than one rule is selected. In Petri nets, non-
determinism occurs when more than one transition is enabled. The choice of which
rule executes or which transition fires is made by an external agent. Notice that the
choice is actually another (subtle, often unstated) input.

Exercises
In exercises 1, 2, and 3, assume that feature interaction occurs among sets of fea-
ture threads (usually just 2) that are modeled as Event-Driven Petri Nets (EDPNs).
For convenience, you may refer to EDPN 1 and EDPN 2 as the EDPNs of threads of
interacting features.

 1. Describe the n-connectivity of threads in Section 17.2.1, Input Conflict.
 2. Describe the n-connectivity of threads in Section 17.2.2, Output Conflict.
 3. Describe the n-connectivity of threads in Section 17.2.3, Resource Conflict.
 4. Find instances of 2-connected features in the Foodies Wish List example? Any

3-connected examples?
 5. Find instances of the Enable prompt among features in the Foodies Wish List.
 6. Find instances of the Disable prompt among features in the Foodies Wish List.
 7. Find instances of the Trigger prompt among features in the Foodies Wish List.
 8. Revisit the Windshield Wiper Controller, this time considering the Lever as one

feature and the Dial as a second feature. Find examples of the Enable and
Disable prompts between Lever and Dial features.

References
Sven Apel, et al. “Feature interactions: the next generation (dagstuhl seminar 14,281) (n.d.).
D. Batory, D. Benavides, and A. Ruiz-Cortes, “Automated analysis of feature models: chal-

lenges ahead,” Communications of the ACM, vol. 49, no. 12 (2006): 45–47.
Muffy Calder, et al. “Feature interaction: a critical review and considered forecast.”

Computer Networks vol. 41, no. 1 (2003), pp. 115–141. http://classics.mit.edu/Aristotle/
metaphysics.8.viii.html.

Pamela Zave. “Feature interactions and formal specifications in telecommunications.”
Computer, vol. 26, no. 8 (1993): 20–28.

http://classics.mit.edu
http://classics.mit.edu

https://taylorandfrancis.com

409

Chapter 18

Case Study: Testing
Event-Driven Systems

Event-driven systems are exactly what David Harel [Harel 1988] defined as “reactive
systems”—they are “long running” and they “maintain a relationship with their envi-
ronment.” Here are some additional characteristics of embedded systems that have
implications for system testing:

	 ◾	 input events may be generated asynchronously,
	 ◾	 input events may come from separate devices,
	 ◾	 input events may occur as interrupts,
	 ◾	 input events may have a short duration (i.e., scanning may be necessary),
	 ◾	 processing time for an input event may cause subsequent input events to be

ignored (quick example: an impatient hotel guest who presses an elevator call
button repeatedly),

	 ◾	 input events may be context sensitive,
	 ◾	 input and output devices may fail,
	 ◾	 independent input and output devices can/should be considered as constituents

of a System of Systems.

Due to these characteristics, many of the traditional testing techniques do not directly
apply. Instead, the Model-Based Testing approaches are more appropriate. In this
chapter, we apply three modeling techniques to a Garage Door Controller: Behavior
Driven Development, Finite State Machines, and an extension of Event-Driven Petri
Nets that is appropriate for System of Systems. As we progress through the models,
we discuss the extent to which they are helpful to testers. As expected, more sophis-
ticated models support more thorough testing. Some of the material is this chapter is
taken from The Craft of Model-Based Testing [Jorgensen 2017].

410 ◾ Software Testing

18.1 The Garage Door Controller Problem Statement
A system to open a garage door is comprised of several components: a drive
motor, the garage door wheel tracks with sensors at the open and closed posi-
tions, and a control device. In addition, there are two safety features, a laser beam
near the floor, and an obstacle sensor. These latter two devices operate only when
the garage door is closing. While the door is closing, if either the light beam is
interrupted (possibly by a pet) or if the door encounters an obstacle, the door
immediately stops, and then reverses direction. To reduce the size of our mod-
els, only the light beam sensor is considered. The corresponding analyses for the
obstacle sensor are almost identical. When the door is in motion, either closing
or opening, and a signal from the control device occurs, the door stops. A subse-
quent control signal starts the door in the same direction as when it was stopped.
(This is contrary to many garage door systems; it is added here because it lets us
illustrate an interesting point.) Finally, there are sensors that detect when the door
has moved to one of the extreme positions, either fully open or fully closed. When
either of these occurs, the door stops. Figure 18.1 is a SysML context diagram of
the garage door controller. In most garage door systems, there are several control
devices: a digital keyboard mounted outside the door, a separately powered but-
ton inside the garage, and possibly several in-car signaling devices. For simplicity,
we collapse these redundant signal sources into one device. Similarly, since the
two safety devices generate the same response, we will drop consideration of the
obstacle sensor and just consider the light beam device.

18.2 Modeling with Behavior Driven Development (BDD)
In Chapter 11, we have an example of deriving a decision table from a BDD scenario.
The BDD process centers on user stories that have a structure that translates easily
into a decision table. The Chapter 11 discussion follows an example from Dan North,
an early proponent of BDD [Terhorst-North 2006]. If we try to use BDD scenarios
for event-driven systems, where order is important, we need to make a more formal
definition of a BDD scenario:

Figure 18.1 SysML diagram of the garage door controller.

Obstacle Sensor End of Up Track

Garage Door
Controller

Control Device

Drive MotorLight Beam Sensor

End of Down Track

Case Study: Testing Event-Driven Systems ◾ 411

Definition

A well-formed BDD scenario has the following sections and structure:

 Short ID.
 IF (<pre-condition(s)>),
 AND (<data condition(s)>),
 AND (<input event sequence>),
 THEN (action sequence),
 AND (<output event sequence>),
 AND (<post-condition(s>).

We next apply this structure to a few well-formed BDD scenarios for The Garage
Door Controller. Our short identifier will be GDCn (for Garage Door Controlle

GDC1 GDC2

IF the garage door is Up, IF the garage door is closing

AND a control signal occurs AND the End of Down Track signal occurs

THEN start the motor in the Down
direction

THEN stop the motor

AND the Door is Closing. AND the garage door is Down.

GDC3 GDC4

IF the garage door is closing IF the garage door is stopped part-way

AND a control signal occurs AND a control signal occurs

THEN stop the motor THEN start the motor in the Down direction

AND the garage door is stopped
part-way

AND the Door is Closing

Looking at these first four BDD scenarios, we can see three important parts of the
Garage Door Controller:

 1. Conditions of the door: Up, Closing, Stopped part-way, and Down.
 2. Input events: e1: control signal and e2: End of Down Track
 3. Actions: a1: Start motor down, a3: Stop motor.

Table 18.1 is a decision table that reflects these four BDD scenarios.
Four test cases are implied by the extended entry decision table in Table 18.1. The

first test case is in Table 18.2.

412 ◾ Software Testing

18.3 Modeling with Extended Finite State Machines
There are two fundamentally opposed approaches to defining a problem with finite
state machines—the bottom-up approach common to agile development and the
more traditional top-down approach. Both approaches have advantages and disad-
vantages, but that discussion diverges from this chapter.

18.3.1 Deriving a Finite State Machine from BDD Scenarios

If we examine the first four BDD scenarios, we can identify input events, output
actions, and states of an eventual finite state machine. Doing so, we arrive at the
(extended) finite state machine in Figure 18.2. (The black dot shows the initial state.)

Input events Output events (actions) States

e1: control signal a1: start drive motor down s1: Door Up

e2: end of down track hit a2: start drive motor up s2: Door Down

a3: stop drive motor s3: Door is closing

s4: Door stopped part way

Table 18.1 Decision table derived from GDC1, GDC2, GDC3, and GDC4

c2. Event is
control
signal

end of
down track

control
signal

end of
down track

control
signal

end of
down track

a1. Start motor
down

x — — — x —

a2. Stop motor — — x x — —

a3. Impossible — x — — — x

BDD Scenario GDC1 GDC3 GDC2 GDC4

Table 18.2 BDD Test Case Derived from the Decision Table of Four BDD Scenarios

BDD TC-1 Test case from BDD Scenario 1

Description When the Garage door is up and a control signal occurs, start the drive
motor down.

Pre-condition Garage door is UP

Input Events Output Events

1. Control signal 2. Start Motor down

Post-condition Garage door is closing

Case Study: Testing Event-Driven Systems ◾ 413

The four BDD scenarios are present in Figure 18.2 as follows:

 1. GDC1 is the state sequence <s1, s3>
 2. GDC2 is the state sequence <s3, s2>
 3. GDC3 is the state sequence <s3, s4>
 4. GDC4 is the state sequence <s4, s3>

If we executed our BDD scenarios as a sequence <GDC1, GDC3, GDC4, GDC2 >, we
have formed a path that traverses every state and every transition in Figure 18.2. The
only redundancies are the control signal e1 and the stop motor action a3.

Our first four BDD scenarios have very similar scenarios for a closed door:

GDC5 GDC6

IF the garage door is Down IF the garage door is opening

AND a control signal occurs AND the End of Up Track signal occurs

THEN start the motor in the Up direction THEN stop the motor

AND the Door is Opening. AND the garage door is Up.

GDC7 GDC8

IF the garage door is Opening IF the garage door is stopped part-way

AND a control signal occurs AND a control signal occurs

THEN stop the motor THEN start the motor in the Up direction

AND the garage door is stopped part-way AND the Door is Opening

Figure 18.2 Finite State Machine Derived from BDD scenarios GDC1, GDC2, GDC3, and
GDC4.

FSM for door closing

s1: Door Up

s3: Door
closing

s2: Door Down

s4: Door stopped
part way

414 ◾ Software Testing

Scenarios GDC5 through GDC8 lead us to the finite state machine in Figure 18.3.
They also yielded one new state s6:Door Opening, a new input event e3: end of up
track, and one new action a2: start motor Up.

We have reached an interesting example of an inherent problems of bottom-up
development. The first four scenarios and the associated finite state machine are
correct when taken by themselves, similarly for the second four scenarios. However,
when we try to compose the two partial finite state machines, as in Figure 18.4, the
result is a non-deterministic finite state machine. When the garage door is in state
s4: Door stopped part way, what happens when event e1: Control signal occurs?
Does action a1: start drive motor down occur, or does a2: start drive motor up occur?
We would hope this inconsistency would be detected by integration testing, but it
might not be found until system testing. Part of the reason for this is every bottom-
up approach forces a form of “tunnel vision” in which we only gradually see whole
picture.

18.3.2 Top-down development of a Finite State Machine

Behavior-Driven Development gave us a good start, but it is time to move to a
more sophisticated model—a top-down process. Given the problem statement in
Section 18.1, we look for parts of the statement that refer to states, input events,
and actions on transition. The components of our system are a starting point to
find input events and actions. Signals from the control device(s) are the obvious
input event, as is the signal when the light beam is crossed. We also see that there
are sensors marking the ends of the track in the up and down directions. The only
actions are with respect to the drive motor: start in the up direction, start in the
down direction, stop the motor, and reverse the motor direction from down to
up. The states of the Garage Door are as they were in the BDD approach: Door
is Open, Door is Closed, Door is Opening, Door is Closing, and the problematic
Door is Stopped Part-Way.

Figure 18.3 Finite State Machine Derived from BDD scenarios GDC5, GDC6, GDC7, and
GDC8.

FSM for door opening

s1: Door Up

s2: Door Down

s6: Door
opening

s4: Door stopped
part way

Case Study: Testing Event-Driven Systems ◾ 415

Input events Output events (actions) States

e1: control signal a1: start drive motor down s1: Door Up

e2: end of down track hit a2: start drive motor up s2: Door Down

e3: end of up track hit a3: stop drive motor s3: Door stopped part way

e4: light beam crossed a4: reverse motor down to up s4: Door closing

s5: Door opening

Figure 18.4 Finite state machine composed of those in Figures 18.2 and 18.3.

s1: Door Up

s3: Door
closing

s4: Door stopped
part way

s2: Door Down

s6: Door
opening

combined FSMs

Door is
openControl device signal /

start motor down

Door is
closed

stop motor

Control device signal /
stop motor

Control device signal /
start motor down

Door is
stopped part

way
Door is
closing

Control device signal /
start motor up

stop motor

Control device signal /
stop motor

Control device signal /
start motor up

Door is
opening

End of Up Track

End of Down Track/

(a)

(b)

416 ◾ Software Testing

Using just these five states, we would get the non-deterministic finite state machine
in Figure 18.4.

It is a fair question to ask when we, as modelers, would recognize the problem
in Figure 18.4. If we were lucky, we would recognize the non-determinism immedi-
ately. If there were a requirements inspection, the problem would (should!) be found
there. If the model was given to the Customer/User as an executable specification,
the Customer/User might find the problem. The last resort would be deriving test
cases from the model and having unexpected output results. Assuming that, some-
where along the line, the non-determinism was discovered, the most likely correc-
tion is a more precise set of states: s1: Door Up, s2: Door Down, s3: Door stopped
going down, s4: Door stopped going up, s5: Door closing, and s6: Door opening, as
in Figure 18.5.

Given this finite state machine, we follow paths which are early indicators of full
system test cases. The simplest way to describe paths is by state traversal sequences,
as in Table 18.3. Each such path can then be expressed as a Use Case showing the
interleaved sequences of input events and expected output actions. The example in
Table 18.4 is for a “soap opera” path (one that is as long and complicated). Notice
that the pre- and post-conditions are states in the finite state machine. This corre-
sponds nicely to our earlier definition of a well-formed BDD scenario.

Use case FSM-UC-1 contains five of the six states, three of the four input events, and
all four output actions. (Incidentally, this would serve as an excellent regression test
cases, because, if it passes, most of the elements of interest are shown to be correct.)

Figure 18.5 Corrected finite state machine for the Garage Door Controller.

s1: Door Up

s5: Door
closing

s3: Door stopped
going down

s2: Door Down

s4: Door stopped
going up

s6: Door
opening

e4/a4

Table 18.3 Mapping Paths in the Finite State Machine to State Sequences

Path Description State Sequence

p1 Normal door close s1, s5, s2

p2 Normal door close with one intermediate stop s1, s5, s3, s5, s2

p3 Normal door open s2, s6, s1

p4 Normal door open with one intermediate stop s2, s6, s4, s6, s1

p5 Closing door with light beam interruption s1, s5, s6, s1

p6 Soap opera test case s1, s5, s3, s5, s6, s4, s6, s1

Case Study: Testing Event-Driven Systems ◾ 417

Using the automated test execution system described in Chapter 13, the Soap
Opera test case would be the following sequence of Cause and Verify statements.

Test Execution Script for test case FSM-UC-1
Pre-conditions: 1. Garage door is Up

 1. Cause the input event e1: control signal On the Control Device
 2. Verify that the output event a1: start drive motor down occurs On the Motor
 3. Cause the input event e1: control signal On the Control Device
 4. Verify that the output event a3: stop drive motor occurs On the Motor
 5. Cause the input event e1: control signal On the Control Device
 6. Verify that the output event a1: start drive motor down occurs On the Motor
 7. Cause the input event e4: laser beam crossed
 8. Verify that the output event a4: reverse motor down to up occurs On the

Motor
 9. Cause the input event e1: control signal On the Control Device
10. Verify that the output event a2: stop drive motor occurs On the Motor
11. Cause the input event e1: control signal On the Control Device
12. Verify that the output event a2: start motor up occurs On the Motor
13. Cause the input event e3: end of up track hit
14. Verify that the output event a3: stop drive motor occurs On the Motor

Post-conditions: 1. Garage door is up

Table 18.4 Soap Opera Use Case for a Long Path in Figure 18.5

Use Case Name: Garage Door Controller Soap Opera Use Case

Use Case ID: FSM-UC-1

Description: Use case for the state sequence <s1, s5, s3, s5, s6, s4, s6, s1>.

Pre-conditions: 1. Garage Door is Up

Event Sequence:

Input Event System Response

1. e1: control signal 2. a1: start drive motor down

3. e1: control signal 4. a3: stop drive motor

5. e1: control signal 6. a1: start drive motor down

7. e4: laser beam crossed 8. a4: reverse motor down to up

9. e1: control signal 10. a2: stop drive motor

11. e1: control signal 12. a2: start drive motor up

13. e3: end of up track hit 14. a3: stop drive motor

Post-conditions: 1. Garage Door is Up

418 ◾ Software Testing

One of the insights that we gain from finite state machines is that we can rec-
ognize context-sensitive input events. Notice that the input event e1: control signal
occurs in three different states, with three different system action responses. The
finite state machine formulation supports the identification of a set of system level
test coverage metrics. Recall that a finite state machine is a directed graph, so we
can re-use (and rename) the graph-based test covers developed in Chapter 8. The
test coverage metrics defined in Table 18.5 all refer to a given system modeled with
a finite state machine. They relate a set of test cases to the test cover metric. Because
input events, output actions, states, and transitions are closely coupled, these test
coverage metrics overlap with sets of test cases.

18.4 Modeling with Swim Lane Event-Driven Petri Nets
Moving from finite state machines from Event-Driven Petri Nets (EDPNs) (as in
Chapter 4) permits a more precise examination of the garage door controller. The
system is modeled as a “Swim Lame EDPN” to examine the modes of interaction
among the devices in the Garage Door Controller. Finally, we examine failure modes
of the light beam mechanism. Some of the material in this subsection appeared in
[Jorgensen 2015].

Definition [DeVries 2013]: A swim lane marked Petri net is a 7-tuple (P, T, I, O,
M, L, N) in which (P, T, I, O, M), is a marked Petri net and L is a set of n sets, where

P is the set of places,
T is the set of transitions,
I is the input mapping of places in P to transitions in T, is the output mapping of

transitions in T to places in P,
M is a marking that maps natural numbers to places in P

Table 18.5 System-Level, Model-Based Test Coverage Metrics

Test Cover A Set of Test Cases that Paths (from Table 18.3)

STCS traverses every state p2, p4

STCIE uses every input event p1, p3 p5

STCOA produces every output action p1, p3 p5

STCT traverses every transition p2, p4, p5

STCPATH traverses every path (cycles only once) p1,p2, p3, p4, p5, p6

STC∞ traverses every path (repeat cycles <s5, s3>
and < s6, s4) > in paths p2 and p4)

Paths containing <s5, s3>
and/or < s6, s4)

Case Study: Testing Event-Driven Systems ◾ 419

n ≥ 1 is the number of swim lanes,
L is the union of the places in the n lanes, and
N is the union of the transitions in the n lanes.

Two easy secondary definitions follow almost directly.

Definition

A swim lane (ordinary) Petri net is a 6-tuple (P, T, I, O, L, N) in which (P, T, I, O), is
an ordinary Petri net (as in Chapter 5). The elements of the 6-tuple are as in the first
definition.

Definition

A swim lane Event-Driven Petri NET (SWEDPN) is a 7-tuple (P, D, T, In, Out, L, N) in
which (P, D, T, In, Out) is an Event-Driven Petri Net (EDPN) (as in Chapter 4). The
elements of the 7-tuple are as in the first definition.

In the next three subsections, we develop the Swim Lane Event-Driven Petri Nets
for these scenarios: a normal door closing, a door closing with an intermediate stop,
and a door closing with a light beam crossing. These correspond to paths p1, p2,
p3, and p5 in Table 18.3. Section 18.4.4 contains an extended version of the Door
Opening mechanism as a prelude to the failure analysis discussion in Section 18.5.

Since EDPNs refer to port input and output events, we rename the elements of
our finite state machine.

Input events Output events States

p1: control signal p5: start drive motor down s1: Door Up

p2: end of down track p6: start drive motor up s2: Door Down

p3: end of up track p7: stop drive motor s3 Door Stopped Going
Down

p4: laser beam crossed p8: reverse motor down to up s4: Door Stopped Going Up

s5: Door Closing

s6: Door Opening

We will name the EDPN transitions (drawn as rectangles) and the swim lanes in
the accompanying figures.

18.4.1 Normal Garage Door Closing

A normal door closing (path p1 in Table 18.3) begins with the garage door in the
s1: Door Up state, a point of event quiescence. If a p1: Control Signal event occurs,

420 ◾ Software Testing

the motor is started in the down direction (p5: start motor down), changing the door
state to s5: Door Closing. (The only other event that could occur in the Door Up
state would be a laser beam crossing. The mechanism that ignores this possibility is
described in Section 18.4.4.) The garage door continues closing until event p2: end
of down track occurs. This causes the output event p7: stop drive motor to occur,
leaving the garage door in state s2: Door Down. Figure 18.6 uses the ESML Trigger
prompt to start and stop the drive motor.

18.4.2 Garage Door Closing with an Intermediate Stop

This scenario (path p2 in Table 18.3) begins as the normal door closing, with the
garage door in the s1: Door Up state, a point of event quiescence. If a p1: Control
Signal event occurs, the motor is started in the down direction (p5: start motor
down), changing the door state to s5: Door Closing. If another p1: Control Signal
event occurs, a trigger is sent to the motor, causing the output event p7: stop drive
motor to occur, leaving the door in state s3: stopped going down Figure 18.7.

Figure 18.6 Normal Garage Door Closing.

Garage
Door

s1: Door
Up

s5: Door
Closing

Start Closing

End of Track
Sensors

Motor

p1
T

Start Motor
Down

p5

Control
Device

p2

Sense End of
Down Track

Stop Motor

p7
s2: Door
Down

T

Case Study: Testing Event-Driven Systems ◾ 421

18.4.3 Garage Door Closing with a Laser Beam Crossing

This scenario (path p5 in Table 18.3) begins as a normal door closing, with the
garage door in the s1: Door Up state, a point of event quiescence. If a p1: Control
Signal event occurs, the motor is started in the down direction (p5: start motor
down), changing the door state to s5: Door Closing. Notice that the Start Closing
EDPN transition uses the ESML Enable prompt to enable the Light Beam Sensor. If a
p4: laser beam crossed event occurs, this sends an ESML Trigger prompt to the out-
put event p8: reverse motor down to up, leaving the garage door in state s6: Door
Opening. We continue this scenario to include the input event p3: end of up track.
When that input occurs, a Trigger is sent to the output event p7: stop motor, leaving
the garage door in state s1: Door Up Figure 18.8.

18.4.4 The Door Opening Interactions

Figure 18.9 goes through the door opening with one intermediate stop sequence.
The initial state is s2: Door Closed. This is a point of event quiescence. If input event
p1:control signal occurs, the Start Opening transition is enabled, and when it fires, it
marks place s6: Door opening, and sends the trigger prompt to the Start Motor Up
transition. That transition fires immediately, marking output event p6: start drive motor
up, and the garage door is moving upward. As we saw with the door closing sequence

Figure 18.7 Garage Door Closing with an Intermediate Stop.

Garage
Door

s1: Door
Up

s5: Door
Closing

Start Closing

Motor

p1

T

Start Motor
Down

p5

Control
Device

Stop Motor

p7
s2: Door
Down

T
Stop Closing

p1

422 ◾ Software Testing

(Figure 18.5) two input events can occur when state s6: Door Opening is marked—
either p1: control signal, or p3: End of Up Track. Both cases are shown in Figure 18.9.

If event p1:control signal occurs a second time, the Stop Opening transition fires,
marking place s4: Door Stopped Going Up and sending a trigger prompt to the Stop
Motor transition. When that transition fires, p6 is unmarked, p7 is marked, and place
s4: Door Stopped Going Up is marked.

If event p1:control signal occurs a third time, the Resume Opening transition fires,
marking place s6: Door opening and sends the trigger prompt to the Start Motor
Up transition. As earlier, that transition fires immediately, marking output event p6:
start drive motor up and removing the mark from p7: Stop motor. The garage door
is moving upward and the system is event quiescent. This is a curious situation: from
a Swim Lane Event-Driven Petri Net standpoint: nothing is happening but a system
tester would observe that the garage door is in motion. An extremely refined system
test case might specify a time interval at this point.

If (when!) event p3: end of up track occurs, the Sense End of Up Track transition
fires, sending a trigger prompt to the Stop Motor transition. When that transition
fires, p6 is unmarked, p7 is marked, and place s1: Door Open is marked.

Figure 18.8 Garage Door Closing with a Light Beam Interruption.

Garage
Door

s1: Door
Up

s5: Door
Closing

Start Closing

Light Beam
Sensor

Motor

e/d

T

p8

p1

p4

T

Sense Light Beam
Interruption

Start Motor
Down

Reverse Down to
Up

p5

Control
Device

s6: Door
Opening

End of Track
Sensors

p3

Sense End of
Up Track

Stop Motor

p7

s1: Door
Up

T

Case Study: Testing Event-Driven Systems ◾ 423

Two fine points need to be mentioned here. Theoretically this start/stop loop could
continue indefinitely. In practice, pressing the control button is a manual operation
that may take 10 milliseconds and the reaction time of the motor stopping is prob-
ably about a second. In this time, the door has moved upward a measurable distance.
The practical limit on the number of repetitions of the stop/resume cycle as prob-
ably about 20. Suffice it to say, this is not an infinite loop. Second, a system test case
derived from this scenario will examine the context sensitivity of p1:control signal.

18.5 Deriving Test Cases from Swim Lane Event-Driven
Petri Nets

Deriving test cases from a SWEDPN is very similar to the process for deriving test
cases from an ordinary EDPN. The difference is that the devices corresponding to
the swim lanes need to be added to a test case. Echoing the automatic test execution

Figure 18.9 Swim Lane EDPN showing door opening options.

Garage Door

s6: Door
Opening

Start Opening

End of Track
Sensors

Motor

T

p7

p1

p3

T

Stop Opening

Sense End of
Up Track

Start Motor Up

Stop Motor

p6

Control
Device

s4: Door Stopped
Going Up

s2: Door
Closed

Resume Opening

p1

p1

s1: Door Open

s6: Door
Opening

424 ◾ Software Testing

system briefly described in Chapter 13, here is a short test case corresponding the
test case in Table 18.6. Reserved words are on bold font, and arguments must be
selected from a pre-defined list (italic font). Noise words are permitted for readability
(normal font).

Test Execution Script for test case SysTC-1.
Pre-conditions: 1. Garage door is open

Cause the input event p1: control signal On the Control Device
Verify that the output event p5: start drive motor down occurs On the Motor.
Cause the input event p2: end of down track hit On the End of Track Sensors
Verify that the output event p7: stop drive motor occurs On the drive Motor

Post-conditions: 1. Garage door is closed

Depending on the harness used with the automatic test executor, the pre-condi-
tions could be Caused and the post-conditions could be Verified Table 18.7.

Table 18.6 System Level Test Case for Normal Door Closing

Test Case SysTC-1: Normal door closing

Pre-conditions 1. Garage door is open

Cause Occurs On Verify Occurs on Observed Action

1. p1: control
signal

Control
Device

2. p5: start drive
motor down

Motor
Motor starts in down direction.
Door begins to close

3. p2: end of
down track hit

End of Track
Sensors

4. p7: stop drive
motor

Motor Motor stopped. Door is closed

Post-conditions 1. Garage door is closed

Table 18.7 System level Test Case for Normal Door Closing with Light Beam Interruption

Test Case SysTC-2: Normal door closing with light beam interruption

Pre-conditions 1. Garage door is open

Cause Occurs On Verify Occurs on Observed Action

1. p1: control
signal

Control
Device

2. p5: start drive
motor down

Motor
Motor starts in down direction.
Door begins to close

3. p4: laser
beam crossed

Light Beam
Sensor

4. p8: reverse
motor down to
up

Motor
Motor reverses direction.
Door is opening

5. p3: end of
up track hit

End of Track
Sensors

6. p7: stop drive
motor

Motor Motor stopped. Door is open.

Post-conditions 1. Garage door is open

Case Study: Testing Event-Driven Systems ◾ 425

18.6 Failure Mode Event Analysis (FMEA)
Failure Mode Event Analysis deals with physical devices that can fail. Devices can fail
for a variety of reasons—physical deterioration, excessive heat, voltage spikes, and
so on. Regardless of the underlying cause, there are three failure modes, summarized
in Table 18.8.

Here we only consider the two common failure modes: Stuck At One (SA-1) and
Stuck At Zero, (SA-0) for the Light Beam Sensor. If the light beam sensor is stuck
at zero and the physical event p4: Light beam interruption occurs, no signal is sent.
Symmetrically, if the light beam sensor is stuck at one, the signal is always sent, even
when the physical event p4 does not occur. We could probably consider the intermit-
tent failure mode by assigning probabilities to the SA-0 and SA-1 faults. It is impor-
tant to remember (and model!) the fact that the physical input event can occur, but
the device may fail. Figure 8.10 shows the normal operation of the light beam sensor.

Now, we consider the failure modes. We begin with the Stuck-At-Zero failure,
described as a test case in Table 18.9 and a SWEDPN simulation in Figure 18.11. The
Sense Interruption transition in the Light Beam Sensor track has three inputs:

 1. event p4: Light beam interruption
 2. the SA-0 place
 3. the enable/disable input that is/should be set by the Start Closing transition in

the Garage Door swim lane

If any of these three inputs is not available to the Sense Interruption transition, it
cannot fire. The first case is the normal operation, in which there is no light beam
interruption. Figure 18.11 simulates the second case, there is no way to mark the
SA-0 place. A third possibility is that the enable/disable prompt does not occur. This
is a software fault, not a Stuck-At-Zero fault of the light beam sensor.

If the Sense Interruption cannot fire, the next event will be event 3. p2: end of down
track hit. This enables the Sense End of Down Track transition which, when it fires, trig-
gers the Stop Motor transition. The motor stops, and the garage door is closed.

If test case SysTC-3 fails, a tester should try to determine the cause—the physi-
cal input event occurred, but the correct response did not occur. The SA-0 fault is a
natural first choice. The SWEDPN in Figure 18.11 shows how the SA-0 fault could
be simulated. Executing the SWEDPN in Figure 18.11 begins as the normal case in
Figure 18.10. The difference is that the SA-0 place is not marked, and there is no
transition that could possibly mark it. The Sense Interruption transition can still be
enabled, and the p4: light beam interruption can still occur, but the transition can
never fire. In Figure 18.11, the door will continue closing until the input event p2:
occurs, and the Sense End Of Down Track fires, triggering the Stop Motor transition.
The end result is that the door is closed.

Table 18.8 Device Failure Modes

Stuck at zero (SA-0) Stuck at one (SA-1) Intermittent

does not send a
signal when it
should

always sends a
signal, even when it
shouldn’t

sometimes sends a signal
when it shouldn’t; sometimes does not
send a signal when it should, and usually
cannot be repeated

426 ◾ Software Testing

Figure 18.10 Normal operation of an interrupted light beam.

Garage
Door

s1: Door
Up

s5: Door
Closing

Start Closing

Light Beam
Sensor

Motor

e/d

T

p3

p7

p8

p1

p4

T

T

Sense
Interruption

Start Motor
Down

Reverse Down
to Up

Stop Motor

p5

Control
Device

s6: Door
Opening

Track
Sensors

s1: Door
Up

Sense End
of Up Track

Table 18.9 System level Test Case Resqult for Door Closing with SA-0 Light Beam
Sensor Fault

Test Case SysTC-3: Normal door closing with light beam sensor SA-0 fault

Pre-conditions 1. Garage door is open

2. Light beam sensor has Stuck-At-Zero fault

Cause Occurs On Verify Occurs on Observed Action

1. p1: control
signal

Control
Device

2. p5: start drive
motor down

Motor
Motor starts in down
direction. Door begins to
close.

3. p4: laser
beam crossed

Light Beam
Sensor

4. p8: reverse
motor down to up

Motor
Motor continues in down
direction

At this point, the test case fails. Test case execution should stop.

Case Study: Testing Event-Driven Systems ◾ 427

Table 18.10 describes the Stuck At 1 fault, and it is simulated in Figure 18.12. As
with the SA-0 fault, once the test fails, the tester should determine the cause. Of these
two faults, the SA-0 fault could potentially cause harm or injury. The SA-1 fault only
makes it impossible to automatically close the garage door.

The Stuck At 1 fault is simulated in Figure 18.12. One way to simulate the SA-1 fault
is to just eliminate the input event p4: light beam interruption from the SWEDPN. It
is replaced with the SA-1 place. Since that place is both an input to and an output of
the Sense Interruption transition, it will always be marked. Once event p1 occurs, the
door starts closing, which marks the enable/disable place, thereby allowing the Sense
Interruption to fire. The Trigger prompt forces the Reverse Down to Up transition to
fire, and immediately the door starts opening, until the end of the up track is reached.

Simply eliminating the p4 event is an undesirable workaround. In fact, the event may
or may not occur, but regardless, the trigger should be sent to the Reverse Down to Up
transition. A “nicer” way to show just this part is in Figure 18.13. Notice the two con-
nections from output event p4 in Figure 18.13. One (with the arrowhead) is the usual
connection. The other, with the small circle termination, is an Inhibitor Arc, defined next.

Figure 18.11 Simulating the SA-0 failure mode for the light beam sensor.

Garage
Door

s1: Door
Up

s5: Door
Closing

Start Closing

Light Beam
Sensor

Motor

e/d

T

p3

p7

p8

p1

p4

T

T

Sense
Interruption

Start Motor
Down

Reverse Down
to Up

Stop Motor

p5

Control
Device

s6: Door
Opening

Track
Sensors

s1: Door
Up

Sense End
of Up Track

SA-0

428 ◾ Software Testing

Table 18.10 System Level Test Case Result for Door Closing with SA-1 Light Beam Sensor
Fault

Test Case SysTC-4: Normal door closing with light beam sensor SA-1 fault

Pre-conditions 1. Garage door is open

2. Light beam sensor has Stuck-At-One fault

Cause Occurs On Verify Occurs on Observed Action

1. p1: control signal Control Device
2. p5: start
drive motor
down

Motor

Motor stops, Door
is open. Motor
reverses to up
direction

At this point, the test case fails. Test case execution should stop.

Figure 18.12 Simulating the SA-1 failure mode for the light beam sensor.

Garage
Door

s1: Door
Up

s5: Door
Closing

Start Closing

Light Beam
Sensor

Motor

e/d

T

p3

p7

p8

p1

T

T

Sense
Interruption

Start Motor
Down

Reverse Down
to Up

Stop Motor

p5

Control
Device

s6: Door
Opening

Track
Sensors

s1: Door
Up

Sense End
of Up Track

SA-1

Case Study: Testing Event-Driven Systems ◾ 429

Definition

An inhibitor arc contributes to the enabling of a transition only when it is not
marked.

In Figure 18.13, there are two transitions that can trigger the Reverse Down to Up
transition. Assuming that the enable/disable place has already been marked (by the
door closing), the port input event p4: light beam interruption either does or does
not occur. If it occurs, the Sense Interruption (with signal) is enabled, and when it
fires, it triggers the Reverse Down to Up transition. If the p4 event does not occur,
the Sense Interruption (no signal) transition is enabled due to the inhibitor arc con-
nection. This representation is more accurate, since the output event p4: light beam
interruption is a physical event in the real world. The mechanism that reacts to the
inputs and causes the trigger is the item that is Stuck At 1.

We close this chapter with a short comment on where theory meets practice. The
Swim Lane EDPNs in Figures 18.11 and 18.12 are clearly very detailed and theoreti-
cally correct. Now consider a scenario based on the Automatic Test Executor (ATE)
system described in Chapter 13. The first few steps would be as follows:

 1. Cause the input event p1: control signal On the Control Device
 2. Verify that the output event p5: start drive motor down occurs On the Motor
 3. Cause the input event p4:laser beam crossed On the Light Beam Sensor
 4. Verify that the output event p8: reverse motor down to up occurs On the Motor
 5. Cause the input event e1: control signal On the Control Device
 6. Verify that the output event a1: start drive motor down occurs On the Motor

Figure 18.13 More accurate simulation of the SA-1 failure mode for the light beam sensor.

Light Beam Sensor Motor

e/d

T

p4

p8

Sense Interruption
(with signal p4)

Reverse Down to Up

Sense Interruption
(no signal p4)

430 ◾ Software Testing

Recall that the ATE engine has two additional verbs, Expected and Observed.
At Step 2, if the light beam sensor has a Stuck-At-One fault, the engine will see
Expected = p5: start drive motor down and Observed = p6: start drive motor up, and
the test case will fail. At Step 4, if the light beam sensor has a Stuck-At-Zero fault,
the engine will see Expected = p5: start drive motor down and Observed = s5: Door
Closing, and the test case will fail.

Observed = s5: Door Closing, and the test case will fail

Exercises
These exercises refer to those of Chapter 14 about the Windshield Wiper controller.

 1. What modifications (if any) would need to be made to the Automatic Test
Execution (ATE) system of Chapter 13? Repeat your version (even if unchanged)
here.

 2. Use your ATE system to define actual test cases for your BDD scenarios in
Chapter 14, Exercise 1.

 3. Use your ATE system to define actual test cases for your Extended Entry Decision
Table in Chapter 14, Exercise 2.

 4. Use your ATE system to define actual test cases for your finite state machine in
which states are of the form

 <lever position, dial position> in Chapter 14, Exercise 3.
 5. Use your ATE system to define actual test cases for your finite state machine in

which states show the wiper
 speed (0, 6, 12, 20, 30, 60in Chapter 14, Exercise 4.
 6. Use your ATE system to define actual test cases for your Event-Driven Petri Net

in Chapter 14, Exercise 5.
 7. Compare your test cases from the two versions of a finite state machine descrip-

tion of the Windshield Wiper Controller (your answers to exercises 4 and 5
here). Are they the same? Should they be the same? If they are different, what
implications does this have for choice of states in a finite state machine model
of a given system?

References
Byron DeVries, “Mapping of UML Diagrams to Extended Petri Nets for Formal Verification”,

Master’s Thesis, Grand Valley State University, Allendale, Michigan, April, 2013.
David Harel, On visual formalisms, Communications of the ACM, vol. 31, no. 5, pp. 514–530,

May, 1988.
Paul C. Jorgensen, “A Visual Formalism for Interacting Systems” in Proceedings of the Tenth

Workshop on Model-Based Testing, London. (MBT-2015) [(Eds.) 2015].
Paul C. Jorgensen, The Craft of Model-Based Testing, 2016.
Daniel Terhorst-North, “Introducing Behavior-Driven Development” in Better Software maga-

zine, October, 2006.

431

Chapter 19

A Closer Look at All Pairs
Testing

When it was first introduced, the All Pairs testing possibility was extremely popular.
According to James Bach [Bach and Schroeder, 2003], over 40 journal articles and
conference papers have been written about the technique. It continues to be dis-
cussed in recent books on software testing, it is in the ISTQB Advanced Level syllabi,
and the practitioner conferences continue to offer tutorials on All Pairs Testing. It is
tempting to say that more has been written about All Pairs Testing than is known. In
this chapter, as the title implies, we take a closer look at the All Pairs testing tech-
nique, answering these questions:

	 ◾	 What is the All Pairs technique?
	 ◾	 Why is it so popular?
	 ◾	 When does it work well?
	 ◾	 When is it not appropriate?

The chapter ends with recommendations for appropriate use.

19.1 The All Pairs Technique
The All Pairs testing technique has its origins in statistical design of experiments.
There, orthogonal arrays are a means of generating all pairs of experimental vari-
ables such that each pair occurs with equal probability. Mathematically, the statisti-
cal technique derives from Latin Squares [Mandl, 1985]. The NIST papers by Wallace
and Kuhn [Wallace and Kuhn, 2000], [Wallace and Richard Kuhn, 2001] captured the
attention of the software development community, particularly the agile community.
The papers concluded that 98% of the defects in software-controlled medical systems
were due to the interaction of pairs of variables.

432 ◾ Software Engineering

Given a program with n input variables, the All Pairs technique is a way to iden-
tify each pair. Mathematically, this is commonly called the number of combinations
of n things taken two at a time and is computed by the formula:

 n C n n2 2 2� � � � �� �� �! / ! !�

which is the basis for the well-known “combinatorial explosion.” The first 20 values
of nC2 are graphed in Figure 19.1. With the All Pairs technique, for example, the 66
pairs of interactions among twelve variables are exercised in a single test case.

Perhaps the most commonly cited example of All Pairs testing was developed by
Bernie Berger and presented at the STAREast conference in 2003 [Berger, 2003]. His
paper contains a mortgage application example which has twelve input variables. (In
a private email, he said that “twelve” is a simplification). Berger identified equiva-
lence classes for the twelve variables, varying in number between seven classes for
two variables to two classes for six variables. The cross-product of the equivalence
classes results in 725,760 test cases. Applying the All Pairs technique, this is reduced
to 50 test cases—quite a reduction.

The All Pairs technique is supported by several commercial and complimentary
tools. The pairwise.org lists 52 currently available pairwise testing tools. Perhaps the
most recognized is the Automatic Efficient Test Generator (AETG) system [Cohen et
al., 1994]. It is also supported by a free program that is available from James Bach
at his website:

(https://www.satisfice.com/download/allpairs).
The technique makes the following assumptions:

	 ◾	 meaningful equivalence classes can be identified for each program input
	 ◾	 program inputs are independent
	 ◾	 there is no order to program inputs
	 ◾	 faults are due only to the interaction of pairs of program inputs

The necessity of each assumption is demonstrated (with counter-examples) next.

Figure 19.1 The Combinatorial Explosion.

0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25

http://pairwise.org
https://www.satisfice.com

A Closer Look at All Pairs Testing ◾ 433

19.1.1 Program Inputs

As we have seen in earlier chapters, program inputs can be either events or data.
The All Pairs technique refers only to data, that is, inputs are values of variables, not
events. It is useful to distinguish between physical and logical variables. As a guide-
line, physical variables are usually associated with some unit of measure, such as
velocity, altitude, temperature, or mass. Logical variables are seldom associated with
units of measure; instead, they usually refer to some enumerated type, such as a tele-
phone directory number or an employee identification number. It is usually easier to
identify equivalence classes for logical variables.

As a counter-example, consider the Triangle Program. The three sides, a, b, and
c, are all integers and are arbitrarily bounded by 1 < = side <= 200. The sides are
physical variables, measured in some unit of length. What equivalence classes apply
to a, b, and c? Only the robust equivalence classes that deal with valid and invalid
input values of a side:

EqClass1(side) = {x: x is an integer and x < 1} (invalid values)
EqClass2(side) = {x: x is an integer and 1 < = x < = 200} (valid values)
EqClass3(side) = {x: x is an integer and x > 200} (invalid values)

The actual Notepad input file to Bach’s allpairs.exe program (satisfice.com) is:

side a side b side c

a < 1 b < 1 c < 1

1 < = a < = 200 1 < = b < = 200 1 < = c < = 200

a > 200 b > 200 c > 200

An interested tester might postulate equivalence classes such as one in which
exactly two sides are equal, but such classes are on triples of Triangle Program
inputs, not on individual variables. Table 19.1 contains the allpairs.exe output gener-
ated for these equivalence classes; the actual test cases are in Table 19.2.

As expected from the allpairs.exe output, there is never an opportunity to choose
values for the sides that correspond to an actual triangle. Because six of the nine
equivalence classes deal with invalid values, this only exercises data validity, not cor-
rect function with valid values.

19.1.2 Independent Variables

The NextDate function violates the independent variables assumption. There are
dependencies between the day and month variables (a 30-day month cannot have day
= 31) and between month and year (the last day of February depends on whether the
year is leap or common). The day, month, and year variables are logical variables, and
they are amenable to useful equivalence classes. In Chapter 6, we had the following
equivalence classes and we used a decision table to deal with the dependencies. Table
19.3 is an extended entry decision table; it is the result of algebraically reducing the
complete decision table in Chapter 6. It is “canonical” in the sense that it exactly rep-
resents all the combinations of valid variable values. The dependencies among day,
month, and year are all expressed in the canonical decision table for NextDate.

http://satisfice.com

434 ◾ Software Engineering

The base equivalence classes from Chapter 6 are repeated here:

For day: D1 = {1 < = day <= 27}
 D2 = {28}
 D3 = {29}
 D4 = {30}
 D5 = {31}

For month: M1 = {30-day months}
 M2 = {31-day months except December}
 M3 = {December}
 M4 = {February}

Table 19.2 Triangle Program Test Cases Generated by Allpairs.exe

case side a side b side c Expected Output

1 −3 −2 −4 Not a Triangle

2 −3 5 7 Not a Triangle

3 −3 201 205 Not a Triangle

4 6 −2 9 Not a Triangle

5 6 5 −4 Not a Triangle

6 6 201 −4 Not a Triangle

7 208 −2 205 Not a Triangle

8 208 5 −4 Not a Triangle

9 208 201 7 Not a Triangle

10 6 5 205 Not a Triangle

Table 19.1 All Pairs.exe Output

case side a side b side c pairings

1 a < 1 b < 1 c < 1 3

2 a < 1 1 < = b < = 200 1 < = c < = 200 3

3 a < 1 b > 200 c > 200 3

4 1 < = a < = 200 b < 1 1 < = c < = 200 3

5 1 < = a < = 200 1 < = b < = 200 c < 1 3

6 1 < = a < = 200 b > 200 c < 1 2

7 a > 200 b < 1 c > 200 3

8 a > 200 1 < = b < = 200 c < 1 2

9 a > 200 b > 200 1 < = c < = 200 3

10 1 < = a < = 200 1 < = b < = 200 c > 200 2

A Closer Look at All Pairs Testing ◾ 435

For year: Y1 = {common years}
 Y2 = {leap years}

Table 19.3 shows the result of combining rules from a complete extended entry deci-
sion table with the day equivalence classes.

D6 = D1 ∪ D2 ∪ D3 = {1 < = day <= 29}

D7 = D1 ∪ D2 ∪ D3 ∪ D4 = {1 < = day <= 30}

The allpairs.exe test cases for NextDate are given in Table 19.4. Note that the ten
canonical test cases are only partly present in the 20 All Pairs test cases. Since the All
Pairs algorithm does not merge decision table rules, some of the generated test cases
correspond to a single rule in the canonical decision table. For example, All Pairs test
cases 1, 3, and 15 all correspond to rule 1; cases 2, 4, 16, and 18 correspond to rule
3; and cases 6, 8, 12, and 14 correspond to rule 5. The redundancy is understandable.
The more serious problems are the missing test case (for rule 8) and the invalid test
cases (cases 7, 9, and 19). The missing test case consists of the interaction of all three
variables, so the All Pairs algorithm cannot be expected to find this one. The invalid
test cases are all due to dependencies among pairs of variables; these demonstrate
the necessity of the independent variable assumption.

19.1.3 Input Order

Applications that use a Graphical User Interface (GUI) frequently allow inputs to
be entered in any order. Figure 19.2 is a GUI for a simplified currency converter. A
user can enter a whole US dollar amount up to $10,000, select one of three curren-
cies, and then click on the Compute button to display the equivalent amount in the
selected currency. The Clear All button can be clicked at any time; it resets the US
dollar amount and resets any selected currency. Once a US dollar amount has been
entered, a user may perform a series of currency conversions by first selecting a cur-
rency type, then clicking on Compute, then repeating this sequence for other curren-
cies. The Quit button ends the application.

Table 19.3 Canonical Decision Table of Valid NextDate Variables

Rules 1 2 3 4 5 6 7 8 9 10

day D6 D4 D7 D5 D7 D5 D1 D2 D2 D3

month M1 M1 M2 M2 M3 M3 M4 M4 M4 M4

year — — — — — — — Y1 Y2 Y2

day =1 x x x x x

day++ x x x x x

month = 1 x x

month++ x x x

year++ x

436 ◾ Software Engineering

Table 19.4 All Pairs Test Cases for NextDate

case day month year pairings valid? DT Rule

1 1-27 30-day leap 3 yes 1

2 1-27 31-day common 3 yes 3

3 28 30-day common 3 yes 1

4 28 31-day leap 3 yes 3

5 29 Feb leap 3 yes 10

6 29 Dec common 3 yes 5

7 30 Feb common 3 no

8 30 Dec leap 3 yes 5

9 31 30-day leap 2 no

10 31 31-day common 2 yes 4

11 1-27 Feb ~leap 1 yes 7

12 1-27 Dec ~common 1 yes 5

13 28 Feb ~common 1 yes 9

14 28 Dec ~leap 1 yes 5

15 29 30-day ~common 1 yes 1

16 29 31-day ~leap 1 yes 3

17 30 30-day ~leap 1 yes 2

18 30 31-day ~common 1 yes 3

19 31 Feb ~leap 1 no

20 31 Dec ~common 1 yes 6

Figure 19.2 Currency Conversion GUI.

US Dollars to convert

Equivalent in...

Compute

Clear All

Quit

Euros
Swiss Francs

British Pounds

A Closer Look at All Pairs Testing ◾ 437

Because there is no control on the sequence of user input events, the Compute
button must anticipate invalid user input sequences. It produces five error messages:

 Error message 1: No US dollar amount entered,
 Error message 2: No currency selected,
 Error message 3: No US dollar amount entered and no currency selected,
 Error message 4: US dollar amount cannot be negative,
 Error message 5: US dollar amount cannot be greater than $10,000.

Clicking on the Compute button is therefore a context sensitive input event, with six
contexts—the five that result in the error messages, and an input US dollar amount
in the valid range. The data contexts of an input event are clearly pairs of interest to
a tester, so the All Pairs technique should be appropriate.

At first glance, the Currency Conversion GUI seems to lend itself nicely to the All
Pairs technique. The following equivalence classes are derived naturally from the
description and are shown in Table 19.5.

USdollar1 = {no entry}
USdollar2 = {< $0}
USdollar3 = {$1 -- $10 K}
USdollar4 = {> $10 K}
Currency1 = {Euros}
Currency2 = {Pounds}
Currency3 = {Swiss Francs}
Currency4 = {nothing selected}
Operation1 = {Compute}
Operation2 = {Clear All}
Operation3 = {Quit}

The first four columns of Table 19.6 are the allpairs.exe program outputs. The (tester
provided) expected outputs are in the last column. The “~Compute” in test cases 15
and 16 is an allpairs.exe output that directs the tester to pick an operation other than
Compute. (It is an extension of the “Don’t Care” entry in decision tables.) Notice that
only error messages 1, 4, and either 2 or 5 are generated. Test case 9 generates a
fourth context, in which the equivalent currency in Pounds is computed. This is the
only actual computation—the All Pairs test cases never check the conversion of dol-
lars to Euros or to Swiss Francs.

Table 19.5 Allpairs.exe Input for the Currency Conversion GUI

US Dollar Currency Operation

no entry Euros Compute

<$0 Pounds Clear All

$1 -- $10K Swiss Francs Quit

> $10K nothing selected

438 ◾ Software Engineering

There is a more subtle problem with the All Pairs algorithm—the order of inputs
can make a surprising difference, even though it should be irrelevant. Table 19.7 just
changes the order of USdollar inputs, and the resulting test cases are in Table 19.8.
With just this slight change, two currency conversions are performed (to British
Pounds and to Swiss Francs), but only error messages 3, 4, and 5 are generated.

The change is caused by the way in which the algorithm picks pairs of variables.
The early test cases contain the greatest number of pairs, and the later ones contain

Table 19.6 Allpairs.exe Test Cases for the Currency Conversion GUI

case US Dollar Currency Operation Expected Output

1 no entry Euros Compute Error message 1

2 no entry Pounds Clear All Pounds reset

3 no entry Swiss Francs Quit Application ends

4 <$0 Euros Clear All US dollar amount reset, Euros reset

5 <$0 Pounds Compute Error message 4

6 <$0 Swiss Francs Compute Error message 4

7 <$0 nothing selected Quit Application ends

8 $1—$10K Euros Quit Application ends

9 $1—$10K Pounds Compute Equivalent in Pounds

10 $1—$10K Swiss Francs Clear All US dollar amount and Swiss Francs reset

11 > $10K Pounds Quit Application ends

12 > $10K nothing selected Compute Error message 5 or Error message 2

13 > $10K Euros Clear All US dollar amount reset, Euros reset

14 no entry nothing selected Clear All No change in GUI

15 $1—$10K nothing selected ~Compute ?

16 > $10K Swiss Francs ~Compute ?

Table 19.7 Allpairs.exe Input in Different Order

US Dollar Currency Operation

<$0 Euros Compute

$1—$10K Pounds Clear All

> $10K Swiss Francs Quit

no entry nothing selected

A Closer Look at All Pairs Testing ◾ 439

the fewest. This means that a potential All Pairs tester needs to be clever about the
order in which classes of a variable are presented to the algorithm.

19.1.4 Failures Due only to Pairs of Inputs

By definition, The All Pairs technique only potentially reveals faults due to the
interaction of two variables. The NextDate counter-example showed that faults due
to interaction of three variables (e.g., February 28 in a common year) will not be
detected. This cannot be an indictment of the All Pairs technique—the advocates
are quite clear that the intent is to find faults due only to the interaction of pairs of
values. Orthogonal arrays and the OATS technique can be used to find interactions
among three or more variables. As long as the program being tested uses logical vari-
ables, there is not too much risk. If a program involves computations with physical
variables, some insight will likely be needed. Suppose, for example a ratio is com-
puted, and the numerator and denominator are from different classes. There may
be no problem with nominal values, but a very large numerator divided by a very
small denominator might cause an overflow fault. Worst Case Boundary Value testing
would be a more likely method to reveal such a fault.

Table 19.8 Allpairs.exe Test Cases (Note Differences with Table 19.6)

case US Dollar Currency Operation Expected Output

1 <$0 Euros Compute Error message 4

2 <$0 Pounds Clear All US dollar amount reset, Pounds reset

3 <$0 Swiss Francs Quit Application ends

4 $1—$10K Euros Clear All US dollar amount reset, Euros reset

5 $1—$10K Pounds Compute Equivalent in Pounds

6 $1—$10K Swiss Francs Compute Equivalent in Swiss Francs

7 $1—$10K nothing selected Quit Application ends

8 > $10K Euros Quit Application ends

9 > $10K Pounds Compute Error message 5

10 > $10K Swiss Francs Clear All US dollar amount reset, Swiss francs reset

11 no entry Pounds Quit Application ends

12 no entry nothing selected Compute Error message 3

13 no entry Euros Clear All Euros reset

14 <$0 nothing selected Clear All US dollar amount reset

15 > $10K nothing selected ~Compute ?

16 no entry Swiss Francs ~Compute ?

440 ◾ Software Engineering

19.2 A Closer Look at the NIST Study
Most introductory logic courses discuss a class of arguments known as informal fal-
lacies. One of these, the Fallacy of Extension, occurs when an argument is extended
from a simple to an extreme situation where it is easier to persuade the point to
be made. The conclusion is then brought back to the simple case. The Fallacy of
Extension most commonly occurs when someone is asking for special consideration,
and the response is something like “What if we let EVERYONE have that exception?”

There is an element of the Fallacy of Extension in the myriad of papers that
emphasize how the All Pairs algorithm compresses an enormous number of test
cases into a smaller, more manageable set. While the popular papers cite the NIST
study as the basis for the All Pairs technique, the NIST papers [Wallace and Kuhn,
2000], [Wallace and Richard Kuhn, 2001] never stress this idea of compression; rather,
they stress that faults due to more than two variables are relatively rare (2% in the
examples they studied). Both papers are concerned with describing faults, identify-
ing root causes, and suggesting standard software engineering techniques to avoid
similar faults in future systems.

The closest the NIST papers come to the dominant All Pairs emphasis on test
case compression is when they discuss their analysis of 109 failure reports. They note
[Wallace and Kuhn, 2000] that “Only three of the 109 failure reports indicated that more
than two conditions were required to cause the failure.” Further, “The most complex of
these [three failures] involved four conditions.” The conclusion of that part of the report
is that “...of the 109 reports that are detailed, 98% showed that the problem could
have been detected by testing the device with all pairs of parameter settings.” The
report notes that most medical devices only have “a relatively small number of inputs
variables, each with either a small discrete set of possible settings or a finite range of
values.” Then the Fallacy of Extension occurs. Quoting from [Wallace and Kuhn, 2000]:

“Medical devices vary among treatment areas, but in general have a relatively
small number of input variables, each with either a small discrete set of possible
settings, or a finite range of values. For example, consider a device that has 20
inputs, each with 10 settings, for a total of 1020 combinations of settings. The few
hundred test cases that can be built under most development budgets will of
course cover less than a tiny fraction of a percent of the possible combinations.
The number of pairs of settings is in fact very small, and since each test case
must have a value for each of the ten variables, more than one pair can be
included in a single test case. Algorithms based on orthogonal Latin squares are
available that can generate test data for all pairs (or higher order combina-
tions) at a reasonable cost. One method makes it possible to cover all pairs of
values for this example using only 180 test cases [8].”

What is really perplexing about this is they preface it with the note that most devices
only have a few input settings, so the extension to 1020 cases makes little sense.

19.3 Appropriate Applications for All-Pairs Testing
Table 19.9 presents two considerations that help determine whether All Pairs is
appropriate for a given application. The first consideration is whether the application

A Closer Look at All Pairs Testing ◾ 441

is static or dynamic. Static applications are those in which all inputs are available
before calculation begins. David Harel refers to such applications as “transforma-
tional” because they transform their inputs into output data [Harel 1988]. Classic
COBOL programs with their Input, Processing, and Output divisions are good exam-
ples of static applications.

Dynamic applications are those in which not all of the inputs that determine the
ultimate path through a program are available at the onset of calculation. Harel uses
the term “reactive” to convey the fact that these applications react to inputs that occur
in time sequence. The difference between static and dynamic applications is analo-
gous to the difference between combinatorial and sequential circuits of discrete com-
ponents. Because the order of inputs in important, dynamic applications are not very
appropriate to the All Pairs technique. There is no way to guarantee that interesting
pairs will occur in the necessary order. Also, dynamic applications frequently contain
context sensitive input events in which the logical meaning of a physical input is
determined by the context in which it occurs. The Currency conversion example in
Section 19.1.3 contains context sensitive input events.

The second consideration is whether the application executes on a single or on
multiple processors. The All Pairs technique cannot guarantee appropriate pairs of
input data across multiple processors. Race conditions, duration of events in real
time, and asynchronous input orders are common in multiprocessing applications,
and these needs will likely not be met by All Pairs. Therefore, applications on the
dynamic side of the partition, whether in single or in multiple processors, are not
appropriate for All Pairs.

The remaining quadrant, static applications in a multiple processing environment,
is less clear. These applications are usually computation intensive (hence the need
for parallel processing). If they are truly static, within a processor, All Pairs can be
an appropriate choice.

19.4 Recommendations for All Pairs Testing
All Pairs testing is just another short cut. When the time allocated for testing shrinks,
as it frequently does, short cuts are both attractive and risky. If the following ques-
tions can all be answered “yes” then the risk of using All Pairs is reduced.

	 ◾	 Are the inputs exclusively data (rather than a mix of data and events)?
	 ◾	 Are the variables logical (rather than physical)?
	 ◾	 Are the variables independent?
	 ◾	 Do the variables have useful equivalence classes?
	 ◾	 Is the order of inputs irrelevant (i.e., is the application both static and single

processor)?

Table 19.9 Applications Appropriate for All Pairs Testing

Single Processor Multiple Processors

Static All Pairs potentially OK All Pairs cannot deal with input orders

Dynamic All Pairs potentially problematic. All Pairs cannot deal with input orders

442 ◾ Software Engineering

Since the All Pairs algorithm only generates the input portion of a test case, one last
question: Can the expected outputs for All Pairs test cases be determined?

Exercises
 1. Download the allpairs.exe program form James Bach’s website (satisfice.com)

and experiment with your favorite example.

References
James Bach and Patrick J. Schroeder, “Pairwise Testing: A Best Practice That Isn’t” presented

at STARWest, 2003.
Bernie Berger, “Efficient Testing with All-Pairs” presented at STAREast, 2003.
D. M. Cohen, S. R. Dalal, A. Kajla, and G. C. Patton, “The Automatic Efficient Test Generator

(AETG) System”, Proceedings of the 5th International Symposium on Software Reliability
Engineering, IEEE Computer Society Press, pp. 303–309, 1994.

David Harel, On visual formalisms, Communications of the ACM, Vol. 31, No. 5, pp. 514–530,
May, 1988.

R. Mandl, “Orthogonal Latin Squares: An Application of Experiment Design to Compiler
Testing”, Communications of the ACM, Vol. 28, No. 10, pp. 1054–1058, 1985.

Dolores R. Wallace and D. Richard Kuhn, “Converting System Failure Histories into Future
Win Situations” 2000, available online at http://hissa.nist.gov/effProject/handbook/fail-
ure/hase99.pdf.

Dolores R. Wallace and D. Richard Kuhn, “Failure Modes in Medical Device Software: An
Analysis of 15 Years of Recall Data”, International Journal of Reliability, Quality, and
Safety Engineering, Vol. 8, No. 4, pp. 351–371, 2001.

http://satisfice.com
http://hissa.nist.gov
http://hissa.nist.gov

443

Chapter 20

Software Technical Reviews

“Measure twice—Cut once”

(Woodworkers wisdom)

In so many ways, we all depend on forms of reviews—surgical second opinions,
movie and restaurant reviews, home safety inspections, Federal Aviation Authority
aircraft inspections, and so on (add your favorites).

Are software technical reviews a form of testing? The generally accepted answer
is a considered Yes. This is amplified by the chapters on software reviews in the
International Software Testing Certification Board (ISTQB) Foundation and Advanced
Level Syllabi [ISTQB 2007, ISTQB 2012]. Software testing seeks to identify faults by
causing failures, as discussed in Chapter 1. Software reviews try to identify faults (not
software failures), but an identified fault typically morphs into faulty code which,
when executed, causes a failure.

Much of the material in this chapter is based on experience in the development
of telephone switching system software. Those applications could have a 30-year
serviceable life; hence, software maintenance could last that long. In self-defense,
and for purely economic reasons, that organization refined its review process over
an interval of 15 years, resulting in “industrial-strength technical inspections.” The
industrial strength part refers to a process that was gradually refined, and which
contains several subtle checks and balances.

It is helpful to understand software reviews as a critical evaluation of a work product,
performed by people who are technically competent. A software review is, or should
be, a scheduled, budgeted development activity with formal entry and exit criteria.

20.1 Economics of Software Reviews
Many development organizations are reluctant to institute software reviews, mostly
because of a short-sighted view of cost of preparation. As far back is 1981, Barry
Boehm [Boehm 1981] dispelled this notion with his graph of fault resolution costs
as a function of when they are discovered (see Figure 20.1). This is a remarkable

444 ◾ Software Testing

comparison as it relates data from three diverse organizations. (As a curious footnote,
the GTE Automatic Electric Labs project closest to the line in the Acceptance phase is
the project for which one of the authors prepared data at Dr. Boehm’s request.) The
cost axis is a logarithmic scale, and the straight line of best fit means that correction
costs increase exponentially with time.

The IBM corporation [IBM 1981] published a “defect amplification” model that
describes how defects from one Waterfall phase might be amplified in a following
phase. Some defects might be simply passed through, and others might be amplified
by work done in the successor phase. The defects then form their own waterfall,
something probably not intended by the waterfall model. The report continues by
postulating a defect detection step in which technical inspections detect a percent-
age of defects before they can be passed on to successor phases. Roger Pressman
[Pressman 1992] developed a hypothetical example showing two versions of a water-
fall-based software development—one with technical inspections and one without.
The result: 12 defects without reviews were reduced to 3 after reviews at three devel-
opment phases. This is a hypothetical example, but it illustrates a widely agreed-
upon fact—reviews reduce faults, and consequently, the overall development cost.

More recently, Karl Wiegers [Wiegers 1995] reports that, in an unnamed German com-
pany, correcting defects found by testing was 14.5 times the cost to find the problem in
an inspection, and this grew to 68 times the inspection cost if the defect was reported by
a customer. Wiegers continues with an updated IBM statistic: correcting defects found
in a released product was 45 times the cost if the defect was fixed at design time. He
asserts that, while technical inspections may constitute 5 to 15 percent of total project

Figure 20.1 Relative costs of defect resolution [Boehm 1981].

Fault Resolution Costs

0.2

0.5

1.0

2

5

10

20

50

100

0.1
Requirements Design Code Dev. Test Acceptance Operation

Median, TRW Survey

IBM (SDD)

GTE (AEL)

Relative Cost

*

Barry Boehm
Software Engineering Economics

Software Technical Reviews ◾ 445

cost, “Jet Propulsion Laboratory estimated a net savings of $7.5 million from 300 inspec-
tions performed on software they produced for NASA” and “another company reports
annual savings of $2.5 million.” One last Wiegers statistic: in another unnamed company,
the cost to fix a defect found by inspection was $146 compared to the cost to fix a defect
found by customer: $2900, resulting in a Cost/Benefit ratio of 0.0503.

The bottom line? People in development organizations make mistakes, and the
earlier these are caught, the cheaper they are to resolve. To be effective, reviews need
both process and reviewer credibility, and they must consider human factors. In the
next sections, we describe the roles in a review, we then look at and compare three
types of reviews, the materials needed to conduct a thorough review, a time-tested
review process, and review etiquette. The chapter concludes with a rather surprising
study done at Grand Valley State University.

20.2 Types of Reviews
There are three fundamental types of software reviews: walkthroughs, technical
inspections, and audits. Each of these is described here, and then compared with
the others. Before doing that, we clarify reasons to conduct a review. Here is a list of
frequently given reasons:

	 ◾	 communication among developers
	 ◾	 training, especially for new personnel, or for personnel recently added to a project
	 ◾	 management progress reporting
	 ◾	 defect discovery
	 ◾	 performance evaluation (of the work product producer)
	 ◾	 team morale
	 ◾	 customer (re)assurance

All of these can happen with a software review; however, the best (some say only!)
reason to have reviews is to discover defects. With this focus, all of the other “ reasons”
turn out to be diversions, and each diminishes the defect discovery goal.

20.2.1 Walkthroughs

Walkthroughs are the most common form of review, and they are the least formal.
They often involve just two people, the producer and a colleague. There is generally
no preparation ahead of the walkthrough, and usually little or no documentation is
produced. The producer is the review leader; therefore, the utility of a walkthrough
depends on the real goal of the producer. It is easy for a producer/review leader to
direct the walkthrough to the “safe” parts of the work product and avoid the por-
tions where the producer is unsure. This is clearly a degenerate case, but it happens,
particularly when technical people resent the review process. Walkthroughs are most
effective at the source code level, and on other small work products.

20.2.2 Technical Inspections

Pioneered by Michael Fagan while he was at IBM in the 1970s, technical inspections
are the most effective form of software reviews. They are a highly formal process,

446 ◾ Software Testing

and more details of technical inspections are given in Sections 20.4 and 20.5. The
effectiveness of technical inspections is a result of several success factors, including:

	 ◾	 a documented inspection process
	 ◾	 formal review training
	 ◾	 budgeted review preparation time
	 ◾	 sufficient lead time
	 ◾	 thoughtful identification of the inspection team
	 ◾	 a refined review checklist
	 ◾	 technically competent participants
	 ◾	 “buy in” by both technical and management personnel

20.2.3 Audits

Audits are usually performed by some external group, rather than the development
team. Audits may be conducted by an SQA group, a project group, an outside agency,
or possibly a government standards agency. Audits are not primarily concerned with
finding defects—the main concern is conformance to some expectations, either inter-
nal or external. This is not to diminish the importance of audits—they can be very
expensive because they require significant preparation time. Whereas a technical
inspection meeting may last 60 to 90 minutes, an audit may last a full day or more.
Audits may be required by contract, and an unsatisfactory audit usually results in
expensive corrective actions.

20.2.4 Comparison of Review Types

The main characteristics of the three review types are summarized in Table 20.1.
Because technical inspections are the most effective at finding defects early, they

are the focus of the remainder of this chapter.

20.3 Roles in a Review
In all three types of reviews, there are similar roles. A review team consists of the
person who developed the work product, reviewers, a review leader, and a recorder.
These roles may involve some duplication, and in some cases, some may be miss-
ing. Reviews are an interesting point in a software project because the technical and

Table 20.1 Comparison of Review Types

Aspect Walkthrough Inspection Audit

Coverage Broad, sketchy Deep Varies with auditor(s)

Driver Producer Checklist Standard

Preparation time Low High Could be very high

Formality Low High Rigid

Effectiveness Low High Low

Software Technical Reviews ◾ 447

management roles intersect there. The outcome of each type of review is a technical
recommendation to the responsible administrator, and this is a crucial point at which
responsibility transfers from developers to management.

20.3.1 Producer

As the name implies, this is the person who created the work product being exam-
ined. The producer is present in the review meeting but might not contribute much
as one of the reviewers. Why? We all know it is much easier to proofread someone
else’s work rather than one’s own. The same holds true for technical reviews. At the
end of all types of technical reviews, the producer will be the person who resolves
the action items identified during the review meeting.

20.3.2 Review Leader

Review leaders are responsible for the overall success of the review. They have the
following duties:

	 ◾	 schedule the actual review meeting,
	 ◾	 assure that all members of the review team have the appropriate review materials,
	 ◾	 conduct the actual review meeting, and
	 ◾	 write the review report.

To do all of this, a review leader must be technically competent, be well organized,
have leadership ability, and must be able to prioritize. Above all, a review leader
must be able to conduct an orderly, well-paced business meeting. There are lessons
to be learned from a poorly run business meeting. Such meetings are characterized
by some or all of the following:

	 ◾	 participants see them as a waste of time
	 ◾	 the wrong people are at the meeting
	 ◾	 there is no agenda, or if there is, it is not followed
	 ◾	 there is no prior preparation
	 ◾	 no issues are identified
	 ◾	 the discussion is easily side-tracked
	 ◾	 time is spent fixing problems rather than just identifying them

Any one of these will doom a review meeting, and it is the responsibility of the
review leader to assure that they do not occur.

20.3.3 Recorder

Because of connotations associated with “secretary,” the preferred term for this role
is review recorder. As the title implies, the recorder takes notes during the review
meeting. To do this, recorders must be able to track conversations and write notes
in parallel—quite a skill, and not all of us have that ability. It is helpful if recorders
can write clearly and succinctly, because the recorded notes will be the basis for the
formal review report. Often the recorder helps the review leader write the review
report. It is a good practice for the recorder to have a “mini-review” in the last few
minutes of the review meeting to go over the notes to see if anything was missed.

448 ◾ Software Testing

20.3.4 Reviewer

The individual reviewers are responsible for objectively reviewing the work product.
To do this, they must be technically competent, and should not have any biases or
irrelevant personal agendas. The reviewers identify issues and assign a severity level
to each item. During the review meeting, these issues are discussed, and the severity
level may be changed by consensus. Before the review meeting, each reviewer sub-
mits a review ballot that contains the following information:

	 ◾	 reviewer name
	 ◾	 review preparation time
	 ◾	 a list of issues with severity
	 ◾	 an overall review disposition recommendation (OK as is, accept with minor

rework, major rework with a new review needed)

20.3.5 Role Duplication

In smaller organizations, it may be necessary for one person to fill two review roles.
Here are some common pairings, and a short comment on each possibility:

	 ◾	 review leader is the producer—this happens in a walkthrough. It is usually a
poor idea, particularly if the producer is technically insecure.

	 ◾	 review leader is the recorder—this can work, but it is difficult.
	 ◾	 review leader is a reviewer—this works reasonably well, but is very

time-consuming.

20.4 Contents of an Inspection Packet
One of the success factors of a technical inspection is the packet of materials that the
inspection team uses in its preparation. Each inspection packet item is described in
the succeeding subsections. Appendix A contains a sample inspection packet for a
Use Case inspection.

20.4.1 Work Product Requirements

As mentioned earlier, technical inspections are valuable because they find faults early
in a development process. In the Waterfall lifecycle, and in many of its derivatives,
the early phases are characterized by tight what/how cycles, in which one phase
describes what must be done in the next phase, and the successor phase describes
“how” it responds to the “what” definition. These tight what/how cycles are ideally
suited for technical inspections; therefore, one important element in the inspection
packet is the work product requirements. Without this, the review team will not be
able to determine if the “how” part has actually been accomplished.

20.4.2 Frozen Work Product

Once an inspection team has been identified, each member receives the full inspection
packet. This is a point at which three software project disciplines converge: develop-
ment, management, and configuration management. In the configuration management

Software Technical Reviews ◾ 449

view, a work product is called a “Design Item.” Once a design item has been reviewed
and approved, it becomes a “Configuration Item.” Design items can be changed by the
responsible designers (producers), but configuration items are frozen, meaning that
they cannot be changed by anyone unless they are first demoted to design item status.
Once a design item enters the inspection process, the producer may no longer make
changes to it. This insures that the full inspection team is literally on the same page.

20.4.3 Standards and Checklists

When given a work product to inspect, how does a reviewer know what to do? What
to look for? In a mature inspection process, the organization has checklists appropriate
to the various work products subject to inspections. A checklist identifies the kinds of
problems that a reviewer should look for. Checklists are refined over time, and many
companies consider their inspection checklists to be proprietary information. (Who
would like to share with the world what their product weak points and concerns are?)

A good checklist is modified as it is used. In fact, one inspection meeting agenda
item can be to ask whether any changes in the checklist are needed. Checklists
should be public in a development organization. One side benefit is that checklists
can improve the development process. This is very similar to the use of grading
rubrics in the academic world. If students know the grading criteria, they are much
more likely to submit a better assignment. When developers consult a checklist, they
know what historical situations have been fault-prone, and therefore, they can pro-
actively deal with these potential problems.

There is a wealth of online material to get started with developing checklists. This
paper [http://portal.acm.org/citation.cfm?id=308798] surveys 117 checklists from 24
sources. Different categories of checklist items are discussed and examples are pro-
vided of good checklist items as well as those that should be avoided. Karl Weigers’
website is another good source for checklists. [http://www.processimpact.com/pr_
goodies.shtml]

Applicable standards play a role similar to checklists. Development organizations
may have code naming standards, for example, or required templates for test case
definition. Conformance to applicable standards is usually required and is therefore
an easy item on an inspection checklist. As with checklists, standards may be subject
to change, albeit more slowly.

20.4.4 Review Issues Spreadsheet

Individual reviewers identify issues and submit them to the review leader. A spread-
sheet with columns as shown in Table 20.2 greatly facilitates the process that the
review leader uses to merge the inputs from the full inspection team.

Information in the individual reviewer issues spreadsheets is merged into a mas-
ter issues spreadsheet by the review leader (Table 20.3). The spreadsheet can then be
sorted by location, by checklist item, by fault severity, or some combination of these.
This enables the review leader to prioritize the issues, which then becomes the skel-
eton of the review meeting agenda. This overview of the full set of identified issues
can also be used to estimate the length of the review meeting time. In extreme cases,
the faults might constitute a “showstopper”—faults so severe that the work product
is not yet ready for a review, and is returned to the producer. The producer can then
use the combined issues list to guide revision work.

http://portal.acm.org
http://www.processimpact.com
http://www.processimpact.com

450 ◾ Software Testing

20.4.5 Review Reporting Forms

Once reviewers complete their examination of the work product, they submit an
individual review report form to the review leader. This form should contain the fol-
lowing information:

	 ◾	 Reviewer name
	 ◾	 Work product reviewed
	 ◾	 Preparation hours spent

Table 20.3 Review Report Spreadsheet

<Work Product Information>

Review Team Members Preparation time

Leader

Recorder

Reviewer

Reviewer

Reviewer

Reviewer

total prep time

Meeting Date

<Review Recommendation>

Location Checklist

Issue # Reviewer Page Line Item Severity Description

1 1 18 typo 1 change "accound"
to "account"

Table 20.2 Individual Reviewer Issues Spreadsheet

<Work Product Information>

<Reviewer Name>

<preparation date>

<Reviewer Preparation Time>

Location Checklist

Issue # Page Line Item Severity Description

1 1 18 typo 1 change "accound" to "account"

Software Technical Reviews ◾ 451

	 ◾	 Summary of the review issues spreadsheet showing the number of issues of
each severity level.

	 ◾	 Description of any “showstopper” issue(s)
	 ◾	 The reviewers recommendation (OK as is, minor rework needed, or major

rework with new review needed)

This information can be used to analyze the effectiveness of the review process. The
Software Quality Assurance group at a telephone switching systems development
organization made a study of the severity of found defects as a function of prepara-
tion hours. They proved the obvious, but the results are interesting: out of four sever-
ity levels, the only reviewers who found the really severe faults were those who spent
six to eight hours of preparation time. At the other end of the severity spectrum, those
who only found the lowest severity faults only spent one to two preparation hours.

There are other possible analyses, and they relate to the whole idea of openness
and accountability. The underlying assumption is that all review documents are open,
in the sense that they are available to everyone in the organization. Accountability is
the desired consequence of this openness. Consider reviewers who report significant
preparation time, yet they do not report the severe faults that other reviewers find. If
there is a pattern of this, some supervisory intervention is appropriate. Conversely,
reviewers who consistently find the severe faults can be recognized as effective review
team members, and this can be a consideration in an annual performance review.

20.4.6 Fault Severity Levels

It is helpful if items in an inspection checklist are given severity levels. Appendix A
contains a sample definition of severity levels for use cases. More recently, the IEEE
Standard Classification for Software Anomalies Working Group has published (and
sells) 1044-2009 IEEE Standard Classification for Software Anomalies [IEEE 2009]. While
examples are nice, detailed fault severity levels are awkward in practice. Rather than
have a debate about whether a discovered fault is severity level 7 or 8, it is more produc-
tive to have a simple 3- or 4-level severity classification (such as the one in Appendix A).

The order of severity levels is less interesting: usually the simplest faults are of
severity 1 and the most complex are the high end of the scale (3 or 4). This avoids
the confusion that sometimes occurs with priority levels. (Consider priority = 4 and
priority = 1: does the 4 mean high priority, or does the 1 mean first priority?)

20.4.7 Review Report Outline

The review report is the point where technical responsibility ends and administrative
responsibility begins, so the review report must serve the needs of both groups of
people. It also becomes the basis for accountability, because the management relies
on the technical judgment of the review team.

Here is a sample outline of a review report:

 1. Introduction
 a. Work product identification
 b. Review team members and roles

452 ◾ Software Testing

 2. Preliminary Issue List
 a. Potential fault
 b. Severity

 3. Prioritized Action Item List
 a. Identified fault
 b. Severity

 4. Summary of Individual Reports
 5. Review Statistics

 a. Total hours spent
 b. Faults sorted by severity
 c. Faults sorted by location

 6. Review recommendation
 7. Appendix with the full review packet

20.5 An Industrial-Strength Inspection Process
This section describes a process for technical reviews that gradually evolved over
a period of 12 years in a research and development lab that developed telephone
switching system hardware and software. Since the commercial lifetime of these sys-
tems could reach 30 years, the developing organization had to produce nearly fault-
free systems as a matter of economic necessity. As they say, necessity is the mother
of invention—certainly true in what is termed here an “industrial-strength inspection
process.” Some of the checks and balances will be highlighted, as well as some of the
resolutions to hard questions.

Figure 20.2 shows the stages in the industrial-strength inspection process. Even
these stages were carefully devised. As presented, it happens to resemble common
depictions of the Waterfall lifecycle mode, but there are several important differ-
ences. The sequence of stages is important, and deviations from the sequence sim-
ply do not work. The activities of each stage, and some of the reasons for them, are
described in the next subsections.

Figure 20.2 Stages in the industrial-strength inspection process.

Commitment
Planning

Reviewer
Introduction

Preparation

Disposition

Review
And

Report

Software Technical Reviews ◾ 453

20.5.1 Commitment Planning

The technical inspection process begins with a meeting between the producer of
the work product and his/her supervisor. Working together they identify an appro-
priate review team and the review leader. In a degenerate case, this can be mildly
adversarial—the producer may wish to “stack the deck” with close friends while
the supervisor may wish to “send a message” to the producer. Both possibilities are
clearly regrettable, but they can happen. On the positive side, if the producer and the
supervisor both agree on the value of inspections, they will both see it as a way to
promote their own self-interests. After some negotiation, both the producer and the
supervisor need to accept and approve the identified review team. In a truly formal
process, both parties might even sign off on this agreement.

Once the review team is identified, the supervisor completes any necessary admin-
istrative approval. One curious question can arise at this point. What if a review team
member is from another supervisory group? Even worse, what if the other supervi-
sor feels that the requested reviewer is on a critical path and cannot be spared? This
becomes a question of corporate culture. A good answer is that, if the organization
is truly committed to technical inspections, everyone understands that such conflicts
can occur. This should be discussed and agreed upon at the project initiation, thereby
preventing future conflicts.

The supervisor should have a commitment meeting, with other supervisors if
necessary, to obtain commitments for all review team members. Any task approvals
are communicated at this meeting. Once all this is done, the results are given to the
review leader. This is the point where administrative authority is handed over to the
technical people. It is also the point at which management separates from the inspec-
tion process.

20.5.2 Reviewer Introduction

Once the review process is turned over to the review team. The review leader assem-
bles the team for a brief meeting. In preparation for this meeting, the producer
prepares the full review packet and freezes the work product to be examined. At
the preliminary meeting, the review leader delivers the review packet and gives a
brief overview of the work product. There may be a discussion of the work product,
including any special concerns. Since the review team is accountable for the techni-
cal recommendation, the team should decide whether or not the review packet is
complete. One item of business is to select the review recorder and to schedule the
review meeting time. The meeting ends with all team members either committing to
the process or possibly disqualifying themselves. In the latter case, the process may
go back to the commitment planning stage (this is, or should be, rare).

20.5.3 Preparation

The review team members have approved preparation time—this is important. It is
simply not realistic to rely on a team member’s good will to spend personal time (i.e.,
unpaid) on review preparation. The preparation interval for a review of normal dura-
tion (60 to 90 minutes) should be five full working days, in which up to eight hours
of preparation time can be used by each review team member. Allowing a five-day
interval should be enough for reviewers to meet most of their other commitments.

454 ◾ Software Testing

As part of the preparation, reviewers examine the work product with respect
to the review checklist and their own expertise. As issues are recognized, they are
recorded into the individual reviewer issues spreadsheet (see Table 20.2). Reviewers
should describe the issue, provide a short explanation or description, and then make
a severity assessment. At least one full day before the review meeting, the review-
ers send their individual spreadsheets to the review leader, along with their ballots
showing actual time spent, and their preliminary recommendations.

Once all the individual reports are in, the review leader merges them into a single
spreadsheet and prioritizes the issues. This involves some insight, because often two
reviewers may provide slightly different descriptions of the same underlying issue.
The location information usually is enough to recognize this problem. Given a final
issues list, the review leader makes a Go/No Go decision based on the number and
severity of the issues. (Review cancellation should be rare, but it is wise to allow for
the possibility.) Assuming the review will occur, the review leader prepares the final
agenda by prioritizing the merged issues—a form of triage.

20.5.4 Review Meeting

The actual review meeting should be conducted as an effective business meeting. In
Section 20.2.2, there is a list of characteristics of a poorly run business meeting. Some
steps in the review process have already been taken to assure an effective review
meeting:

	 ◾	 The review team was carefully selected, so the right people will be in the
meeting.

	 ◾	 The agenda is based on the prioritized list of issues, so there should not be a
sense that the meeting is a waste of time.

	 ◾	 The process calls for budgeted preparation time in which issues are identified
before the meeting.

Normally, the first order of business is to decide if the meeting should be postponed.
The main reasons are most likely absent or unprepared team members. Assuming
that the review will proceed, the main job of the review leader is to follow the
agenda and make sure that issues are identified, and agreed upon, but not resolved.
Once the agenda has been completed, the review leader asks for a consensus of the
review recommendation. Recall that the options are Accept as is, Accept with minor
rework, but no additional review is needed, or Reject. The review meeting ends with
a short wrap-up conducted by the recorder in which the issues list is finalized, the
individual ballots are collected, and the team checks that nothing was forgotten.

20.5.5 Report Preparation

The review leader is primarily responsible for writing the review report, but assistance
from the recorder is certainly in order. The report is a technical recommendation to
management, and it ends the technical responsibility (but not the accountability). If
there are any issues, they are noted as action items, that require additional work from
the producer. The review report and all other materials should be open to the entire
organization, as this enhances accountability.

Software Technical Reviews ◾ 455

20.5.6 Disposition

Once the producer’s supervisor receives the report, it becomes the basis of a manage-
ment decision. There may be pressing reasons to ignore the technical findings, but if
this happens, it is clearly a management choice. Assuming the recommendation is to
accept the work product, it becomes subject to the configuration management func-
tion, and the work product is no longer a Design Object, it is a Configuration Item. As
such, it can be used in the remainder of the project as a reliable component, not sub-
ject to change. If the review recommendation lists action items, the producer’s super-
visor and the producer make an estimate of the effort required to resolve the action
items, and the work is done by the producer. Once all action items are resolved, the
supervisor either closes the review or starts a re-review process.

20.6 Effective Review Culture
All forms of reviews are social processes, hence they become corporate culture con-
siderations. In addition, reviews can be quite stressful, and this also requires social
considerations. Reviews are a group activity, so group size becomes a question. In
general, technical inspection teams should have from four to six members. Fewer
members might be necessary in small development organizations. More than six
team members is usually counter-productive.

Part of an effective corporate culture is that reviews must be seen as valuable
activities by both management and technical people. Reviews must have formally
budgeted time for all the activities described in Section 20.5. Human factors are
important. Long reviews are seldom effective—psychologists claim that the atten-
tion span of most adults is about 12 minutes. Consider what effect this can have on
a two-hour meeting. Most review meetings should be in the 60 to 90 minute range,
with shorter meetings preferred. Furthermore, review meetings should be viewed
as important, and interruptions should not be tolerated. (This includes cell phones!)

The best time to have a review meeting? About an hour after the normal start of
the working day. This allows review team members to take care of little things that
otherwise might be distractions. The worst time? Just after lunch, or maybe beginning
at 3:00 on a Friday afternoon.

20.6.1 Etiquette

To reduce the stress that can accompany a review, the following points of review
etiquette should be observed.

 1. Be prepared. Otherwise, the review effectiveness will be diminished. In a sense,
an unprepared team member is disrespecting the rest of the review team.

 2. Be respectful. Review the product, not the producer.
 3. Avoid discussions of style.
 4. Provide minor comments (e.g., spelling corrections) to the producer at the end

of the meeting.
 5. Be constructive. Reviews are not the place for personal criticism, nor for praise.
 6. Remain focused. Identify issues, do not try to resolve them.

456 ◾ Software Testing

 7. Participate, but do not dominate the discussion. Careful thought went into selec-
tion of the review team.

 8. Be open. All review information should be widely available to the full
organization.

20.6.2 Management Participation in Review Meetings

Many organizations struggle with the question of management participation in
reviews. Generally, this is a bad idea. Management presence in a review easily cre-
ates additional stress on all team members, but in particular, on the producer. If
management participation is common, the whole process can easily degenerate into
unspoken agreements among the technical staff (I won’t make you look bad if you
don’t make me look bad.) Another possible consequence is that management might
not want negative results to be public—clearly a conflict of interest. How credible
might a management person be as a reviewer? Willing to do the normal preparation?
Capable of doing the normal preparation? Failing either of these questions, a man-
agement person becomes a drag on the review meeting. To be fair, there are manag-
ers who are technically competent, and they can be disciplined enough to respect the
process. The admission ticket would be to do the normal review preparation and set
aside any managerial objectives.

20.6.3 A Tale of Two Reviews

The Dilbert comic strip of Scott Adams usually contains poignant insights to software
development situations. What follows are two possible reviews that would fit into an
extended Dilbert scenario.

20.6.3.1 A Pointy-Haired Supervisor Review

 1. The producer picks friendly reviewers.
 2. There is little or no lead time.
 3. There is no approved preparation time.
 4. The work item is not frozen.
 5. The review meeting is postponed twice.
 6. Some reviewers are absent, others take cell phone calls.
 7. Some designers never participate because they cannot be spared.
 8. There is no checklist.
 9. No action items are identified and reported.
 10. The review leader proceeds in a page-by-page order. (No triage)
 11. Faults are resolved “while they are fresh in mind.”
 12. Coffee and lunch breaks are needed.
 13. Reviewers float in and out of the meeting.
 14. The producer’s supervisor is the review leader.
 15. Several people are invited as spectators.

Just imagine this as a review!

Software Technical Reviews ◾ 457

20.6.3.2 An Ideal Review

Here are some characteristics of a review in a desirable review culture.

 1. Producers do not dread reviews.
 2. Reviewers have approved preparation time.
 3. A complete review packet is delivered with sufficient lead time.
 4. All participants have had formal review training.
 5. Technical people perceive reviews as productive.
 6. Management people perceive reviews as productive.
 7. Review meetings have high priority.
 8. Checklists are actively maintained.
 9. Top developers are frequent reviewers.
 10. Reviewer effectiveness is recognized as part of performance evaluation.
 11. Review materials are openly available and used.

20.7 Inspection Case Study
One of the few things that can be done in a university setting that cannot be done in
industry is repetition. Industrial development groups cannot justify doing the same
thing multiple times. This section reports results of a study done in a graduate course
on software testing at Grand Valley State University. Five groups of graduate students
each performed a Use Case Technical Inspection using the review packet of materi-
als in Appendix A (The use cases have been simplified in Appendix A.). The team
members in the class are fairly representative of development groups in industry—a
range of experience from new hires through people with two decades of software
development. Table 20.4 summarizes the experience profiles of the five review teams.

Table 20.5 clarifies the experience levels in terms of years of industrial experience.
The class had three hours of instruction based on materials that were precursors

to this chapter. The review teams were identified in a class meeting, and they used
the review packet in Appendix A. The teams had a full week for review preparation,
and communicated via email. The following week, each team conducted a 50-minute
technical inspection.

Table 20.4 Experience Levels of Review Teams

Group Experience

1 1 very experienced, 3 with some experience

2 4 with significant experience

3 2 with significant experience, 2 with little experience

4 2 with significant experience, 2 with little experience

5 2 with little experience

458 ◾ Software Testing

In Table 20.6, the last two columns need explanation. The total number of issues
reported to the review leader is typically reduced during the review to a shorter list
of action items that require additional work. In the case of Group 3, for example,
many of the low severity issues were just simple corrections. Also, there will be dupli-
cation among the reported issues—something that the review leader must recognize
and collapse into one agenda item.

It would be nice to have a Venn Diagram showing the final action items of each
review team. This is topologically impossible with five circles. Instead, Table 20.7

Table 20.6 Preparation Time and Fault Severity of Each Team

Group
Total Preparation
Time (hours)

Low
Severity

Medium
Severity

High
Severity

Total Issues
Found

Review
Action Items

1 7 33 33 18

2 6 32 27 59 26

3 36 66 27 93 12

4 21 24 20 9 53 46

5 22 13 4 10 27 10

Table 20.7 Demographics of Faults Found by Inspection Teams

Groups Issues Groups Issues

1 only 4 2 and 4 only 6

2 only 9 3 and 4 only 1

3 only 6 1, 2, and 4 3

4 only 27 1, 2, and 5 1

5 only 4 2, 4, and 5 1

1 and 2 only 2 1, 2, 4, and 5 1

1 and 3 only 1 1, 3, 4, and 5 1

1 and 4 only 3 2, 3, 4, and 5 1

2 and 3 only 1 All groups 1

Table 20.5 Experience Levels of Review Teams

Experience Level Years

Little 0 to 2

Some 3 to 6

Significant 7 to 15

Very Over 15

Software Technical Reviews ◾ 459

describes the overlap among groups. Of the 32 possible subsets of groups, only those
with an overlap are listed. After the review meetings, the five groups found a total of
116 action items.

When all of these are aligned (by eliminating separate appearances of the same
underlying fault), Table 20.7 is alarming. Consider the first few rows, in which 50
faults are found only by one group. Even worse, look at the last four entries, where
only one fault was found by all five groups, and only four faults were found by four
of the five groups.

The implications of this are enormous—companies simply cannot afford to have
duplicate inspections of the same work product, so it behooves companies to pro-
vide review training, and inspection teams need to use their limited time as effec-
tively as possible.

References
Boehm, B., Software Engineering Economics, Englewood Cliffs, NJ; Prentice-Hall, 1981.
IBM System Sciences Institute, “Implementing Software Inspections”, 1981.
IEEE Standard Classification for Software Anomalies Working Group, 1044-2009 IEEE Standard

Classification for Software Anomalies, 2009.
International Software Testing Certification Board, Foundation Level Syllabus, 2007.
International Software Testing Certification Board, Advanced Level Syllabus, 2012.
Pressman, R.S., Software Engineering: A Practitioner’s Approach, New York: McGraw-Hill,

1992.
Wiegers, Karl, “Improving Quality through Software Inspections,” Software Development, vol. 3,

no. 4 (April 1995). Available at http://www.processimpact.com/articles/inspects.html

http://www.processimpact.com

https://taylorandfrancis.com

461

Chapter 21

Epilogue: Software
Testing Excellence

Finishing a book is almost as hard as beginning one. The ubiquitous temptation is
to return to “finished” chapters and add a new idea, change something, or maybe
delete a part. This is a pattern that writing shares with software development and
both activities endure small anxieties as deadlines near.

This book started as a response to Myers’ The Art of Software Testing; in fact, the
original working title was “The Craft of Software Testing” but Brian Marrick’s book
with that title appeared first. In the years between 1978 (Myers′ book) and 1995 (the
first edition of this book), software testing tools and techniques had matured suffi-
ciently to support the craft motif.

Imagine a continuum with Art at one end, leading to Craft, then to Science, and
ending with Engineering. Where does software testing belong on this continuum?
Tool vendors would put it all the way at the engineering end, claiming that their
products remove the need for the kinds of thinking needed elsewhere on the con-
tinuum. The process community would consider it to be a science, arguing that it is
sufficient to follow a well-defined testing process. The context-driven school would
probably leave software testing as an art, due to the need for creativity and individual
talent. Personally, we still consider software testing to be a craft. Wherever it is placed
on the continuum, software testing can also be understood in terms of excellence.

21.1 Craftsmanship
First, a disclaimer. The more politically correct craftspersonship word is too cum-
bersome. Here, craftsman uses the gender-neutral sense of the –man suffix. What
makes someone a craftsman? One of our grandfathers was a Danish cabinet maker,
and that level of woodworking is clearly a craft. One father was a tool and die
maker—another craft with extremely stringent standards. What did they, and others
recognized as craftsmen, have in common? Here is a pretty good list:

462 ◾ Software Testing

	 ◾	 Mastery of the subject matter
	 ◾	 Mastery of the associated tools
	 ◾	 Mastery of the associated techniques
	 ◾	 The ability to make appropriate choices about tools and techniques
	 ◾	 Extensive experience with the subject matter
	 ◾	 A significant history of high-quality work with the subject matter

Since the days of Juran and Deming, portions of the software development com-
munity have been focused on quality. Software Quality is clearly desirable, but it is
hard to define, and harder still to measure. Simply listing quality attributes, such as
simplicity, extensibility, reliability, testability, maintainability, etc., begs the question.
The –ability attributes are all similarly hard to define and measure. The process com-
munity claims that a good process results in quality software, but this will be hard
to prove. Can quality software be developed in an ad hoc process? Probably, and
the agile community certainly believes this. Do standards guarantee software qual-
ity? This, too, seems problematic. Imagine a program that conforms to some set of
defined standards, yet is of poor quality. So where does this leave the person who
seeks software quality? Craftsmanship is a pretty good answer, and this is where
excellence comes in. A true craftsman takes pride in his work—he knows when he
has done his best work, and this results in a sense of pride. Pride in one’s work also
defies definition, but everyone, who is honest with himself, knows when he has done
a really good job. So we have craftsmanship, pride, and excellence tightly coupled,
recognizable, yet difficult to define, and hence to measure, but all are associated with
the concept of best practices.

21.2 Best Practices of Software Testing
Any list of claimed best practices is subjective, and always open to criticism. Here is
a reasonable list of characteristics of a best practice:

	 ◾	 They are usually defined by practitioners
	 ◾	 They are “tried and true”
	 ◾	 They are very dependent on the subject matter
	 ◾	 They have a significant history of success

The software development community has a long history of proposed “solutions” to
the difficulties of software development. In his famous 1986 paper, “No Silver Bullet,”
Fred Brooks suggested that the software community will never find a single technol-
ogy that will kill the werewolf of software development difficulties [Brooks, 1986].
Here is a partial list of “best practices,” each of which was intended as a silver bullet.
The list is in approximate chronological order.

	 ◾	 High-level programming languages (FORTRAN and COBOL)
	 ◾	 Structured programming
	 ◾	 Third-generation programming languages
	 ◾	 Software reviews and inspections
	 ◾	 The Waterfall Model of the software development life cycle

Epilogue: Software Testing Excellence ◾ 463

	 ◾	 Fourth-generation programming languages (domain specific)
	 ◾	 The object-oriented paradigm
	 ◾	 Various replacements for the Waterfall Model
	 ◾	 Rapid prototyping
	 ◾	 Software metrics
	 ◾	 CASE (Computer-Aided Software Engineering) tools
	 ◾	 Commercial tools for project, change, and configuration management
	 ◾	 Integrated development environments
	 ◾	 Software process maturity (and assessment)
	 ◾	 Software process improvement
	 ◾	 Executable specifications
	 ◾	 Automatic code generation
	 ◾	 UML (and its variants)
	 ◾	 Model-driven development
	 ◾	 Extreme programming (with its odd acronym, XP)
	 ◾	 Agile programming
	 ◾	 Test-driven development
	 ◾	 Automated testing frameworks

Quite a list, isn’t it? There are probably some missing entries, but the point is, soft-
ware development remains a difficult activity, and dedicated practitioners will always
seek new or improved best practices.

21.3 Our Top 10 Best Practices for Software Testing Excellence
The underlying assumption about best testing practices is that software testing is
performed by software testing craftsmen. Per the earlier discussion, this implies that
the tester is very knowledgeable in the craft and has both the tools and the time to
perform the task with excellence. There is a perennial debate as to whether a tester
should be a talented programmer. To us, the answer is an emphatic yes. As a crafts-
man, programming is clearly part of the subject matter. Other attributes include
creativity, ingenuity, curiosity, discipline, and, somewhat cynically, a can-I-break-it
mentality. Our collective “top ten” best practices are only briefly described here; most
of them are treated more completely in the indicated chapters.

21.3.1 Carefully Performed Technical Inspections

In addition to finding defects before coding begins, a good technical inspection will/
should make recommendations about the type and extent of appropriate testing (See
Chapter 20).

21.3.2 Careful Definition and Identification of Levels of Testing

Any application (unless it is quite small) should have at least two levels of testing—
unit and system. Larger applications generally do well to add integration testing.
Controlling the testing at these levels is critical. Each level has clearly defined objec-
tives, and these should be observed. System level test cases that exercise unit level
considerations are both absurd and a waste of precious test time.

464 ◾ Software Testing

21.3.3 Model-Based Testing at All Levels

If an executable specification is used, a large number of system level test cases can be
automatically generated. This offsets the extra effort of creating an executable model.
In addition, this enables direct tracing of system testing against a requirements model.
Because executable specifications are provocative, the automatically generated system
test cases include many possibilities that otherwise might not be created.

Given the three fundamental approaches to integration testing discussed in
Chapter 12, MM-Paths are demonstrably superior. They can also be used with inci-
dence matrices in a way that parallels that for system level testing.

At the unit level, using appropriate models guarantees a form of testing that is as
complete as the underlying model.

21.3.4 System Testing Extensions

For complex, mission critical applications, simple thread testing is necessary but not
sufficient. At a minimum, thread interaction testing is needed. Particularly in complex
systems, thread interactions are both serious and difficult to identify. Stress testing
is a brute force way of identifying thread interaction. Many times, just the sheer
magnitude on interactions forced by stress testing reveals the presence of previously
undiscovered faults [Hill 2006]. Hill notes that stress testing is focused on known
(or suspected) weak spots in the software and that pass/fail judgments are typically
more subjective than those for conventional testing. Risk-based testing is a shortcut
that may be necessary. Risk-based testing is an extension of the Operational Profiles
approach discussed in Chapter 13. Rather than just test the most frequent (high prob-
ability) threads, Risk-Based testing multiplies the probability of a thread by the cost
(or penalty) of failure. When test time is severely limited, threads are tested in terms
of risk rather than simple probability.

21.3.5 Incidence Matrices to Guide Regression Testing

Both traditional and object-oriented software projects benefit from an incidence
matrix. For procedural software, the incidence between mainline functions (some-
times called features) and the implementing procedures is recorded in the matrix.
Thus, for a particular function, the set of procedures needed to support that function
is readily identified. Similarly for object-oriented software, the incidence between Use
Cases and Classes is recorded. In either paradigm, this information can be used to:

	 ◾	 determine the order and contents of builds (or increments)
	 ◾	 facilitate fault isolation when faults are revealed (or reported)
	 ◾	 guide regression testing

21.3.6 Use of xUnit and Object Mocking at the Unit Level

Mock objects replace the stubs and drivers used in unit testing of procedural code.
Since they dovetail well with test frameworks such as JUnit, they make it easy to
increase the scope of the test framework to include the mock objects.

Epilogue: Software Testing Excellence ◾ 465

21.3.7 Intelligent Combination of Specification-Based and Code-Based
Unit Level Testing

Neither specification-based nor code-based unit testing is sufficient by itself, but the
combination is highly desirable. The best practice is to choose a specification-based
technique based on the nature of the unit (see Chapter 10), run the test cases with
a tool to show test coverage, and then use the coverage report to reduce redundant
test cases and add additional test cases mandated by coverage.

21.3.8 Use of Appropriate Tools at All Testing Levels

Software testing tools greatly augment what a tester can do, from automating tedious
processes to expanding the types of questions testers can ask. Artificial Intelligence
extensions to testing are increasingly effective.

21.3.9 Exploratory Testing During Maintenance

Exploratory testing is a powerful approach when testing code written by someone
other than the tester. This is particularly true for maintenance on legacy code.

21.3.10 Test-Driven Development

The agile programming community has demonstrated success using Test-Driven
Development (TDD) in applications where an agile approach is appropriate. The
main advantage of TDD is the excellent fault isolation capability.

21.4 Mapping Best Practices to Diverse Projects
Best practices are necessarily project dependent. The software controlling a NASA
space mission is clearly distinct from a quick-and-dirty program to develop some infor-
mation requested by someone’s supervisor. Here are three distinct project types. After
their description, the top ten best practices are mapped to the projects in Table 21.1.

21.4.1 A Mission Critical Project

Mission critical projects have severe reliability and performance constraints and are
often characterized by highly complex software. They are usually large enough so that
no single person can comprehend the full system with all its potential interactions.

21.4.2 A Time Critical Project

While mission critical projects may also be time critical, this section refers to those
projects which must be completed rapidly. Time-to-market and the associated loss of
market share are the usual drivers of this project type.

466 ◾ Software Testing

21.4.3 Corrective Maintenance of Legacy code

Corrective maintenance is the most common form of software maintenance. It is in
response to a reported fault. Software maintenance typically represents three-fourths
of the programming activity in most organizations, and this is exacerbated by the
pattern that maintenance changes are usually done by someone who did not create
the code being changed.

21.5 An Extreme Example
Take time to look for an article titled “They Write the Right Stuff.” It is an example of
what can be done with discipline (and a big budget). The “on board shuttle group,”
as its name implies, writes the software for the space shuttle missions [Fishman
1996]. Here is one quote from the referenced article:

“This software is bug-free. It is perfect, as perfect as human beings have achieved.
Consider these stats: the last three versions of the program — each 420,000 lines
long-had just one error each. The last 11 versions of this software had a total of 17
errors. Commercial programs of equivalent complexity would have 5,000 errors.”

Table 21.1 Best Testing Practices for Diverse Projects

Best Practice Mission Critical Time Critical Legacy Code

Model-Driven Development x

Careful Definition and Identification of
Levels of Testing

x x x

System-Level Model-Based Testing x

System Testing Extensions x

Incidence Matrices to Guide Regression
Testing

x x

Use of MM-Paths for Integration Testing x

Intelligent Combination of
Specification-Based and Code-Based
Unit Level Testing

x x

Code Coverage Metrics Based on the
Nature of Individual Units

x

Exploratory Testing During Maintenance x

Test-Driven Development x

Epilogue: Software Testing Excellence ◾ 467

The article also contains some devastating comments on the state of software
development:

 1. “The way we build software is in the hunter-gatherer stage.” -Brad Cox, a profes-
sor at George Mason University

 2. “Cave art,”… “It’s primitive. We supposedly teach computer science. There’s no
science here at all.” -John Munson, a software engineer and professor of com-
puter science at the University of Idaho

The article continues…

“the on-board shuttle group produces grown-up software, and the way they do it
is by being grown-ups. It may not be sexy, it may not be a coding ego-trip — but
it is the future of software. When you’re ready to take the next step — when you
have to write perfect software instead of software that’s just good enough — then
it’s time to grow up.”

The shuttle group has four guiding principles, again quoting from the article:

 1. The product is only as good as the plan for the product.
 2. The best teamwork is a healthy rivalry.
 3. The database is the software base.
 4. Don’t just fix the mistakes — fix whatever permitted the mistake in the first place.

One last quote:

“The most important things the shuttle group does — carefully planning the soft-
ware in advance, writing no code until the design is complete, making no
changes without supporting blueprints, keeping a completely accurate record of
the code — are not expensive. The process isn’t even rocket science. Its standard
practice in almost every engineering discipline except software engineering.”

What does all this mean for software testing excellence? Much like those “who write
the right stuff,” software testers need planning not “seat of the pants” ad hoc test-
ing. Carefully planned testing echoes several items on our list of top ten best testing
practices. To do good planning, the tester needs extensive knowledge of the product
to be tested, effective testing techniques, and the judgment to make good choices
among alternatives. As we saw in earlier chapters, testing tools enable testers to be
more effective. As with and craft, a software tester needs sufficient time to complete
carefully planned testing. One example? A GVSU graduate student came to class one
evening, slammed his books down on a lecture table, and asked “How much time
should be allowed for system testing?” One good rule of thumb is that the time for
unit, integration, and system testing should be about what was spent in development.
Walt’s frustration was that, on a Tuesday, his project manager told him to start testing,
because the 800,000 line project would be shipped on Friday. (Thanks Walt.)

468 ◾ Software Testing

We need to move beyond the “cave art” stage. Software testing craftsmanship
requires a mindset much like that of those who “write the right stuff.”

References
Brooks, Fred P. (1986). “No Silver Bullet — Essence and Accident in Software Engineering”.

Proceedings of the IFIP Tenth World Computing Conference: 1069–1076. Also found at
(April 1987). “No Silver Bullet — Essence and Accidents of Software Engineering”. IEEE
Computer 20 (4): 10–19.

Fishman, Charles, “They Write the Right Stuff”, Fast Company, 1996. [https://www.fastcom-
pany.com/28121/they-write-right-stuff].

Hill, T. Adrian, “Importance of Performing Stress Testing on Embedded Software Applications”,
Proceedings of QA&TEST conference, Bilbao, Spain, Oct. 2006.

https://www.fastcompany.com
https://www.fastcompany.com

469

Appendix A: Complete
Technical Inspection Packet

This Appendix contains all the items needed for a technical inspection of a set of use
cases for an ATM Simulator described here.

A.1 Customer Requirements: ATM Simulator
The ATM system communicates with credit union customers via the Graphical User
Interface shown in Figure A.1 and the 15 screens shown in Figure A.2. ATM custom-
ers can select any of three transaction types: deposits, withdrawals, and balance
inquiries. To simplify the review, and the use cases, these transactions are only done
on a checking account.

When a customer arrives at the ATM station, screen 1 is displayed. The customer
accesses the SATM system with a virtual plastic card encoded with a personal account
number (PAN), which is a key to an internal customer account file, containing, among
other things, the customer’s name and account information. If the customer’s PAN
matches the information in the customer account file, the system presents screen 2
to the customer. If the customer’s PAN is not found, screen 4 is displayed, and the
card is kept.

At screen 2, the customers are prompted to enter their personal identification
number (PIN). If the PIN is correct (i.e., matches the information in the customer
account file), the system displays screen 5; otherwise, screen 3 is displayed. The
customer has three chances to get the PIN correct; after three failures, screen 4 is
displayed, and the card is kept. Technically, this would require another screen with a
different message. We will just assume this is a user-hostile ATM system.

On entry to screen 5, the customer selects the desired transaction from the options
shown on screen 5. If balance is requested, screen 6 is displayed. If a deposit is
requested, the status of the deposit envelope slot is determined from a field in the
terminal control file. If no problem is known, the system displays screen 7 to get the
transaction amount (deposit or withdrawal). If a problem occurs with the deposit
envelope slot, the system displays screen 12. Once the deposit amount has been
entered, the system displays screen 13, accepts the deposit envelope, and processes
the deposit. The system then displays screen 14.

If a withdrawal is requested, the system checks the status (jammed or free) of
the withdrawal chute in the terminal control file. If jammed, screen 10 is displayed;

470 ◾ Appendix A: Complete Technical Inspection Packet

Figure A.1 ATM Customer Interface.

Cash Dispenser

Printed Receipt 1 2 3

4 5 6

7 8 9

0

Deposit Slot

Card Slot

Enter

Clear

Cancel

Welcome to

Rock Solid Federal Credit Union

Please insert your ATM card

Figure A.2 15 User Interface Screens.

Screen 6

Balance is
$dddd.dd

Screen 1

Welcome
Please insert your

ATM card

Screen 2

Please enter your PIN
_ _ _ _

Screen 3

Your PIN is incorrect.
Please try again.

Screen 4

Invalid ATM card. It will
be retained.

Screen 5
Select transaction:

balance >
deposit >

withdrawal >

Screen 7

Enter amount.
Withdrawals must
be multiples of $10

Screen 8

Insufficient Funds!
Please enter a new amount

Screen 9

Machine can only dispense
$10 notes

Screen 10

Temporarily unable to
process withdrawals.
Another transaction?

Screen 11

Your balance is being
updated. Please take cash

from dispenser.

Screen 12

Temporarily unable to
process deposits. Another

transaction?

Screen 13

Please insert deposit into
deposit slot.

Screen 14

Your new balance is being
printed. Another

transaction?

Screen 15

Please take your receipt
and ATM card. Thank you.

Appendix A: Complete Technical Inspection Packet ◾ 471

otherwise, screen 7 is displayed so the customer can enter the withdrawal amount.
Once the withdrawal amount is entered, the system checks the terminal status file to
see if it has enough currency to dispense. If it does not, screen 9 is displayed; otherwise
the withdrawal is processed. The system checks the customer balance (as described
in the balance request transaction); if the funds in the account are insufficient, screen
8 is displayed. If the account balance is sufficient, screen 11 is displayed and the cash
is dispensed. The balance is printed on the transaction receipt as it is for a balance
request transaction. After the cash has been removed, the system displays screen 14.

When the “No” button is pressed in screens 10, 12, or 14, the system presents
screen 15 and returns the customer’s ATM card. The buttons to the right of the screen
in Figure 2.2 are associated with different, screen-dependent choices. In screen 5,
they correspond to transaction choices. In screens 10, 12, and 14, they correspond to
"yes" and "no" answers. Once the card is removed from the card slot, screen 1 is dis-
played. When the “Yes” button is pressed in screens 10, 12, or 14, the system presents
screen 5 so the customer can select another transaction.

The following high-level input events can occur in the SATM system:

 e1: Valid ATM card swipe
 e2: Invalid ATM card swipe
 e3: Correct PIN
 e4: Failed PIN
 e5: Choose Balance
 e6: Choose Deposit
 e7: Insert deposit envelope
 e8: Choose Withdrawal
 e9: Valid withdrawal amount
 e10: Withdrawal amount not a multiple of $10
 e11: Withdrawal amount greater than account balance
 e12: Withdrawal amount greater than daily limit
 e13: Remove cash
 e14: Yes
 e15: No

The output events are simply the 15 screens. (This is a simulator, no actual cash is
returned, nor are there any actual ATM cards.)

screen 1: Welcome screen
screen 2: PIN Entry
screen 3: Incorrect PIN
screen 4: Invalid ATM Card
screen 5: Select transaction (balance, deposit, withdrawal)
screen 6: Balance is…
screen 7: Enter withdrawal amount
screen 8: Insufficient funds
screen 9: Only $10 notes
screen 10: Unable to process withdrawals
screen 11: Please take your cash

472 ◾ Appendix A: Complete Technical Inspection Packet

screen 12: Unable to process deposits
screen 13: Insert deposit
screen 14: Another transaction?
screen 15: Take your ATM card and receipt

A.2 Base Use Cases
These base use cases are designed to be the subject of a technical inspection. There
are faults deliberately present.

Line Use Case ID, Name UC1: Present valid ATM Card

1 Description Customer swipes a vaild ATM card

2 Pre-conditions 1. screen 1 displayed

3 Event Sequence

4 Input Events Output Events

5 1. e1: Valid ATM card swipe 2. display screen 2

6 Post-Conditions 1. screen 2 displayed

7

Line Use Case ID, Name UC2: Present invalid ATM Card

1 Description Customer swipes an invaild ATM card

2 Pre-conditions 1. screen 1 displayed

3 Event Sequence

4 Input Events Output Events

5 1. e12: Invalid ATM card swipe 2. display screen 4

6 Post-Conditions 1. screen 4 displayed

Line Use Case ID, Name UC3: Correct PIN entered

1 Description Costumer enters a correct PIN (this use case
applies to all three possible PIN entry attempts)

2 Pre-conditions 1. screen 2 displayed

3 Event Sequence

4 Input Events Output Events

5 1. e3: Correct PIN enterede 2. display screen 5

6 Post-Conditions 1. screen 6 displayed

Appendix A: Complete Technical Inspection Packet ◾ 473

Line Use Case ID, Name UC4: Failed PIN entry

1 Description Customer failed to enter a correct
PIN on the third attempt

2 Pre-conditions 1. screen 2 displayed 2. previous
two PIN attempts failed

3 Event Sequence

4 Input Events Output Events

5 1. e4: Incorrect PIN entered 2. display screen 1

6 Post-Conditions 1. screen 1 displayed

Line Use Case ID, Name UC5: Transaction choice: Balance Inquiry

1 Description Customer selects the Balance Inquiry
transaction

2 Pre-conditions 1. screen 5 displayed

3 Event Sequence

4 Input Events Output Events

5 1. e5: Choose Balance 2. display screen 6

6 Post-Conditions 1. screen 5 displayed

Line Use Case ID, Name UC6: Transaction choice: Deposit

1 Description Customer selects the Balance
Inquiry transaction

2 Pre-conditions 1. screen 5 displayed

3 Event Sequence

4 Input Events Output Events

5 1. e6: Choose Deposit 2. display screen 6

6 3. e7: Insert deposit envelope 4. display screen 14

7 5. e15: No 6. display screen 11

8 Post-Conditions 1. screen 1 displayed

2. account balance is updated

474 ◾ Appendix A: Complete Technical Inspection Packet

Line Use Case ID, Name UC7: Deposit slot jammed

1 Description Customer selects the Deposit transaction;
deposit slot is jammed

2 Pre-conditions 1. e6: Choose Deposit

3 Event Sequence

4 Input Events Output Events

5 3. e15: No 2. display screen 12

6 Post-Conditions 1. screen 1 displayed

7

Line Use Case ID, Name UC8: Normal withdrawal

1 Description Customer selects the withdrawal transaction;
valid withdrawal amount

2 Pre-conditions 1. screen 5 displayed

3 Event Sequence

4 Input Events Output Events

5 1. e8: Choose withdrawal 2. display screen 7

6 3. e9: Valid withdrawal
amount entered

4. display screen 11

7 5. display screen 14

8 6. e15: No

9 Post-Conditions 1. screen 1 displayed

Line Use Case ID, Name UC9: Withdrawal amount not a multiple of $20

1 Description Customer selects the withdrawal transaction;
valid withdrawal amount

2 Pre-conditions 1. screen 5 displayed

3 Event Sequence

4 Input Events Output Events

5 1. e8: Choose withdrawal 2. display screen 7

6 3. e10: Withdrawal amount not
a multiple of $10

4. display screen 7

7 5. display screen 9

8 Post-Conditions 1. screen 1 displayed

Appendix A: Complete Technical Inspection Packet ◾ 475

Line Use Case ID, Name UC10: Insufficient funds

1 Description Customer selects the withdrawal transaction;
withdrawal amount > account balance

2 Pre-conditions 1. screen 5 displayed

3 Event Sequence

4 Input Events Output Events

5 1. e8: Choose withdrawal 2. display screen 7

6 3. e11: Withdrawal amount
greater than account balance

4. display screen 8

7 5. display screen 1

8 Post-Conditions 1. screen 1 displayed

Line Use Case ID, Name UC11: Daily limit exceeded

1 Description Customer selects the withdrawal transaction;
withdrawal amount > daily limit

2 Pre-conditions 1. screen 5 displayed

3 Event Sequence

4 Input Events Output Events

5 1. e8: Choose withdrawal 2. display screen 7

6 3. e12: Withdrawal amount
greater than daily limit

4. display screen 10

7 5. display screen 11

8 6. e15: No

9 Post-Conditions 1. screen 1 displayed

476 ◾ Appendix A: Complete Technical Inspection Packet

A.3 Base Use Case Standard

Line Use Case ID, Name

1 Description

2 Pre-conditions

3 Event Sequence

4 Input Events Output Events

5

6 Post-Conditions

7

 1. Use Case Name
 The Use Case name should be short and indicative. Since use cases capture the

behavior of a system, it is handy (but not mandatory) if their names begin with
a verb.

 2. Use Case ID
 The Use Case ID should be very short, and possibly linked to the major func-

tion, or to an actor in the application.
 3. Description
 This is a narrative description that should be easily understood by the customer.

To improve communication between the customer/user and the developer, sys-
tem-specific jargon should be described in a supplemental glossary.

 4. Pre-conditions
 Pre-conditions describe the state of the system before the use case is executed.

It is easy for this section to become too general. Pre-conditions should be just
those pertinent to the use case.

 5. Event Sequence
 There are two portions of the event sequence: system inputs and system

responses. Whether these are shown in two columns or in one column, they
should be numbered to show the interleaved sequence of inputs and responses.
Since this standard is for base use cases, there should be no pseudo-code logic
expressing alternatives "within" a use case.

 6. Post-conditions
 Post-conditions describe the state of the system after the use case has executed.

As with the Pre-conditions, it is easy for this section to become too general.
Post-conditions should be just those pertinent to the use case.

A.4 Base Use Case Checklist
 1. Format complete?

 ◾ Use Case Name
 ◾ Use Case ID
 ◾ Narrative description

Appendix A: Complete Technical Inspection Packet ◾ 477

 ◾ Preconditions
 ◾ Sequence of inputs
 ◾ Sequence of outputs
 ◾ post conditions

 2. Logic Questions?
 ◾ Any missing pre-condition?
 ◾ Any missing post-condition?
 ◾ Input sequence OK?
 ◾ Output sequence OK?
 ◾ “correctness” (no $5 notes)

 3. Consistency
 ◾ Naming conventions acceptable?
 ◾ Are synonyms present?
 ◾ Are synonyms “standardized” into one consistent term?

 4. “Completeness”
 ◾ Any missing use cases?
 ◾ Flow across use cases?
 ◾ Matching Pre-conditions with Post-conditions?
 ◾ Extra use cases?
 ◾ Traceable to specifications?

 5. Conformance to Base Use Case Standard

A.5 Base Use Case Fault Severity Levels
For the purpose of the review exercise, three fault severity levels are sufficient. These
levels are defined with respect to the Use Case Review Checklist.

Fault Severity 1 (least severe)

	 ◾	 use case format correct
 – Use Case Name
 – Use Case ID
 – Narrative description
 – Preconditions
 – Sequence of inputs
 – Sequence of outputs
 – Post conditions

	 ◾	 typographical errors
	 ◾	 grammar errors
	 ◾	 conformance to Use Case Standard

Fault Severity 2

	 ◾	 consistency faults
 – Naming conventions
 – Synonyms
 – Ambiguous/too general

478 ◾ Appendix A: Complete Technical Inspection Packet

	 ◾	 Logic Questions
 – Any missing pre-condition?
 – Any missing post-condition?
 – Input Sequence OK?
 – Output Sequence OK?
 – “correctness” (e.g., no $5 notes)

Fault Severity 3 (most severe)

	 ◾	 Completeness
 – Any missing pre-condition?
 – Any missing use cases or features because they are not specified in the

Customer Requirements?
	 ◾	 Flow across Use Cases
	 ◾	 matching Preconditions with Postconditions
	 ◾	 Extra Use Cases
	 ◾	 Traceable to specifications? “Incorrectness”
	 ◾	 Missing steps/use cases?
	 ◾	 Extra steps/features. They should be removed because they are not included in

the Customer Requirements.

A.6 Base Use Case Technical Inspection Forms
The reviewers, including the review leader and recorder, presents the result of their
work product examination on a form similar to the one in Table A.1. These individual
reports are merged by the review leader into the preliminary issues list.

Table A.1 Individual Inspection Ballot

Work Product Information

Reviewer Name

Preparation date

Reviewer Preparation Time

Location Checklist

Issue # Use Case Line Item Severity Description

1 1 1 typo 1 change “vaild” to “valid”

2

3

Appendix A: Complete Technical Inspection Packet ◾ 479

A.7 Sample Inspection Report Outline
Technical Inspection Report

For

ATM System Simulator Use Case Descriptions

By

<Inspection Team Members>

Table of Contents

 I. Introduction and Technical Inspection Process
 II. Preliminary Issue List
 III. Prioritized Action Item List
 IV. Summary of Individual Ballots and Product Metrics
 V. Summary of Process Evaluations
 VI. Conclusion

Table A.2 Inspection Summary

Work Product Information

Review Team Members

Leader

Recorder

Reviewer

Reviewer

Reviewer

Producer

Meeting Date

total preparation time

Team Recommendation

Location Checklist

Action
Item #

Who? Use
Case

Line Item Severity Description

1 PCJ 1 1 typo 1 change “vaild” to “valid”

480 ◾ Appendix A: Complete Technical Inspection Packet

Reference

Attachments

 Attachment A: ATM Simulator Use Cases
 Attachment B: ATM Simulator Customer Requirements
 Attachment C: Technical Review Forms
 1. Review Report
 2. Individual Ballots
 Attachment D: Fault Classification (by Severity)
 Attachment E: Use Case Review Checklist
 Attachment F: Technical Review Agenda

481

Appendix B: Foodies Wish
List Example

B.1 General Description
Foodies-Wish-List is an online shopping service for rare, expensive gourmet foods.
Table B.1 lists the full inventory:

The high-level architecture of the application consists of three “swim lanes” as
shown in Figure B.1. Each of the six components is further described by individual
finite state machines (fsms).

Table B.1 Foodie Wish List Inventory and Prices

Foodie Item $/pound $/ounce $/gram

Vanilla beans $112.00 $7.00 $0.25

Hop shoots $128.00 $8.00 $0.28

Italian white truffles: $200.00 $12.50 $0.44

Kobe beef $300.00 $18.75 $0.66

Kopi Luwak coffee $300.00 $18.75 $0.66

Moose House cheese $450.00 $28.13 $0.99

Saffron $450.00 $28.13 $0.99

Jamon Iberico de Belotta $2,200.00 $137.50 $4.85

Almas caviar $11,400.00 $712.50 $25.11

482 ◾ Appendix B: Foodies Wish List Example

B.2 Messages Among Finite State Machines
The connections among individual fsms in separate swim lanes are meant as com-
municating fsms. Typically, an output action in one fsm appears as an input event in
an adjacent fsm. Finally, the numbering of input events, output actions, states, and
messages is global and organized by decades. The Account Creation fsm decade is
10 to 19, Login is the 20’s, and so on. After a few iterations, we identified the set of
messages shown in Table B.2.

Web Interfaces
(Mul�ple in

Browser)

Backend Applica�ons
(Mul�ple on Server)

Data Store
(Single on

Server)

Shopper

Admin

Admin-
istration

Shopping
Cart

Login

Account
Creation

Foodie
Datatbase

Shopping
List Credit

Card

Figure B.1 Foodies Wish List Architecture.

Table B.2 Messages Among Fsms

Message From To Content

m1 Foodie Home Account Creation Open Account Creation

m2 Foodie Home Login Open Login

m3 Login Shopping List Open Shopping List

m4 Account Creation Foodie Home Close Account Creation

m5 Login Foodie Home Close Login

m6 Shopping List Foodie Home Close Shopping List

m7 Account Creation Admin Propose UserID to Admin

m8 Admin FoodieDB Submit UserID to FoodieDB

m9 FoodieDB Admin Approve New Member UserID

m10 FoodieDB Admin Reject New Member UserID

(Continued)

Appendix B: Foodies Wish List Example ◾ 483

Message From To Content

m11 Admin Account Creation Proposed USerID Approved

m12 Admin Account Creation Proposed USerID Rejected

m13 Account Creation Admin Defined User PIN to Admin

m14 Admin FoodieDB Send User PIN to FoodieDB

m15 FoodieDB Admin Confirm User PIN in FoodieDB

m16 Admin Account Creation Defined User PIN Accepted

m17 Login FoodieDB Entered UserID to FoodieDB

m18 FoodieDB Login User ID OK; expected PIN

m19 FoodieDB Login UserID not recognized

m20 FoodieDB Login User PIN OK

m21 FoodieDB Login User PIN failed

m22 Shopping List Shopping Cart Add item to Shopping Cart

m23 Shopping Cart Shopping List Item added to Shopping Cart

m24 Shopping Cart Admin Reduce FoodieItem Count

m25 Shopping List Shopping Cart Remove item from Shopping Cart

m26 Shopping Cart Shopping List Item removed from Shopping Cart

m27 Shopping Cart Credit card Payment tendered

m28 Credit card Shopping Cart Payment accepted

m29 Credit card Shopping Cart Payment rejected

m30 Shopping Cart FoodieDB Payment amount

m31 Shopping Cart FoodieDB Shopping Cart Contents

m32 Shopping Cart Admin Increase FoodieItem Count

m33 FoodieDB Admin FoodieItem inventory decreased

m34 FoodieDB Admin FoodieItems inventory increased

m35 FoodieDB Admin Payment entered in FoodieDB.

m36 Admin FoodieDB Increase FoodieItem inventory

m37 Login FoodieDB Entered PIN

m38 Admin FoodieDB Decrease FoodieItem inventory

Table B.2 (Continued)

484 ◾ Appendix B: Foodies Wish List Example

External communication (input) events can originate from the Administrator or
from any Shopper. This diagram does not show concurrency, but the interactions
among concurrent shoppers are clearly important. Within each fsm, transitions are
labeled as e/a, where e is an input event (or possibly a data condition) and a is an out-
put action. The input events (and responses) local to a fsm are derived from elements
of the windows corresponding to an fsm. Finally, there is an overall web page fsm. The
fsm-based inputs, together with their global names and descriptions, are shown next.

B.2.1 Foodie Wish List Finite State Machines

B.2.1.1 Foodie Home

Input events (user)
e1: Click on New Member
e2: Click on Login
e3: Click on Shopping List

Inputs from other fsms
m4: Close Account Creation
m5: Close Login
m6: Close Shopping List

Output events
a1: Show Foodie Home
m1: Open Account Creation
m2: Open Login
m3: Open Shopping List

S21:S21:
Login

S10: Account
Creation

S31 Shopping
List

e2/m2

S1: Foodie
Home

m5/a1e2/m2 m5/a1e2/m2 m5/a1

Figure B.3 Foodie Home fsm.

Figure B.2 Message Communication Among Finite State Machines.

m9,m10,m15
m33,m34, m35

Foodie
Database

m22,m25

m11,m12,m16

Login

Account
Creation

Shopping
List

Administration

Shopping
Cart

m7,m13

m23,m26

m2
Foodie
Home

m30,m31

m17,m37

m18,m19,
m20,m21

m8,m14,
m36,m38

m5

Credit Card
Interface

Appendix B: Foodies Wish List Example ◾ 485

B.2.1.2 Account Creation

Input events (user)
e11: Enter UserID
e12: Create User PIN
e13: Click on Exit

Inputs from Foodie Home
m1: Open Account Creation

Inputs from Admin
m11: Proposed USerID Approved
m12: Proposed USerID Rejected
m16: Defined User PIN Accepted

Output events
a11: Show account creation window
a12: Show PIN Creation window

Output events to Admin
m7: Propose UserID to Admin
m13: Defined User PIN to Admin

Output events to Foodie Home
m4: Close Account Creation

m1/a11

e11/m7

m11

S13 UserID
Rejecteded

e12/m13,a12

m1/a11

S1 Foodie
Home

S10 Account
Creation

S11 UserID
to Admin

e11/m7

m11

S14 PIN to
Admin

S12 UserID
Approved

e12/m13,a12

Figure B.4 Account Creation fsm.

486 ◾ Appendix B: Foodies Wish List Example

B.2.1.3 Login

Input events (user)
e21: Enter valid UserID
e22: Enter invalid UserID
e23: Enter PIN = Expected PIN
e24: Enter PIN ≠ Expected PIN

Input events from FoodieDB
m2: Open Login
m18: UserID OK
m19: UserID not recognized
m20: User PIN OK
m21: User PIN failed

Output events
a21: Show Login window
a22: Show PIN Entry window

Outputs to FoodieDB
m5: Close Login
m17: Entered UserID to FoodieDB
m37: Entered PIN

S26: PIN Validity
Check 2ndtry

m2/a21

S1: Foodie Home

S21: UserID Entry

S29: PIN Validity
Check 3rdtry

e21/m17

S23: PIN Validity
Check 1sttry

m18/a22

e22/m17

S22: UserID
Validity Check

S24: PIN OK
1sttry

S25: Wrong
PIN 1sttry

S27: PIN OK
2ndtry

S28: Wrong
PIN 2ndtry

S30: PIN OK
3rdtry

S31: Wrong
PIN 3rdtry

m2/a21

e21/m17

m18/a22

e22/m17

m2/a21

e21/m17

m18/a22

e22/m17

Figure B.5 Login fsm.

Appendix B: Foodies Wish List Example ◾ 487

B.2.1.4 Shopping List

(Note: State 31 was needed for Login FSM)

Input events
e31: Window: Curser movement
e32: Select Foodie item
e33: Move item to Shopping Cart
e34: Remove item from Shopping Cart
e35: Click on Continue Shopping
e36: Done shopping

Inputs from Shopping Cart
m23: Item added to Shopping Cart
m26: Item removed from Shopping Cart

Inputs from Foodie Home
m3: Open Shopping List

Output events
a31: Show Browse window
a32: Curser at top of list
a33: New cursor position
a34: Increment FoodieItem Count
a35: Decrement FoodieItem Count

Output events to Shopping Cart
m22: Add item to Shopping Cart
m25: Remove item from Shopping Cart

Output events to FoodieDB
m24: FoodieItem count

Output events to Foodie Home
m6: Close Shopping List

m3/a31,a32

S1:
Foodie Home

S32:
Browse
Window

S33:
FoodieItem

selected

S34:
Additions
 to Cart

e33/m22

0.25
e35/a31

0.75

e36/m6,m24

e34/m25
0.01

S35:
 Deletions
 from Cart

S36:
Contents
 of Cart

m23/a34
0.99 m26/a35

e31/a33
0.01

e32/a34
0.99

e36/m6,m24

Figure B.6 Shopping List fsm.

488 ◾ Appendix B: Foodies Wish List Example

B.2.1.5 Admin

Input events
e41: Click on Admin Done

Input events from Account Creation
m7: Propose UserID to Admin
m13: Define User PIN to Admin

Input events from FoodieDB
m9: Approve New Member UserID
m10: Reject New Member UserID
m15: Confirm User PIN in FoodieDB
m33: FoodieItem decreased
m34: FoodieItem added
m35: Payment entered in FoodieDB

Inputs from Shopping Cart
m24: Reduce FoodieItem Count
m32: Increase FoodieItem Count

Output events
a41: Show New Member window
a42: Show Ledger Window
a43: Return to Admin Home

Output events to Account Creation
m11: New Member USerID Approved
m12: New Member USerID Rejected
m16: Defined User PIN Accepted

Output events to FoodieDB
m8: Submit UserID to FoodieDB
m14: Send User PIN to FoodieDB
m36: Increase FoodieItem inventory
m38: Decrease FoodieItem inventory

m7/m8,a41

S41: Admin
Home

S42: Check
New Member

S43: Member
Approved

m35/a42

S48: Ledger
Window

m15/m16

e41/a43

S45: PIN
Confirmation

S46: User PIN
in FoodieDB

S44: Member
Rejected

S47: Inventory
Window

m34/a43
m32/m36

m7/m8,a41

m35/a42

m15/m16

e41/a43

m34/a43
m32/m36

m7/m8,a41

m35/a42

m15/m16

e41/a43

m34/a43
m32/m36

Figure B.7 Admin fsm.

Appendix B: Foodies Wish List Example ◾ 489

B.2.1.6 Shopping Cart

Input Events
e51: Click on Checkout
e52: Click on Credit Card Interface
e53: Shopping Cart done

Inputs from Shopping List
m22: Add item to Shopping Cart
m25: Remove item from Shopping Cart

Inputs from Credit Card
m28: Payment accepted
m29: Payment rejected

Output Actions
a51: Show Checkout window
a52: Show Shopping Cart Home

Outputs to Shopping List
m23: Item added to Shopping Cart
m26: Item removed from Shopping Cart

Outputs to Credit Card
m27: Payment tendered

Outputs to FoodieDB
m30: Payment amount
m31: Shopping Cart Contents

Outputs to Admin
m24: Reduce FoodieItem count
m32: Increase FoodieItem count

S54: Checkout
window

S51: Shopping
Cart Home

S52: Shopping
Cart Addition

S53: Shopping
Cart Deletion

S55: Credit Card
Interface

S56: Ledger
Window

m29/a51

m28/m30

e53/a52m22 /m23,m24

m25/m26,m32

e51/m31 e51/m31

e52 /m27

e53/a52

Figure B.8 Shopping List fsm.

490 ◾ Appendix B: Foodies Wish List Example

B.2.1.7 FoodieDB

B.3 Dialogs Across Swim Lanes
The Account Creation, Admin, and FoodieDB finite state machines are densely con-
nected (see Figure B.10). Prominent threads among these connections are usefully
isolated as simple scenarios, which in turn will evolve into use cases and finally,
system test cases. The finite state machines in Figures B.11, B.12, and B.13 are sim-
plified versions of the full fsms, showing only those states and transitions necessary
for a scenario.

Input events
e61: User ID Found
e62: User ID Not Found
e63: Correct User PIN Entered
e64: Wrong User PIN Entered
e65: Item Count adjusted
e66: Click on Done

From Admin
m8: Submit UserID to FoodieDB
m14: Submit User PIN to FoodieDB
m36: Increase FoodieItem inventory
m38: Decrease FoodieItem inventory

From Login
m17: Entered UserID to FoodieDB
m37: Entered PIN

From Shopping Cart
m30: Payment amount
m31: Shopping Cart Contents

Output events
a61: Show UserID window
a62: Show PIN Entry Window
a63: Show Inventory Window
a64: Show Ledger Window
a65: Show Login Window
a66:Show Foodie Home

To Admin
m9: Approve New Member UserID
m10: Reject New Member UserID
m15: Confirm User PIN in FoodieDB
m33: FoodieItem inventory decreased
m34: FoodieItem inventory increased
m35: Payment entered in FoodieDB

To Login
m18: UserID OK
m19: UserID not recognized
m20: User PIN OK
m21: User PIN failed

S61: UserID
Create

S63: Login
Window

S62: Await
User PIN

e61/m9

S64: Await
PIN entry

e61/m18

S66: Increase
Inventory

S65: Inventory
Changes

m31/a63

S60: FoodieDB
Home

S68: Ledger
Window

S67: Decrease
Inventory

e61/m9 e61/m18

m31/a63

Figure B.9 FoodieDB fsm.

Appendix B: Foodies Wish List Example ◾ 491

B.3.1 Scenarios

Scenarios are numbered according to their FSM number, (e.g., Account creation sce-
narios are 1.1, 1.2, …)

Scenarios 1.1 and 1.2 are very detailed and complete. The interactions connected
with the Foodie database are more complex (three other fsms), so those scenarios
will be expressed both as state sequences and as message sequences.

B.3.1.1 Scenario 1.1: Normal Account Creation

A Foodie User proposes a UserID, sends it to Admin. Admin sends the proposed
UserID to the FoodieDB. The FoodieDB checks and finds no duplicate, so it approves
the new UserID, and confirms this to Admin. In turn, Admin confirms this to Account
Creation. The newly approved User then creates a PIN and sends it to Admin. (No
check is made on validity of a PIN, since it is local to a User.) Admin sends the PIN
to the FoodieDB, so that the FoodieDB can send it as the “Expected PIN” to Login.

The sequence of messages in scenario 1 is m1, m7, m8, m9, m11, m13, m14, m15,
m16, m4. The reason for making the state numbers global is so we can describe a
scenario as a state sequence across swim lanes. The state sequence for scenario 1 is:
S1, S10, S41, S1, S61, S62, S42, S11, S12, S43, S62, S45, S14, S1, S41, S1.

Scenario 1.1: Create a valid account

Pre-Condition: The UserID is not in FoodieDB

Account Creation Admin FoodieDB

1. e11: Enter UserID (original)

2. Send m7: Propose UserID to Admin 3. Receive m7

m1/a11

S1 Foodie
Home

S10 Account
Creation

S11 UserID
to Admin

e11/m7

S14 PIN to
Admin

S12 UserID
Approved

S13 UserID
Rejecteded

m7/m8,a41

S41: Admin
Home

S42: Check
New Member

S43: Member
Approved

m15/m16

S45: PIN
Confirmation

S46: User PIN
in FoodieDB

S44: Member
Rejected

S1: FoodieDB
Home

S61: UserID
Create

S62: Await
User PIN

m8/a61

e61/m9

e62/m10
m1/a11

e11/m7

m7/m8,a41

m15/m16

m8/a61

e61/m9

e62/m10

Figure B.10 Messages Among three fsms.

(Continued)

492 ◾ Appendix B: Foodies Wish List Example

Scenario 1.1: Create a valid account

4. Send m8: Submit
UserID to FoodieDB

5. Receive m8

7. Receive m9 6. Send m9: Approve
New Member UserID

9. Receive m11 8. Send m11: Proposed
UserID Approved

10. e12: Create User PIN

11. Send m13: Defined User PIN to Admin 12. Receive m13

13. Send m14: Send User
PIN to FoodieDB

14. Receive m14

16. Receive m15 15. Send m15: Confirm
User PIN in FoodieDB

18. Receive m15 17. Send m16: Defined
User PIN Accepted

19. Send m4: Account Creation complete

Post-Condition: The UserID is in FoodieDB

m1/a11

S1 Foodie
Home

S10 Account
Creation

S11 UserID
to Admin

e11/m7

m11

S14 PIN to
Admin

S12 UserID
Approved

e12/m13,a12

m7/m8,a41

S41: Admin
Home

S42: Check
New Member

S43: Member
Approved

m9/m11

m13/m14

m15/m16

S45: PIN
Confirmation

S46: User PIN
in FoodieDB

S60: FoodieDB
Home

S61: UserID
Create

S62: Await
User PIN

m8/a61

e61/m9

m8

m9

m1/a11

e11/m7

m11

e12/m13,a12

m7/m8,a41

m9/m11

m13/m14

m15/m16

m8/a61

e61/m9

m8

m9

Figure B.11 Message Communication in Scenario 1.

Appendix B: Foodies Wish List Example ◾ 493

B.3.1.2 Scenario 1.2: Duplicate UserID found

Foodie User creates a UserID, sends it to Admin. Admin sends the potential UserID
to the FoodieDB. The FoodoeDB checks and finds a duplicate, so it rejects the new
UserID, and confirms this to Admin. In turn, Admin confirms this to Account Creation.
This rejection makes user PIN creation impossible.

The sequence of messages in scenario 2 is m1, m7, m8, m10, m12, m4.The rea-
son for making the state numbers global is so we can describe a scenario as a state
sequence across swim lanes. The state sequence for scenario 1 is: S1, S10, S41, S1,
S61, S42, S44, S11, S13, S1.

Scenario 1.2: Create an invalid account

Pre-Condition: The UserID is already in FoodieDB

Account Creation Admin FoodieDB

1. e11: Enter UserID (duplicate)

2. Send m7: Propose UserID to Admin 3. Receive m7

4. Send m8: Submit UserID to
FoodieDB

5. Receive m8

7. Receive m10 6. Send m10: Reject New
Member UserID

9. Receive m12 8. Send m12: Proposed UserID
Rejected

10. e13: Click on Exit

11. Send m4: Account Creation
complete

Post-Condition: Attempt failed.

Figure B.12 Message Communication in Scenario 1.2.

m1/a11

S1 Foodie
Home

S10 Account
Creation

S11 UserID
to Admin

e11/m7

e13/m4

S13 UserID
Rejecteded

m12

m7/m8,a41

S41: Admin
Home

S42: Check
New Member

m10/m12

S44: Member
Rejected

e44/a44

S60: FoodieDB
Home

S61: UserID
Create

e62/m10

m8

m10

m12

494 ◾ Appendix B: Foodies Wish List Example

B.3.1.3 Scenario 1.3: Partial Account Creation (no PIN definition)

A Foodie User creates a UserID, sends it to Admin. Admin sends the potential UserID
to the FoodieDB. The FoodieDB checks and finds no duplicate, so it accepts the
new UserID, and confirms this to Admin. In turn, Admin confirms this to Account
Creation. The newly approved user chooses to define a PIN at some later session.

The sequence of messages in scenario 1 is m1, m7, m8, m9, m11, m4. The rea-
son for making the state numbers global is so we can describe a scenario as a state
sequence across swim lanes. The state sequence for scenario 1 is: S1, S10, S41, S1,
S61, S42, S11, S12, S1.

B.3.1.4 Scenarios and Test Coverage for Login

In this subsection, we develop Login constituent Scenarios 2.1 through 2.5. Foe each
scenario, we identify the state sequence and the sequence of events and messages
embedded in the state sequence. These reappear in chapter 13 in the discussion of
test coverage for Systems of Systems.

B.3.1.4.1 Scenario 2.1: Valid Login, PIN correct on 1st try

Scenario 2.1: Valid Login, PIN correct on 1st try

Pre-Condition: The UserID and PIN are in FoodieDB

Account Creation FoodieDB

1. e21: Enter valid UserID

2. Send m17: Entered UserID to FoodieDB 3. Receive m17

5. Receive m18 4. Send m18: User ID OK; expected PIN

6. e23: Enter User PIN = expected PIN

m1/a11

S1 Foodie
Home

S10 Account
Creation

S11 UserID
to Admin

e11/m7

e13/m4

S12 UserID
Approved

m11

m7/m8,a41

S41: Admin
Home

S42: Check
New Member

m9/m11

S43: Member
Approved

e44/a44

S60: FoodieDB
Home

S61: UserID
Create

m8/a61

m8

m9

m1/a11

e11/m7

e13/m4

m11

m7/m8,a41

m9/m11

e44/a44

m8/a61

m8

m9

Figure B.13 Message Communication in Scenario 1.3.

Appendix B: Foodies Wish List Example ◾ 495

Scenario 2.1: Valid Login, PIN correct on 1st try

7. Send m37: Entered PIN 8. Receive m37

10. Receive m20 9. Send m20: User PIN OK

11. Send m5: Close Login

Post-Condition: The UserID is logged in

State Sequence: <S1, S21, S60, S63, S22, S23, S24, S1>
Event/Message/State Sequence: < S1, m2, S21, e21, S22, m17, S60, S61, m18, S23,

e23, S24, m37, S64, e23, m37, m20, m5>

B.3.1.4.2 Scenario 2.2: Valid Login, PIN correct on 2nd try

Scenario 2.2: Valid Login, PIN correct on 2nd try

Pre-Condition: The UserID and PIN are in FoodieDB

Account Creation FoodieDB

1. e21: Enter valid UserID

2. Send m17: Entered UserID to FoodieDB 3. Receive m17

5. Receive m18 4. Send m18: User ID OK; expected PIN

6. e24: Enter User PIN ≠ expected PIN

7. Send m37: Entered PIN 8. Receive m37

10. Receive m21 9. Send m21: User PIN failed

11. e23: Enter User PIN = expected PIN

12. Send m37: Entered PIN 13. Receive m37

15. Receive m20 14. Send m20: User PIN OK

16. Send m5: Close Login

Post-Condition: The UserID is logged in

State Sequence: <S1, S21, S22, S23, S25, S26, S27, S1>
Event/Message Sequence: <m2, e21, m17, m18, e24, m37, m21, e23, m37, m20, m5>

B.3.1.4.3 Scenario 2.3: Valid Login, PIN correct on 3rd try

Scenario 2.3: Valid Login, PIN correct on 3rd try

Pre-Condition: The UserID and PIN are in FoodieDB

Account Creation FoodieDB

1. e21: Enter valid UserID

2. Send m17: Entered UserID to FoodieDB 3. Receive m17

496 ◾ Appendix B: Foodies Wish List Example

Scenario 2.3: Valid Login, PIN correct on 3rd try

5. Receive m18 4. Send m18: User ID OK; expected PIN

6. e24: Enter User PIN ≠ expected PIN

7. Send m37: Entered PIN 8. Receive m37

10. Receive m21 9. Send m21: User PIN failed

11. e24: Enter User PIN ≠ expected PIN

12. Send m37: Entered PIN 13. Receive m37

15. Receive m21 14. Send m21: User PIN failed

16. e23: Enter User PIN = expected PIN

17. Send m37: Entered PIN 18. Receive m37

20. Receive m20 19. Send m20: User PIN OK

21. Send m5: Close Login

Post-Condition: The UserID is logged in

State Sequence: <S1, S21, S22, S23, S25, S26, S28, S29, S30, S1>
Event/Message Sequence: <m2, e21, m17, m18, e24, m37, m21, e24, m37, m21, e23,

m37, m20, m5>

B.3.1.4.4 Scenario 2.4: Invalid Login, PIN failed on 3rd try

Scenario 2.4: Invalid Login, PIN failed on 3rd try

Pre-Condition: The UserID and PIN are in FoodieDB

Account Creation FoodieDB

1. e21: Enter valid UserID

2. Send m17: Entered UserID to FoodieDB 3. Receive m17

5. Receive m18 4. Send m18: User ID OK; expected PIN

6. e24: Enter User PIN ≠ expected PIN 8. Receive m37

7. Send m37: Entered PIN 9. Send m21: User PIN failed

10. Receive m21

11. e24: Enter User PIN ≠ expected PIN

12. Send m37: Entered PIN 13. Receive m37

15. Receive m21 14. Send m21: User PIN failed

Appendix B: Foodies Wish List Example ◾ 497

Scenario 2.4: Invalid Login, PIN failed on 3rd try

16. e24: Enter User PIN ≠ expected PIN

17. Send m37: Entered PIN 18. Receive m37

20. Receive m21 19. Send m21: User PIN failed

21. Send m5: Close Login

Post-Condition: The UserID is NOT logged in

State Sequence: <S1, S21, S22, S23, S25, S26, S28, S29, S31, S1>
Event/Message Sequence: < m2, e21, m17, m18, e24, m37, m21, e24, m37, m21,

e24, m37, m21, m5>

B.3.1.4.5 Scenario 2.5: Invalid Login, no PIN try

Scenario 2.5: Invalid Login, no PIN try

Pre-Condition: The UserID and PIN are in FoodieDB

Account Creation FoodieDB

1. e22: Enter invalid UserID 3. Receive m17

2. Send m17: Entered UserID to FoodieDB 4. Send m19: User ID not recognized

5. Receive m19

6. Send m5: Close Login

Post-Condition: The UserID is not logged in

State Sequence: <S1, S21, S22, S1>
Event/Message Sequence: <m2, e22, m17, m19, m5>

B.3.1.5 Summary of Event/Message Sequences for Scenarios 2.1 to 2.5

Scenario 2.1: Valid Login, PIN correct on 1st try
Event/Message <m2, e21, m17, m18, e23, m37, e23, m37, m20, m5>

Scenario 2.2: Valid Login, PIN correct on 2nd try
Event/Message Sequence: <m2, e21, m17, m18, e24, m37, m21, e23, m37, m20, m5>
Scenario 2.3: Valid Login, PIN correct on 3rd try
Event/Message Sequence: < m2, e21, m17, m18, e24, m37, m21, e24, m37, m21, e23,

m37, m20, m5>

498 ◾ Appendix B: Foodies Wish List Example

Scenario 2.4: Invalid Login, PIN failed on 3rd try
Event/Message Sequence: < m2, e21, m17, m18, e24, m37, m21, e24, m37, m21, e24,

m37, m21, m5>

Scenario 2.5 Invalid Login, no PIN try
Event/Message Sequence: <m2, e22, m17, m19, m5>

B.3.1.6 Test Coverage of Scenarios 2.1–2.5

To have full state coverage, we can test scenarios 2.2, 2.3, 2.4, and 2.5. To have full
event coverage and full message coverage, we can test scenarios 2.1 and either 2.3
or 2.4. To have full state, event, and message coverage, we must test scenarios 2.1,
2.2, 2.3, 2.4, and 2.5.

Scenario 4: End-to-End Login to Purchase Transaction

 1. A Foodie User logs in with a valid UserID that is sent to the FoodieDB. (m11).
S1, S22, S23, S1

 2. It is recognized with a message back to Login (m12). S1, S62, S1
 3. The Foodie user then enters a valid PIN on the first try (m14); S1, S24, S27, S1
 4. it is sent to the FoodieDB (m14), S1, S64, S1
 5. and FoodieDB acknowledges this (m17), and the Foodie user is returned to the

main menu at Foodie Home (S1).
 6. From the Foodie Home screen, the Foodie user navigates to the Browse Window.

After a series of cursor movements, selects a FoodieItem and sends it to the
Shopping Cart (m19). S1, S32, S33, S35, S1

 7. The Shopping Cart confirms this (m20); S51, S52, S53,
 8. and the User goes to the Checkout window S54
 9. The User enters a credit card payment (m24) S55 and receives confirmation

from the credit card company (m25). S56, S1 and records this with the FoodieDB
(m27) and requests the appropriate inventory reduction (m28). S1, S69.

 10. The Admin (S41) receives the message (m28), S47 and instructs the FoodieDB
to add the needed Foodie items

 11. (m 33)
 12. The FoodieDB confirms the payment (S69) and notifies the Admin (m32). In

response to message m33 (from Admin) the FoodieDB updates the inventory
(m33) and confirms this to Admin (m 31). S1, S69, S1,

 13. Also, in response to message m28, the Foodie DB S67, S68 and sends message
m30 to Admin.

State sequence for Scenario 3: S1, S22, S23, S1, S62, S1, S24, S27, S1, S64, S1, S32, S33,
S35, S1, S51, S52, S53,S54, S55, S56, S1, S69, S1, S67, S68, S1.

Appendix B: Foodies Wish List Example ◾ 499

Scenario: Normal purchase of one FoodieItem, payment accepted

Web Swim Lane Controlling Swim Lane FoodieDB Swim Lane

Shopping List Shopping Cart/
Credit Card

Admin FoodieDB

e31: Cursor
movement

e32: Select Foodie
item

e33: Move Foodie
item to Shopping
Cart

Send m22: Add item
to Shopping Cart

Receive m22

Receive m23 Send m23: Item
added to Shopping
Cart

Send m24: Reduce
FoodieItem Count

Receive m24

Send m38: Decrease
FoodieItem inventory

Receive m38

Receive m33 Send m33: FoodieItem
inventory decreased

Send m31: Shopping
Cart contents

Receive m31 Receive
m31

e53: Click on Credit
Card Interface

Send m27: Payment
tendered

Receive m27

Receive m28:
Payment accepted

Credit Card sends
m28:Payment accepted

Receive m30 Send m30: Payment
amount

Receive m35 Send m35: Payment
entered in FoodieDB

Receive m33 Send m33: FoodieItem
inventory decreased

e36: Done shopping e54: Shopping Cart
done

e41: Click on Admin
Done

e66: Click on Done

500 ◾ Appendix B: Foodies Wish List Example

B.4 Object-Oriented Design
The FSMs introduced earlier (e.g., Account Creation, Login, Shopping List, Administration,
Shopping Cart, Foodie Database) define behavioral specifications that can be used to
create analogous implementations. In object-oriented design, each of the FSMs repre-
sents the collective behaviors of a thing or an object or multiple things or objects. The
messages in Table B.3 define the messages, or function calls, between the objects in
the implementation represented by classes.

Importantly, the classes created for each of the FSMs fall into three different cat-
egories or tiers or layers in an n-tier architecture where tiers are physically separated
(e.g., separate servers) and layers are only logically separated. In the case of the
Foodies Wish List application, there are three categories, or tiers/layers, composing
a three-tier application. The first of these tiers is the presentation tier that resides on
the user’s device to create the interface for the user. One tier removed from the user
is the domain logic tier that typically resides on the server in a client-server architec-
ture and manages domain logic and rules that support the expected behavior of the
application. Finally, the data storage tier resides in the database server and stores the
application data. The three tiers match the swim lanes presented in Figure B.1. An
intermediate object is added (e.g., FoodieDBAccess) to accomplish communication
across a tier (e.g., when the Login use-case directly communicates with the Foodie
Database).

Organizationally, the classes communicate with each other across tiers as shown in
Figure B.14. Classes in the presentation tier communicate with classes in the domain
logic tier which then communicate with the FoodieDB in the data storage tier.

Table B.3 Class Categories

FSM Class Name Category or Tier/Layer

Account Creation AccountCreationPage Presentation

Login LoginPage

Shopping List ShoppingListPage

Shopping Cart ShoppingCartPage

ShoppingCart Domain Logic

Administration AdministrationRules

Foodie Database FoodieDBAccess

FoodieDB Data Storage

Appendix B: Foodies Wish List Example ◾ 501

Presentation Domain Logic Data Storage

AccountCreationPage

LoginPage

ShoppingListPage

ShoppingCartPage

AdministrationRules

FoodieDBAccess

ShoppingCart

FoodieDB

Presentation Domain Logic Data Storage

AccountCreationPage

LoginPage

ShoppingListPage

ShoppingCartPage

AdministrationRules

FoodieDBAccess

ShoppingCart

FoodieDB

Figure B.14 Foodie Wish List Classes.

https://taylorandfrancis.com

503

Index

Page numbers in italics refer to figures and those in bold refer to tables.

A

accountability, 451, 453–454
Account Creation (Foodies Wish List), 405,

405, 482, 482–483, 484–485, 488,
491–497, 501

Account Creation FSM, 482, 485, 490, 500, 500
acknowledged systems of systems (Lane),

375–376, 383, 386, 390
Air Traffic Management System, 376, 377

action coverage, 317
action entries, 116, 119–120, 123, 235, 237, 368
action items, 447, 452, 454–455, 458, 458–459
actions, 70, 121, 123, 139, 145, 235, 237–240, 268,

303, 306, 318, 384, 403, 411, 413–414
action stub, 116, 122
Activate (ESML prompt), 341, 383–384, 384, 391
active state (notion), 66
activities and space (Zipf’s Law), 22, 324
Actors, 379, 380–381
Ada®, 59, 79, 81, 133
Adams, Scott, 456
addition, 156–157, 164
adjacency matrices, 55, 55–56, 56, 57, 62, 325

Calendar call graph, 263, 264, 265
definition, 362
directed graph, 60–61, 61
integrationNextDate, 363

Administration (Foodies Wish List), 405, 405, 406,
482, 482, 484–485, 489–491, 491–493,
494, 498, 499, 501

Administration FSM, 283–284, 396, 488, 490,
500, 500

age ranges
endpoint, 217
insurance premium case study, 214, 215, 216

agile development, 197, 412
agile lifecycles, 232–233

characteristics, 234
Agile Manifesto (2001), 234
agile methods, 231

bottom- up, 230

agile model- driven development (AMDD), 245
agile programming, 191, 249, 463, 465
agile testing, 234–246

agile model- driven development, 245
behavior driven development, 235–240
extreme programming, 242
generic agile lifecycle, 234
model driven agile development, 245–246, 246
scrum, 242–243, 243
test- driven development, 243–244, 244
use cases, 241
user stories, 234–241
user story granularity, 247

Agresti, W.W., 229
Air Traffic Management System, 383–384

acknowledged SoS, 376
Chicago incident (1993), 381, 381
classes, 379–380
constituents, 377
use cases and sequence diagrams, 379–382

aircraft, mid- air collision with bird, 334
all pairs algorithm, 435, 438–440, 442
allpairs.exe program (Bach), 433, 434, 442

input for currency conversion GUI, 437
input in different order, currency

conversion GUI, 438
test cases for currency conversion GUI,

437, 438
test cases for NextDate, 435, 436

all pairs technique, 431–439
failures due only to pairs of inputs, 439
independent variables, 433–435, 436
input order, 435–439
program inputs, 433

all pairs testing, 81, 231, 431–442
appropriate applications, 440–441, 441
NIST study, 440, 442
recommendations, 441–442

all possible paths coverage (Miller), 140
alphanumeric characters, 16
Ambler, Scott, 245

504 ◾ Index

Anna Karenina principle, 143
anomaly, 10, 239
ANSI Standard 187B, 137
Apel, Sven, 393
application lifecycle management (ALM), 343
arcs, same as “edges”, 53
Aristotle, 392, 399–400
army field telephone switching center, 333–334
ASF graph, definition, 293
ASF sequences, 305, 309
assert mechanism (JUnit), 258
associative laws, 39, 48
ATM Simulator, 469–472
ATM system, 316–317
ATM user interface screens, 470
atomic propositions, same as simple

propositions 141
atomic system function (ASF), 291–292–293,

305, 336
definition, 293

audits, 446, 446
automated object mocking, 169–171
automatic regression testing system (ARTS),

310, 310
automatic test execution (ATE) system, 311, 343,

417, 423–424, 430
avvinare, 338, 341

B

Bach, James, 431, 442
backward slices, 191, 199, 203, 209
balanced decomposition, 302
Ball, Thomas, 190
banking system, UML inheritance, 184, 184
baseline method (McCabe), 157–158
basis (mathematical notion), 156
basis of vector set, definition, 157
basis path algorithm, 158, 160
basis path technique, 212–213
basis path testing, 156–162, 203, 203
Batory, D., 393
BDD decision table, 235–240

action added for customer notification, 239
action entries added, 237
conditions interchanged, 237–238
final version, 241
group of rules collapsed into one rule, 238
response to invalid card, 237
rules, 236–240, 238–240
rules combined, 239–240
rules completed, 240

BDD scenarios, 350, 410, 430
definition, 235, 411
Extended FSM, 412–414
Garage Door Controller, 411, 412

Beck, Kent, 165, 242

behavior, 340–341
“prescribed” versus “proscribed”, 316

behavioral issues, 341
behavioral models, 318, 337
behavior- driven development (BDD), 25–28,

234–240, 409
bottom- up approach, 239
completeOrder method, 108
Garage Door Controller, 410–411, 410, 411–412

Beizer, Boris, 138
Berger, Bernie, 432
best practices, 462–465

careful definition and identification of levels of
testing, 463, 466

carefully performed technical inspections, 463
exploratory testing during maintenance, 465
incidence matrices to guide regression

testing 464
intelligent combination of specification- based

and code- based unit level testing, 465
model- based testing at all levels, 464
system testing extensions, 464
test- driven development, 465
use of appropriate tools at all testing

levels 465
use of xUnit and object mocking at unit

level 464
best practices (mapped to diverse projects),

465–466, 466
legacy code, 466, 466
mission critical project, 465, 466
time critical project, 465, 466

beyond unit testing, 225–468
all pairs testing, 431–442
feature interaction testing, 391–407
integration testing, 253–289
life cycle- based testing, 227–251
model- based testing, 337–352
software complexity, 353–372
software technical reviews, 443–459
software testing excellence, 461–468
system testing, 291–336
testing event- driven systems (case study),

409–430
testing systems of systems, 373–390

Bieman, 190
“big bang” approach, 229, 253–254, 258–259,

261, 289
Big Design Up Front (BDUF), 245
binary arithmetic operators, 16
Binder, Robert V., 183, 314–315
bipartite graph, 67–68
black box testing, 7, 7, 8
blobs: interpreted as states, 73
Boehm, B., 230, 232, 234, 443–444, 444

spiral model, 231
Boolean expressions, 140–141–142

Index ◾ 505

Boolean functions, 249
Boolean operators, 140, 140–141
Boolean variables, 16, 82, 140, 143
bottom line, 205

definitions, 156–157
Efficient Triangle Program, 204–205,

206–207, 212
effort and efficacy, 203
essential complexity, 160–162
McCabe’s method, 157–163

bottom- up approach, 244, 247–248, 295, 412
bottom- up development, 234, 413
bottom- up integration, 229, 258, 258–259
bottom- up testing order, 227–228
boundary value analysis, 8, 222, 222
boundary value technique, 212–213
boundary value test cases, 163

insurance premium case study, 213, 218–220
boundary value testing (BVT), 79–95, 98–99, 101,

108, 110, 128, 138–139, 202, 202, 203
effort and efficacy, 203
guidelines, 93–95
independent considerations, 79
input domain of function of two variables, 80
normal BVT, 80–82
path coverage of normal boundary values,

210, 211
path coverage of worst- case values, 210, 211
random testing, 92, 92–93
rationale, 80
robust BVT, 82–83
shortcomings, 97
special value testing, 85
traversing test method pendulum, 210, 211
worst- case BVT, 83–85

boundary value testing (examples), 85, 86–91
NextDate function, 85, 87–91
normal test case, 86
test cases for Triangle Problem, 85, 86–87
worst- case boundary value test cases, 86–87

bounded function, 111
bounded variables, 92, 98
Bourgeois Gentilhomme (Molière, 1671), 337
Brooks, Fred P., 462
Brown, J.R., 19, 204
Bruyn, W., 383
bugs, xix, 466

definition, 3
builds, 264, 464
build sequence, 230, 230, 231
Busy Hour Call Attempts (BHCAs), 333

C

C, 59, 133
C#, 166
C++, 166

calculus, 33–34, 36, 53
Calder, Muffy, 392
Calendar call graph (adjacency matrix), 264,

265, 265
Calendar Program

call graph- based integration, 260–265
cyclomatic complexities of MM paths, 268
functional decomposition tree, 254
lexicological inclusion, 256
neighborhood integration, 262–264
procedural integrationNextDate, 269–275
pseudo code, 255–256
top- down integration, 256–258

call forwarding, 391, 401
call graph- based integration, 260–265, 268

Calendar Program, 260
neighborhood integration, 262–264
pairwise integration, 261–262
procedural integrationNextDate, 270–275
pros and cons, 264–265

call graphs, 181–182, 280, 353
comparison with other integration testing

strategies, 275
definition, 361
directed graph, 261
procedural integrationNextDate, 269, 272
units in procedural integrationNextDate, 361
units replaced by numbers, 263

calling party identification problem, 400–401
Calvin and Hobbes, 333
capacity testing, same as “stress testing”, 332–334
cardinality, 42–43, 44, 48–49

“essentially a binary property”, 44
Cartesian product, 36, 39–40, 42–43, 84, 100, 102,

121–124
definition, 37

case/switch, 65, 141–142
program graph, 132

“cattle pens”, and cyclomatic complexity, 355,
355, 356

CAUSE, 287, 288, 310–314, 417, 424, 426, 429
cause and effect graphing, 115, 127–128, 128
caviar, 398, 398, 481
century years, 21–22
chain coverage, definition, 136
chain, definition, 62, 134, 134
checklists, 10, 382, 446, 446, 449, 451, 454,

456–457, 476–478
Checkout, 316, 498
Chellappa, Mallika, 19
Chicago aircraft incident (1993), 381, 381, 382,

383, 386
swim lane description, 389

Chidamber, S.R., 181
Chidamber/Kemerer (CK) metrics, 181, 369
Chilenski, John Joseph, 140–143
circuits, 57, 127

506 ◾ Index

Clarke, Lori A., 19, 171
class aggregation, 174
class diagrams, 340
classes, 77, 183, 185, 202, 214, 347, 364, 364,

368–369, 378–380, 432, 439, 464, 500
use cases, 300–301

class/object definition, 19
clear box testing, same as “code- based testing”, 8
COBOL, 59, 97, 133, 171, 462

static applications, 441
code- based techniques, comparison with

specification- based techniques, 212–213
code- based testing, xix, 8–9, 12, 15, 98, 131–164,

201–204, 244, 246, 249, 291, 314, 354
basis path testing, 156–162
code coverage metrics, 135–156
comparison of test case identification

methods, 8
DD- Paths, 132–135
detractors, 132, 134
distinguishing characteristic, 131
guidelines and observations, 163
insurance premium case study, 218–220
intelligent combination with specification-

based unit level testing, 465, 466
path testing (two most common forms), 131
program graphs, 131–132
punishment- fits- crime approach, 222

code- based testing examples
capabilities of selected code coverage

tools, 156
compound condition from NextDate, 143–147
compound condition from Triangle Program,

149–150
condition with two simple conditions, 143–147
Java code for NextDate function tests, 151–155
JUnit test results, 155–156
model- based (decision table) code coverage

metrics, 147–148, 148
program graph- based coverage metrics,

147–148
test coverage analyzers, 150

code coverage metrics, 135–156, 222, 466
compound conditions, 140–143
examples, 143–155
Miller’s coverage metrics, 136–140
model- based (decision table), 147–148, 148
program graph- based coverage metrics,

135–136
code coverage tools: capabilities, 156
code structuring precepts (sequence, selection,

repetition), 341
code with compound conditions, 143–155
coffee, 398, 399, 481

Petri nets, 404, 404–405
co- functionality testing, 275
co- functioning, 265

cohesion, 182–183
collaborative systems of systems, 375, 383,

386, 390
definition (Maier), 374

combination (functional/structural) testing, 265
combinatorial circuits, 400, 441
combinatorial explosion, 432
comments, 66, 249
commercial tools (model- based testing), 342–348

Conformiq, 343–346
“reactive” versus “transformational”

(Harel), 342
TestOptimal, 342–343, 344
Verified Systems International GmbH, 346–348

communicating finite state machines, 320
dialog involving four constituents, 308–309
identifying threads in systems of systems, 305,

307–308, 308–309
normal purchase of One FoodieItem, 308–309

communicating FSMs to test cases (system level),
313–314

communication primitives for systems of systems,
382–389, 391

ESML prompts as Petri nets, 383–386
new prompts as Swim Lane Petri Nets,

386–389
communication traffic (interfaces among

units), 361
commutative law, 39, 48
compilers, 112, 171
complementation laws, 39, 48
complement, definition, 36
complete decision tables, 116–117, 119–120
completeness (notion), 45, 97, 100
completeOrder method, 112

coverage of strong normal equivalence
classes, 110

coverage of weak normal equivalence
classes, 110

equivalence class testing, 108–110
reduced decision table, 109
robust forms of equivalence class testing, 110
strong normal equivalence classes, 109
weak normal equivalence classes, 109

complete statement, “default” statement fragment,
131

complexity, 248; see also software complexity
complexity metrics, 181–182
complex loop coverage, 138–139, 139
complex system, versus “system of systems”, 374
components, 228, 392

early delivery, 234
failure rates, 334

components of graph, 58
definition, 57

composition, 183, 264
compound condition coverage, 148

Index ◾ 507

compound conditions, 138, 143–155, 220, 223,
250, 250, 357–358

Boolean expression, 140–141
coupled conditions, 141
masking conditions, 141
modified condition decision coverage, 142–143
NextDate, 143–147
program graph, 143, 147
Triangle Program, 149–150

compound If statement, 250
compound proposition, 140–141
compression (stress- testing strategy), 333, 335
computational complexity, 358–361

Day of Week with Zeller’s Congruence,
359–361

Halstead Metrics, 358
computation faults, 11
computation use (C- use), 172–173, 174, 192, 207
computer- aided software engineering (CASE),

36–37, 73, 80
concatenated loops, 138, 139
concurrency, 318, 339, 484
concurrent statecharts, 74, 74–75
condensation graphs, 57–58, 136, 138, 140, 160

DD- Path graph, 134–135, 135
strong components, 64

condensing nodes, 57
conditional statements, 17–18
condition coverage, 149, 220
condition, definition, 141

operand of Boolean operator, 141
condition stub, 116
condition test, 136
conditions, 119, 121, 122, 145, 150, 212, 235,

237–238, 237–240, 318
choice, 116
NextDate, 116–117, 118
strong or weak coupling, 141
triplet (weakly coupled), 141

configuration item, 449, 455
configuration management, 246–248, 257,

448–449, 455
conflicting UserIDs, 395
Conformiq, 343–346

Garage Door Controller, 344, 345, 346
insurance premium problem, 343, 344

congruence, 45, 50
conjunction, 17, 46–47, 50, 142, 313, 327, 336,

400
connectedness, 57, 73
connectivity, 55, 58, 61, 202, 325, 327
constituents, 320, 320–321, 321–323, 326, 386,

387–389, 390
dialogs among, 305–309

contradiction (proposition always false),
47–49, 149

contradictories, 400, 400, 402

contraries, 400, 400, 401, 402
contribution (notion), 191–192
control center (system of systems), 374, 375
control complexity, 358
control flows, 17–19, 343
controlled action (transition), 384, 384, 385
control signals, 422–423
control statements, 142
control transfer, 265–266
cooperation, four levels, 382
corporate culture, 453, 455
cost- benefit ratio, 445
cost weighting, 327
coupling, 141, 183
Coupling between Classes (CBC), 181–182, 367
coverage metrics for system testing, 314–320

best practice, 314–315
input event and action coverage, 317
model- based test coverage, 314, 318, 319,

319–320
use case- based test coverage, 314–317

coverage report, 150, 465
Cox, Brad, 467
CPPUnit for C++, 166
craft motif, xix–xx, 9, 85, 99, 104, 111, 163, 201, 204,

253, 291, 461–463, 467–468
creativity, 461, 463
Credit Card Interface, 282–283, 308, 378, 484,

489, 499
cross- check, 250, 268, 318
cross product, 85, 108, 173, 215, 432

same as “Cartesian product”, 37
currency conversion GUI

allpairs.exe input, 437
allpairs.exe input in different order, 438, 438
allpairs.exe test cases, 437–439, 439

currency converter, 435–437, 441
allpairs.exe program outputs, 437, 438
equivalence classes, 437, 437
error messages, 437

customer- driven development, 228, 234
customer requirements, 234, 469–472
customers, 229, 232, 445
cycle, definition, 61
cyclomatic complexity, 58, 128, 143, 160–162, 182,

204, 219, 223, 251, 269, 353–358
“cattle pens”, 355, 355, 356
decisional complexity, 357–358
definition, 354
effect of adding edges, 75
integration level, 362–363
MM- Paths, 268, 268
node outdegrees, 356
reduced outdegrees, 356, 356
source code, 368
theorem, 356

cyclomatic number, 58, 157–158, 160

508 ◾ Index

D

data, 12, 45, 165, 168–169, 171, 182, 213, 213,
253, 266, 325, 367, 399–403, 405, 433,
437, 441, 444, 484

databases, 41, 169, 295, 321, 377, 395, 399, 402,
467

intension and extension, 191
data declaration statements, 66, 191, 197
dataflow analysis, 165, 171, 275

traversing test method pendulum, 204–205,
205, 206

dataflow diagrams, 60, 302, 338, 339, 340, 383
dataflow technique, 139, 212–213
dataflow testing, 138, 162–163, 171–181, 202, 202,

206–207, 221, 223, 315
define- use testing definition, 171–172
define- use testing example, 174–181
define- use testing metrics, 173, 174
Foodies Wish List, 24–29
insurance premium case study, 220
reality check on path testing, 171
revelation of “deeper faults”, 248

data interactions in square of opposition, 400
data items, 400
data modeling, 42–43, 191
data places, 70–71, 71, 72, 392, 403
data storage tier, 500, 500, 501
dateToDayNum (Calendar Program), 262, 263
dayNumToDate, 261, 261–262, 263
DD- Path coverage, 136–137, 137, 150, 163, 218
DD- Path graph, 134, 136–137, 266, 358, 366

Triangle Program, 135
DD- Path testing, 137
DD- Paths (decision- to- decision paths), 132–135,

139–140, 160, 246, 266–267, 292,
318, 358

definition (chain of statement fragments), 134
dependent pairs, 138
raison d’être, 135
program graph, 134

DeMorgan’s laws, 39, 48
DeVries, Byron, xix–xx

biography, xxi, 418
master’s thesis (2013), 339–340

decisional complexity, 357–358
decision coverage, 143, 145, 150
decision rules, advantages and disadvantages,

34–35
decisions, 66, 343, 358
decision tableau method, 115
decision table- based testing, 8, 115–129

cause and effect graphing, 127–128, 128
guidelines and observations, 128
test cases for NextDate function, 121–127,

125–127
test cases for Triangle Problem, 120, 121

decision table rules, 435
decision tables, 82, 112, 150, 229, 249, 249, 340,

342, 400, 407, 410, 437
basic information, 115–116
BDD, 235
BDD scenarios (Garage Door Controller), 411,

412
complexity mechanism, 368
condition portion and action portion, 116
example program fragment, 139
expressive capability, 341
first rule, 26
Foodies Wish List, 26–29
force top- down view, 239
impossible rules, 119, 119
inconsistent type, 120
insurance premium case study, 217, 217
iteration, 128
model of choice for static interactions, 406
mutually exclusive conditions, 118
nondeterministic type, 120
redundant type, 119, 120
rules, 116
sample, 115
scalability issue, 128
thread testing “cumbersome”, 318
three conditions, seven actions, 108
Triangle Problem, 116, 117, 150
use cases, 297

decision table techniques, 116–120, 122, 212–213
decision table terms, 115
decision table test cases, insurance premium case

study, 217
decision table testing, 202, 202, 203, 222, 222

effort and efficacy, 203
declarative programming languages, 59
decomposition, 183, 302
decomposition- based integration, 253–260, 268

bottom- up integration, 258, 258–259
procedural integrationNextDate, 269–270,

271–272
pros and cons, 259–260
sandwich integration, 258–259, 259, 260,

263–264
top- down, 256–258, 257; see also functional

decomposition
decomposition tree, 253–254, 254, 258–260, 262
deduction, 47
deductive syllogism, 47
defect, definition, 3
defect discovery, 445
define/reference relationship, 138, 171
define/use notions, 54, 165, 191, 203, 275
define/use testing

definitions, 171–172
example, 174–181
metrics, 173, 174

Index ◾ 509

defining nodes, 191–192, 206
definition, 172

definition- clear path with respect to variable
(dc- path), 172, 181, 203, 207

definition- use path with respect to variable
(du- path), 172, 181, 197, 206–207,
209, 221

all- du- paths criterion, 173
disadvantage versus slice- based testing, 209
feasible, 207, 208
possible, 206
testing (effort and efficacy), 203

degree of node, 54, 362
dependencies, 143, 169, 202–203, 304, 320,

378, 433
input domain, 121

Depth of Inheritance Tree (DIT), 181–182, 367
design code test, 234, 243
design object, 248, 455
design phase, 125, 229, 245, 444
detailed design phase, 12, 230, 230, 231
determinism, definitions, 406
Deutsch, Michael S., 254
development phase, 4, 10, 227, 444, 446, 449
devices, 70, 440

failure modes, 425
dialogs

across swim lanes (Foodies Wish List),
490–499

formalized as scenarios, 306, 306–307
as sequences of ASFs, 305, 309

dialogs among constituents, 305–306, 306–307
test cases derived from, 306

dialog scenarios to test cases (system level), 313
digraph, same as “directed graph”, 58
directed acyclic graph (DAG), 64, 132, 136
directed graphs, 36–37, 53, 58–64, 157–158, 163,

204, 262, 267, 318, 335, 354–356,
361–362, 368, 418

adjacency matrix, 60–61, 61
chain of nodes, 134
with a cycle, 63
definition, 58–59
EDPNs, 70
equivalent graphs, 61, 61
example, 59
finite state machines, 66
four forms of n- connectedness, 402, 402
indegrees and outdegrees, 59–60, 59
n- connectedness, 63
nodes (types), 60
paths and semipaths, 61–62
Petri nets, 67–68
program graphs, 65, 131
reachability matrix, 62, 62–63
recording family relationships, 61
strong components, 63–64, 64

strongly connected, 268
structured programming constructs, 65

directed path, definition, 61
directed semipath, definition, 62
directed systems of systems, 383, 386, 390

definition (Maier), 374
Garage Door Controller, 375–376, 376

discrete mathematics for testers, 33–51
applicable to specification- based testing, 33
functions, 39–42
propositional logic, 45–50
relations, 42–45
set theory, 33–39

disjunction, 46–47, 50
distributive laws, 39, 48
documentation, 249, 445–446
“does” view (behavior) versus “is” view

(structure), 241, 294, 332, 340–341,
353, 379

domain, 7, 40–41–42, 79
domain elements, 41–42
domain logic tier, 500, 500, 501
domain testing, 222
domination laws, 39, 48, 141
don’t care entries, 116–117, 120, 123–124, 238,

240, 437
driver classes, 286
driver development, 263, 268
drivers, 229, 258, 260–261, 464
dual tone multi- frequency (DTMF), 333
dynamic applications, 441, 441
dynamic interactions, 402–406

multiple processors, 405–406
single processor, 402–405

dynamic program slices, 191

E

eagle and mouse, 249, 251
edge coverage, 138, 142, 318

definition, 136
edges, 55, 58, 60, 62, 157–158, 171, 191, 202, 270,

327, 338, 353–356, 391
directed graphs, 59
initial and terminal, 61
interpreted as transitions, 73
as “messages”, 361–363
messages and returns from one unit to

another, 267
program graphs, 131
as “sequential flow”, 293

edge sequences (paths), 56
edge sets, 59
edge testing, 98, 110, 112
Efficient Triangle Program

basis path testing, 204–205, 206, 207, 208
decision tables, 212

510 ◾ Index

Efficient Triangle Program flowchart, 205,
211–212

feasible paths, 206
Efficient Triangle Program program graph,

206–207
feasible paths, 208
one set of basis paths, 208
possible and feasible paths, 206

Einstein, A., 406
emergency response SoS, 378
empty set, 35–36, 49
enable/disable, 341, 383–384, 384, 386, 391, 425,

427, 429
enabling, meanings, 383
encapsulation, 183
endpoints of arc, same as “nodes”, 53
entity/relationship model, 59, 340
equivalence classes, 45, 97–98, 116–117, 121–122,

432, 441
currency converter, 437, 437
elements (use in identification of test cases), 98
logical variables, 433
Triangle Problem, 433
valid and invalid, 102, 105

equivalence class technique, 212–213
equivalence class testing, 97–113, 202, 202, 203,

222, 222
completeOrder method, 108–110, 109–110
coverage of feasible paths, 206–208, 211
“edge testing”, 110, 112
effort and efficacy, 203
guidelines and observations, 111–112
improved, 99–102
insurance premium case study, 215, 216
invalid classes, 111
NextDate function, 104–108
robust forms, 111
strong forms, 111–112
traditional, 98–99, 99, 106
Triangle Problem, 103–104, 206, 207, 210–211
weak forms, 111
weak robust, 98

equivalence relations, 45, 63–64, 97, 106
defining properties, 57
induced by partition, 45
used to define classes, 104

equivalent graphs, 55
error, 10

definition, 3
error messages, 83, 93, 437, 438, 438, 439
“error” test cases, 112
errors, 4, 80, 163, 169
Escape keystroke, 317, 317
ESML (Extended System Modeling Language),

340, 341, 382, 391
basic prompts, 383

Enable prompt, 421
Trigger prompt, 420, 421, 421–422

ESML prompts as Petri nets, 383–386
enable, disable, activate, 384, 384, 390
Petri net conflict, 383, 383, 384, 386, 388
Petri net interlock, 383–384, 384
suspend and resume, 385, 385–386, 390
trigger, 385, 385, 386, 389, 389, 390

essential complexity (McCabe), 160–162
condensing structured programming

constructs, 161
essential use cases, 294, 294, 295
event- driven Petri nets (EDPNs), 15, 70–73, 293,

339–340, 400, 406–407, 409, 419, 430
definition, 70
enabled and fired transitions, 72
example, 71
expressive capability, 341
external inputs and outputs (definition), 403
important difference from traditional Petri

nets, 72
markings, 71, 71–72
topologically possible forms of connection,

391–392; see also Petri nets
event- driven systems, xix, 233, 293, 315, 341,

409–430
BDD scenarios, 410–412
characteristics, 409
deriving test cases from swim lane EDPNs,

423–424
exercises, 430
FMEA, 425–430
Garage Door Controller problem statement,

410
modeling with extended finite state machines,

412–418
modeling with swim lane EDPNs, 418–423

event/message sequences, 495–498
event quiescence, 70–71–72, 293, 316, 341,

419–422
events, 49, 301, 303, 310–311, 433, 494
event sequences, 303, 349–350, 472–476, 476
evolutionary development, 230–231
exception handling, 83, 222, 222
exclusive OR (EOR), 46, 46–47, 127, 128
executable specifications, 233, 233–234
expanded essential use cases, 294, 294, 311

correct PIN on first try, 296, 312–313
“expected” (ATE engine), 311, 430
exploratory testing during maintenance (best

practice), 465, 466
extended ATE test cases, 311–314, 312,

313, 336
extended entry decision tables (EEDT), 116, 122,

128, 430
NextDate, 433, 435, 435

Index ◾ 511

extended finite state machines
derived from BDD scenarios, 412–414
insights, 418
modeling event- driven systems, 412–418
non- deterministic, 415, 416
top- down development, 414–418

external inputs, 403, 403
external outputs, 403, 403
extreme programming lifecycle, 242
extreme programming (XP), 242

F

Facebook, 75
Fagan, Michael, 445
failure, 324

definition, 4
Failure Mode Event Analysis (FMEA)

light beam sensor, 425–430, 425–426, 428,
426–429

failures, 10, 401–402, 440, 443
Fallacy of Extension, 132, 440
fault discovery, 443, 448, 464
fault isolation, 221, 244, 248, 251, 258–261, 264,

275, 289, 464–465
fault isolation capabilities continuum, 289, 289
fault resolution costs, 443–444, 444
fault resolution step, 4, 4
fault severity, 449, 451, 454, 458
fault severity levels, 477–478
faults, 4, 4, 9, 9, 80, 137–138, 201, 221, 401–402,

432, 439–440
definition, 3

faults of commission, 3–4, 6
faults of omission, 3–4, 6
fault taxonomies, 10, 10–12
feasible paths, 203–204, 266, 320–321
feature, definition (Batory et al.), 393
feature interaction exercises, 407
feature interaction problem, xix

definition, 391–393
feature interactions

nondeterminism, 406–407
versus correct behavior, 393

feature interactions (taxonomy), 399–406
dynamic interactions in multiple processors,

405–406
dynamic interactions in single processor,

402–405
static interactions in multiple processors,

401–402
static interactions in single processor, 399–401

feature interactions (types), 393–399
input conflict, 394–396
output conflict, 397–398
resource conflict, 398, 399

feature interaction testing, 391–407
feedback, 229–230, 232–233
final node, 134, 134
final state (notion), 66
finite state machine message path (FSM/M

path), 285
continuum of fault isolation capabilities,

289, 289
definition, 286

finite state machine message path integration,
286–287, 288

message and state flow, 287
partial test procedure, 288

finite state machines (FSMs), 15, 64, 67, 233, 280,
282, 337–338, 340, 340–342, 350–351,
394, 403–404, 409, 430, 481

complexity mechanism, 368
conventions, 66–67
definition, 66–67
dynamic interactions in single processor, 406
examples of directed graphs, 318
expressive capability, 341, 341
Garage Door Controller, 67
hierarchy, 301, 302
identifying threads in systems of systems, 305,

307, 307–308, 308–309
Login and Shopping List constituents, 327, 328
Login constituent, 318, 319
message communication, 283
message communication among multiple

instantiations, 396–397
nondeterministic, 406, 414, 415
numerators and denominators, 66
paths to test cases (system level), 312–313
reduced (Foodies Wish List), 283
“special case of Petri nets”, 70
state explosion problem, 73
states “never actually defined”, 66
tendency to look like “spaghetti code”, 74
thread execution probabilities, 325
transitions, 343
Windshield Wiper Controller, 70

finite state machines (identifying threads from
models), 301–304

paths, 301–303, 304
paths (quantity required), 303–304

Fishman, Charles, 466
flattened classes (Binder), 183–184, 184
flexibility, 64, 234
flipping, 158, 158, 159, 163, 203, 205, 208
flowcharts, 204, 342

complexity mechanism, 368
Efficient Triangle Program, 205

flow of control, 54, 65, 354
FoodieItem inventory, 488, 490, 499
FoodieItems, 483, 487–489, 498, 499

512 ◾ Index

Foodies Wish List, xix, 15, 24–29, 280, 291, 320,
324, 353, 393, 405, 481–501

Account Creation FSM, 485
architecture, 482
building an order, 25–28, 26–29
candidate threads, 292
computing final price, 25–28, 26–29
conflicting User IDs, 395, 395
decision tables, 26–29
dialogs across swim lanes, 490–499
digit entry, 292
end- to- end login to purchase transaction, 498
inventory and prices, 481
inventory before and after purchase, 399
message communication, 279, 281, 394
messages among FSMs, 482, 482–483, 484,

491
model- based integration testing, 280–289
normal account creation, 394, 394
normal purchase of one Foodie item, payment

accepted, 499
object- oriented design, 500, 500, 501
pairwise integration, 282–286
PIN entry, 292–293
problem statement, 25
real use cases, 295
reduced finite state machine, 283
risk- based testing, 327
scenarios (full FSM/M Paths), 286–287, 288
shopping session, 292–293, 301, 302
simple transactions, 292–293
threads in finite state machines, 301–309

Foodies Wish List classes, 500, 500, 501
Foodies Wish List Database (FoodieDB), 286, 288,

297–300, 305, 306, 308–309, 313, 314,
320–321, 328, 377–378, 394, 395–396,
396–397, 405, 406, 482, 482–483, 484,
486–492, 491–500, 493–494, 493–497,
500, 501

events, 398
FoodieDBStub, 283–284, 284–286
FSM, 489–490, 500, 500
long use case, 324
short test case, 323

Foodies Wish List Home (Foodie Home), 405,
482, 484–487, 490–492, 494, 498

FSM, 484
Foodies Wish List scenarios, 490–499

duplicate userID found, 493, 493
normal account creation, 491–492, 491–492
partial account creation (no PIN definition),

494, 494
Foodies Wish List scenarios and test coverage for

Login, 494–498
invalid login, no PIN try, 497
invalid login, PIN failed on 3rd try, 496–497
summary, 497–498

valid login, PIN correct on 1st try, 494–495
valid login, PIN correct on 2nd try, 495
valid login, PIN correct on 3rd try, 495–496

Foodies Wish List (slice- based testing),
192–196

program graph of private static double
updateShoppingCart, 193

program graph of slice on truffleSales, 194
reduced Foodie inventory, 192
shopping cart user interface, 192
subset lattice of “interesting” slices, 196

Foodies Wish List system, 316, 335–336
communication among constituents, 378
constituents, 305, 307
illicit access, 328
operational profiles, 324–327, 329
swim lane architecture, 377
system of systems, 377, 377–378

Foodies Wish List Users, 110
creation of invalid account, 307
creation of valid account, 306
creation of valid account (reduced FSM), 307,

307–308
FORTRAN, 59, 97, 133, 462
forward slices, 191, 199
Friday13th (Calendar Program), 254, 255–257,

258–262, 263
frozen work product, 448–449
functional decomposition, 39, 229–230, 232,

259–260, 269
comparison with other integration testing

strategies, 275
procedural integrationNextDate, 269, 272; see

also decomposition
functional decomposition tree, 254, 260
functionality, 171, 183–184, 190, 203, 231, 257,

392, 394–395
functional testing, 7, 44, 120, 137, 201, 210,

227–228
appropriate choices, 222
decision tables, 115
hybrids, 268
punishment- fits- crime idea, 221
special value testing, 85

functions, 19, 39–42, 79, 94, 99, 269
composition, 41–42
definition, 40
domain and range, 40
one- to- one, 42
one- to- one versus many- to- one, 41
types, 40

G

Gallagher, K.B., 190–191
gaps, 38, 97–98, 135, 137, 163, 202, 219, 318
gaps of untested software, 7, 9

Index ◾ 513

Garage Door Controller, 15, 29, 342–344, 345,
348, 390, 409

Behavior Driven Development, 410–411,
411–412

constituents, 376
corrected FSM, 416
corrected FSM (soap opera use case for long

path), 417
directed SoS, 375–376
extended FSM, 412–418
finite state machine, 66, 67, 348, 348, 348
FMEA, 425–430
light beam sensor, 410
mapping paths in FSM to state

sequences, 416
modeling with swim lane EDPNs, 418–423
problem statement, 410, 414
SysML context diagram, 410, 410
system level test case for normal door closing,

424
system level test case for normal door closing

with light beam interruption, 424
test cases derived from swim lane EDPNs,

423–424
top- down development, 414–418

Garbage In, Garbage Out (GIGO), 98
getDate, 254, 255–257, 258–262, 263, 268–269,

270, 271–274, 363, 366
getDigits, 261, 261–262, 263
Given, When, Then (BDD keywords), 25–26
Go (oriental game), 245
good programming practices, 223
grading rubrics (academic world), 449
Grand Valley State University, 457
granularity, 106, 247, 248, 292, 294
graph- based coverage metrics, 318
graphical user interfaces (GUIs), 98, 469, 470

currency converter, 435–437
graphs, 53–58

adjacency matrices, 55, 55–56, 56
components, 57
condensation graphs, 57–58
connectedness, 57
cyclomatic number, 58
definition, 53–54
degree of node, 54
external boundary (source and sink nodes), 60
incidence matrices, 54–55, 55
paths, 56, 56–57
with seven nodes and five edges, 54

graphs for testing, 64–75
event- driven Petri nets, 70–73
Petri nets, 67–70
program graphs, 64–66
statecharts, 73–75

graph theory, 8, 147, 157, 160, 261, 292, 355
pertains to structural testing, 33

graph theory for testers, 53–75
directed graphs, 58–64
graphs, 53–58

graphs for testing, 64–75
Gregorian calendar, 21–22
Gruenberger, F., 19
GTE Automatic Electric Labs, 444, 444
Guest, 24–25, 28–29, 108, 109, 109–110

H

Halstead, Maurice H., 358
Halstead Metrics, 353, 358–361

Day of Week with Zeller’s Congruence,
359–361

Halting Problem, 304
Hamming, R.J., 368
hardware, 127, 335, 452
Harel, D., 73–74, 233, 339, 342, 409, 441
Hetzel, Bill, 19, 254
hierarchy charts, 3, 340
high- level use cases, 294, 294, 295
Hill, T. Adrian, 464
Hoffner, T., 198
Huang, J.C., 138
human factors, 310, 445, 455
hybrid functional testing, 217–218, 218

I

IBM Corporation, 37, 137, 444, 445
defect amplification model (1981), 444
website, 73

idempotent laws, 39, 48
identity laws, 39, 48
IEEE Standard Classification for Software

Anomalies (1993, 2009), 10, 451
if- else construct, 161, 357, 400
If statements, 142
if- then connective, 46–47, 65, 137, 141, 235, 356
if- then- else logic, 65, 128, 132, 136–137, 141, 356

program graph, 132
imperative programming languages, 59, 65, 131,

134, 265, 361
implementation of code examples, 15
implementation philosophy, 83
implementation, procedural versus O- O, 278
impossibilities, 249, 250–251
“impossible” action, 121
impossible cases, 212, 212
impossible combinations, 203
impossible interfaces problem, 258
impossible paths, 204
impossible rules, 120–121, 122–126, 127, 143,

145, 149, 150
impossible test cases, 121

514 ◾ Index

impossible test pairs, 260
improved equivalence class testing

incidence matrices, 54–55, 55, 295–297,
300–301, 353, 368–369, 464, 466

regression testing, 464, 466
strong normal ECT, 100–101, 101
strong robust ECT, 102, 102
weak normal ECT, 100, 100
weak robust ECT, 101–102

incident, definition, 4
inconsistency, 119–120
incremental development, 230–231
IncrementDate, 269–270, 270–272, 272–274, 363
indegree of node, 60

definition, 59
indegrees, 62, 134, 262, 356, 362, 403
independence, 84, 108, 112, 142, 145
independent circuits, 157
independent variables, 82, 93, 105, 149, 222,

222, 441
all pairs technique, 433–435, 436

industrial- strength inspection process, 452–455
industrial test execution system, 310–311
infeasible paths, 138, 202–204, 284, 315, 318, 320
inferior nodes, same as “transfer nodes”, 60
informal fallacies, 440
information hiding, 248
inheritance, 174, 182, 185

testing object- oriented software, 183–185
UML diagrams of banking system, 184, 184,

190, 190
inhibitor arc, 427

definition, 429
initial (or start) nodes, 59, 66, 134, 134
initial state (notion), 66
input conflict, 394–396, 403, 405–406

message communication among multiple
instantiations of FSMs, 396

test cases, 396
userIDs, 395

input data, 98
defined in terms of intervals and sets of

discrete values, 111
input devices, 409
input domain, 80, 93, 104, 111

true partition, 122
input domain dependencies, 121
input domain testing

same as “boundary value testing”, 79
input (domain) equivalence classes, 8
input events, 317, 342, 409, 412, 413–414, 415,

416, 417, 419, 421–422, 471, 472–476,
482, 484

context- sensitive, 341, 418, 437, 441
input events and messages

expansion with added use cases, 300
use cases, 297–300

input order, 435–439, 441
input- output, 4–5, 7, 16, 19, 21, 30, 40, 69–70, 72,

79, 83, 97, 100–101, 127–128, 241, 268,
292–293, 295, 297, 301, 302, 305,
310–311, 315, 318, 342, 348, 349,
406, 441

cause- and- effect relationships, 128
conditions and actions (decision tables), 116
faults, 10
Login scenarios, 301

inputs, 407
equivalence classes, 116
invalid combinations, 21

input sequence, 477–478
input variables, 80, 139, 440

logical relationships, 21–24, 128
subsets, 128

inspection checklist, 451
inspection packet contents, 448–452

fault severity levels, 451
frozen work product, 448–449
review issues spreadsheet, 449, 450
review report outline, 451–452
review reporting forms, 450–451
standards and checklists, 449
work product requirements, 448

inspection process, 452–455
commitment planning, 452, 453
disposition, 452, 455
preparation, 452, 453–454
report preparation, 452, 454
review meeting, 452, 454
reviewer introduction, 452, 453
stages, 452

inspection report outline, 479
Institute of Electronics and Electrical Engineers

(IEEE) Computer Society, 3
insurance premium case study, 213–219, 220

age class, 218
boundary value test cases, 219
boundary value testing, 214–218
code- based testing, 218–219
data, 214
data boundaries, 214
dataflow testing, 221
decision table approach, 217, 220
decision table test cases, 220
detailed worst- case boundary value test cases

for one age class, 215
detailed worst- case values, 216
equivalence class testing, 215, 216
error- prone aspects, 217
feasible paths, 219, 220
hybrid test cases for, 35–45
Java code, 218, 219
path- based testing, 219–220, 220
path coverage of functional methods, 220

Index ◾ 515

problem statement, 217
program graph, 218–219, 219
redundancy point, 215
slice testing, 221
specification- based testing, 214–218, 218, 220
specification- based versus code- based testing

methods, 214–221
weak and robust normal equivalence class test

cases, 216, 218
weak normal equivalence class test cases,

219–220
worst- case boundary value test cases, 214, 218

insurance premium problem, 342–343, 344, 345
activity diagram, 347, 347

Integrated Development Environment, 172
integration- level complexity, 361–363, 364

call graphs, 361, 362, 363
cyclomatic complexity, 362–363
message traffic complexity, 363, 364

integration- level cyclomatic complexity, 363
definition, 362

integration- level thread, 292
integrationNextDate, 364, 364

adjacency matrix, 363
call graph, 361
classes (program graph), 279
messages (object- oriented

implementation), 280
procedural version, 269–275
pseudo- code version, 361, 362, 363

integration- system testing, 245
scrum lifecycle, 243

integration testing, 228–229, 231–233, 234, 245,
253–289, 292, 382, 392, 464, 467

call graph- based integration, 260–265
comparison of strategies, 275
decomposition- based integration, 253–260
example (Foodies Wish List), 24–29
example (O- O integrationNextDate), 275–280,

281–282
example (procedural integrationNextDate),

269–275
functional decomposition tree (Calendar

Program), 254
model- based, 280–289
path- based integration, 265–268

integrity checking, 55
interactions, 292, 432, 439, 484

time- dependent and time- independent, 399
interaction, versus “interfaces”, 265
interesting slices, 196, 197
“interesting” system transactions, 233
interface faults, 11
interfaces, 363

versus “interaction”, 265
interface testing, 275
interior nodes, 134, 262

International Software Testing Qualification Board
(ISTQB), 12, 98, 133, 227

Advanced Level Syllabus, 110, 431, 443
Foundation Level Syllabus, 443
Glossary, 3

intersection, definition, 36
intervals, 99–100, 104, 111
“into” versus “onto” distinction, 41, 43–44
invalid dates, 88–91, 127, 154, 166, 168, 247
invalid input dates, 106–108
invalid values, 101–102
“is” view (structure), see “does” view
IsFriday (Calendar Program), 262, 263
isLeap (Boolean function), 166–171, 177–178,

188–189, 249
Calendar Program, 254, 255–262, 263, 269,

269, 271, 272–274, 363, 366
decision table, 249, 251
MDD version, 249, 250
TDD version, 251, 251
truth table, 251

isMonday (Calendar Program), 262, 263
isolated node, 60, 64
isomorphism, 50
isValidDate (Calendar Program), 262, 262, 263,

268, 271, 363
iteration plan, 234
iterative development, 230, 242–243, 246
iterative lifecycle testing, 230–234

executable specification, 233, 233–234
rapid prototyping, 232, 232–234
specification- based models, 232–234
waterfall spin- offs, 230–232

J

Java, xix, 59, 133, 138, 151–156
multi- line blocks of code (indentation and

curly braces), 132
structural elements, 15, 15–19

Java code
insurance premium case study, 216, 219
O- O integrationNextDate, 275–278

Java implementation
NextDate function, 21–24
Triangle Problem, 19–21, 132

Java Object class, 182
Java program graph, 158
Java range check code, 144, 161
Java single method, 364, 364, 365
Jet Propulsion Laboratory, 445
Jorgensen, Paul C., xix–xx, 70, 318, 418

biography xxi
Craft of Model- Based Testing (2017), xxi, 337,

342, 409
Modeling Software Behavior (2009), xxi,

340–341

516 ◾ Index

JSlice, 198, 198
JUnit, xix, 166, 204, 258, 464

ASSERT mechanism, 151–155, 168–170, 175,
185–186, 258, 275, 281

automatic dependency removal from test case
for leap year, 170

manual dependency removal from test case for
leap year, 170

parameterized test case for leap year, 169
SimpleDate class, 166–168, 171
test case for leap year, 168
test environments, 244

JUnitParams, 168
JUnit test, 175, 178
Juran and Deming, 462

K

Kaner, Cem, 254
Kemerer, C.F., 181
kite, 30

definition, 30
knotted loops, 138, 139
Kuhn, D. Richard, 431, 440

L

Lack of Cohesion on Methods (LCOM),
181–182, 367

Lane, Jo Ann, 375, 378
Laplace, Marquis de, 49
Larman, C., 241

hierarchy of use cases, 294, 294
lastDayOfMonth (Calendar Program), 262, 263,

268, 269–272, 273–274, 363
Latin squares, 431, 440
lattice (directed acyclic graph), 191
Law of Conservation of Complexity, 362
layers, 500, 500
leap year problem, 21–22, 82, 106, 108, 122–123,

125, 177–178
JUnit testing, 166–171

legacy code, 465, 466, 466
levels of abstraction, 12, 13
life cycle- based testing, 227–251

agile testing, 234–246
configuration management, 246–248
granularity, 248
iterative lifecycles, 230–234
MDD versus TDD, 249–251
specification- based versus code- based, 246
TDD (pros, cons, open questions), 248–249
waterfall testing, 227–230

light beam sensor, 414, 418
failure modes, 425–430
normal operation, 425, 426

Stuck- at- One failure, 425, 425, 427–430, 428,
428, 429

Stuck- at- Zero failure, 425, 425–426, 427, 430
Limited Entry Decision Table (LEDT), 116–117,

122, 126, 235
mechanical expansion, 26, 27

Linear Code Sequence And Jump (LCSAJ)
same as “DD- Path”, 133

linear graph
same as “graph”, 53

Lipov, M., 204
load testing, same as “stress testing”, 332
Lockheed Martin, 334
logarithmic weighting, 327
logical connectives

same as “logical operators”, 46
logical impossibilities, 284, 304
logically complex function, 15
logical operators, 46–47, 358
logical quantities, 222, 222
logical variables, 82, 439, 441

versus “physical variables”, 433
logic faults, 11
Login (Foodies Wish List), 482, 482–483, 484,

487, 490, 491, 494–498, 501
Login FSM, 318, 319, 486, 500, 500
Login scenarios

expressed as sequences of ASFs, 305
input event and action coverage, 317
inputs and outputs, 301
message coverage, 317
state coverage, 318, 319
transition coverage, 318, 320

Login use cases, 297, 297–300, 500
no PIN try, 299
order in which messages recognized, 300
PIN correct on 3rd try, 299
PIN failed on 3rd try, 299

long test cases, 320–321, 323–324
long use cases, 320
loop control, 158–160, 172
loop coverage, 137, 147, 223, 315
loop coverage metrics, 223
loops, 57, 64, 66, 80, 132, 136, 142, 223, 303,

318, 423
pre- test and post- test, 65

loops of states, 318
loop testing, 138, 140

M

Maier, Mark, 374–376, 378
mainline models (expressive capabilities),

340, 340
maintenance, 249, 251
management, 229, 447, 451, 454–455, 457

participation in review meeting, 456

Index ◾ 517

mandatory participation, 43
Mandl, R., 431
many- to- many function, 42
many- to- many mapping, 42
many- to- one function, 42
many- to- one relation, 44
mapping, 43, 70
marked graphs, 338, 339–340
marked Petri net, 68, 69
market share, 465
markings, EDPN, 71
marking set (of Petri net), 68
marking vectors, 72
Mars Climate Orbiter mission (1999), 253
masking conditions, 141
masking MCDC, 142, 145
match variable, 204, 206
mathematical approaches (to stress testing),

334–335
mathematical context, 1–75

discrete mathematics for testers, 33–51
examples, 15–32
graph theory for testers, 53–75
perspective on testing, 3–14

McCabe, Thomas J., 66, 157, 163, 203
baseline method, 158, 220
basis path method, 157–163
complexity, 160–162, 353
flipping, 158, 159, 163
violations of structured programming

constructs, 162, 162
mean time between failures (MTBF), 334
mean time to failure (MTTF), 334
mean time to repair (MTTR), 335
medical systems, 82, 431
Medicine Wheel, 249
Member, 108, 109, 109–110
MemorialDay (Calendar Program), 254, 255–257,

258–261, 262, 263
message communication, 394

finite state machines, 283
model- based integration testing, 279, 281
test coverage metrics, 281

message coverage
Login scenarios, 317

message flows
O- O integrationNextDate, 281

message inputs, 300
message outputs, 301
message quiescence, 267–268, 272
messages, 54, 260, 301, 307, 310–311, 315, 364,

494, 500
definition, 266
among FSMs, 482, 482–483
O- O implementation of

integrationNextDate, 280
message sequences, 284–286, 287, 308, 367

message systems, 338, 339
message traffic complexity, 363

extended adjacency matrix of call graph,
363, 364

methods, 364, 368
definition, 18–19

metrics (most common), 318
weakness, 318

Michigan pension policy for teachers, 129
Microsoft, 75, 360
miles per gallon example, 95, 95
Miller, E.F., Jr., 132–133, 136–141, 173
Miller’s test coverage metrics, 136–140

all possible paths coverage, 140
complex loop coverage, 138–139, 139
DD- Path testing, 137
dependent pairs of DD- Paths, 138
description, 137
multiple condition coverage, 139–140
predicate outcome testing, 138
simple loop coverage, 138
statement testing, 137
“statistically significant” coverage, 140

mission critical project, 465, 466
mixed entry decision tables (MEDT), 116
MM- Path complexity, 268, 268, 274
MM- Path graph

definition, 267
MM- Paths, 182, 267–268, 272, 284–285, 292, 367,

464, 466
comparison with other integration testing

strategies, 275
definition, 266
hybrid of functional and structural testing, 268
hypothetical across three units, 267
intersection with a unit, 267
Method Message (object- oriented

software), 266
Module Message (traditional software), 266
procedural integrationNextDate, 269, 272, 274
test coverage metrics for procedural code, 272

mock objects, 169–171
Mockito framework, 170
model- based integration testing, 280–288

FSM/M Path integration, 286–288
message communication, 279, 281
normal account creation, 286–287, 288
pairwise integration, 282–286
scenarios, 286–287, 287, 288

model- based test coverage, 314, 318, 319,
319–320

model- based testing (MBT), xix, 246, 291, 303,
337–352, 409

advantage, 337
appropriate models, 338–342
basic mechanism, 337–338
best practice, 465, 466

518 ◾ Index

choice, 342
commercial tool support, 342–348
issues, 340–341, 341
mainline models (expressive capabilities), 340,

340, 341
Peterson’s lattice, 338–340
quality, 325

model- driven agile development (MDAD),
245–246, 246

model- driven development (MDD)
versus TDD, 249–251

modeling, xix
modeling issues, 340–341, 341
modeling skill, 251
models, views (compromise with reality or

caricature of reality), 337
modified condition decision coverage (MCDC),

140, 142–143, 148, 150, 223; see also
masking MCDC

module execution paths, 267
definition, 266

Monsieur Jourdain, 337
Monte Carlo testing, 335

queueing theory, 334
reliability models, 334–335

mortgage application example, 432
Mosley, Daniel J., 98, 115, 254
multiple inheritance, 183
multiple- condition coverage, 137, 139–140,

144–146, 163, 218, 223, 251
same as compound condition coverage, 148

multiple- condition testing, 357
multiple- fault assumption, 97, 100, 102, 129, 222
multi- user support, 395
Munson, John, 467
mutation testing, 324
Myers, Glenford J., 19, 98

Art of Software Testing (1979), 461

N

narrative text, 3
NASA, 445, 465
natural language, 306
n- connectedness, 63
negation, 47, 50
neighborhood integration, 262–264, 271
nested- If logic, 150, 250–251
nested loops, 138–139, 139, 223
nesting, 65
NextDate, 15, 31, 82, 149, 182, 197

allpairs.exe test cases, 435, 436
base equivalence classes, 434–435
canonical decision table of valid variables, 435
classes and test, 175–178
classes and test with inheritance, 185–189

compound condition code- testing, 143–147
day equivalence classes, 435
decision table, 145
decision table- based testing “works well”, 128
define- use nodes, 178
extended to Calendar Program, 254
extended entry decision table, 433, 435, 435
faults due to interaction of three variables, 439
invalid equivalence classes, 111
as Java single method, 365
line execution, 178, 179–181
model- based (decision table) code coverage

metrics, 147–148, 148
object- oriented implementation (call graph),

273, 363
program graph, 144
program graph- based coverage metrics,

147–148
random testing, 92, 93
reduced decision table for range check, 146,

147
test cases, 145
UML class diagram for revised Date classes

using inheritance, 190
nextDate (Calendar Program), 254, 255–256, 257,

258–261, 262, 263, 269
NextDate function, 21–24, 33, 81, 85, 112, 278

choice of equivalence relation (craft),
104–106

decision table- based testing (test cases),
121–127

equivalence class test cases, 104–108
first try, 121–122
input date, 106
Java Code for tests, 151–156
Java implementation, 22–24
problem statement, 21
reduced decision table, 126
second try, 122–124
strong normal equivalence class test cases,

107–108
test cases, 127
third try, 124–127
violates independent variables assumption,

433
worst- case test cases, 85, 87–91

NextDate Problem
conditions, 116–117, 118
decision tables, 116–117, 118–119
expanded rules, 119
impossible rules, 119
probability theory, 49–50
rule counts, 118–119

NextDate program, 34, 39–42, 246
basis path method, 157
example of software complexity, 364–366

Index ◾ 519

NextWeek function, 31–32, 95, 113, 128
Niebuhr, Reinhold, 13
NIST, 431
node coverage, 137, 142

definition, 135
node coverage metrics, 318
node outdegrees, 356

definition, 356
node pairs, 59
nodes, 55–56, 58–60, 137, 171, 191, 202,

353–356, 358
as ASFs, 293
connectedness, 57
dependent pairs, 138
indegrees and outdegrees, 59–60
initial, 62
as methods, 361–363
module execution paths, 267
statement fragments, 131
terminal, 62
types, 60

node sequences (paths), 56
node set of graph, 57
noise words, 310, 313–314, 424
non- constant condition, 142
non- determinism, 40, 406–407, 415, 416
non- functional system testing, 332–336

stress testing strategies, 332–334
Normal Boundary Value Testing (NBVT), 79–82

generalizing ranges, 81–82
limitations, 82
test cases, 85, 94
test cases for function of two variables, 81

normal landing
sequence diagram, 380
use case, 380

Normal Worst Case BVT, 83–84
Northern Cheyenne people, 249
nuclear reactors, 144
Number of Child Classes (NOC), 181–182, 367
number of combinations formula, 432
numerators and denominators, 439
NUnit for C#, 166

O

OATS technique, 439
object diagrams, 340
object instantiation, 19
Object Management Group, 37
object mocking, use at unit level, 464
object- oriented (O- O) code, 261

call graphs, 361–362
integration level cyclomatic complexity, 362
integration testing, 278
unit- level testing, 278

object- oriented complexity, 366–367
Coupling between Classes, 367
Depth of Inheritance Tree, 367
Lack of Cohesion on Methods, 367
Number of Child Classes, 367
Response for Class, 367
Weighted Methods per Class, 366, 366

object- oriented complexity metrics, 181–182
Coupling between Classes, 181–182
Depth of Inheritance Tree, 181–182
Lack of Cohesion on Methods, 181–182
Number of Child Classes, 181–182
Response for Class, 181–182
Weight Methods per Class, 181

object- oriented design
class categories, 500
Foodies Wish List, 500–501, 501

object- oriented implementation, messages
(integrationNextDate), 280

object- oriented integration, 278, 278
object- oriented integrationNextDate, 275–280,

281–282
comparison of procedural and O- O

implementation, 278
message flows, 281
message flows for May 27, 2020, 282
messages in O- O implementation, 280
program graph, 279

object- oriented paradigm, foundations, 248
object- oriented programming languages, 77,

182, 342
object- oriented software, xix, 13, 165–199,

268, 464
dataflow testing, 171–181
issues in testing, 183–190
mock objects and automated object mocking,

169–171
object- oriented complexity metrics, 181–182
unit testing frameworks, 165–169

object- oriented units (nodes), 260
“observed” (ATE engine), 311, 430
one- to- many function, 42
one- to- one function, 42, 44
operational profiles, 48, 324–328, 328, 329, 330,

331, 335, 464
operational software development nets, 70
ordered pairs, 37, 40, 42–43, 58, 70
ordering relation, 45, 82
ordinary graphs, 37, 59–60
orthogonal arrays, 342–343, 431, 439
outdegree of node

definition, 60
outdegrees, 62, 73, 134, 172, 182, 262,

362–363, 403
cyclomatic complexity, 356

output actions, 315, 403, 416–418, 482, 484

520 ◾ Index

output conflict, 397–398, 403, 405
FoodieDB events, 398
message communication among multiple

instantiations of FSMs, 397
output events, 342, 343, 404, 412, 415, 419,

420–422, 427, 429, 471, 472–476
multiple context, 341

output expected, 86–91, 100, 103–108, 121, 127
output sequence, 477–478
Owens, Steve D., 334

P

paired programming, 242
pairwise integration, 261, 261–262, 269–270

model- based integration testing, 282–286
test cases, 284–286

Pareto Principle (Zipf’s Law), 22, 324
partial participation, 43
participation, 43, 44

“onto” versus “into”, 43
partition elements, 38
partitions, 45, 50, 57, 97
partitions and equivalence relations,

interchangeability, 45
partition subsets, 38
Pascal, 59, 80–81, 133
path- based integration, 265–268

concepts (new and extended), 265–268
hypothetical MM- Path across three units, 267
MM- Path complexity, 268
pros and cons, 268

path coverage, 147
definition, 136

path probabilities, 325
path testing, 163, 202, 202
paths, 56, 56–57–58, 61–62, 66, 318, 320–321,

354, 416, 418, 419–421, 441
Account Creation to Admin to FoodieDB, 320
definition, 56
finite state machines, 301–304, 304
Login to Shopping Cart to Admin to FoodieDB,

321
trillions of, 132, 134

pause (ESML prompt), 341, 383
perfect foresight, 229, 232
performance constraints, 465
performance evaluation, 445
performance testing, same as “stress testing”, 332
periodic table of elements, 27
personal account number (PAN), 469
Peterson, James L., 338, 352
Peterson’s lattice, 338–340

anticipated placement of statecharts, 339, 339
with swim lane models, 340

Petri, Carl Adam, 67

Petri net conflict, 70, 383, 383, 384, 386, 388, 391
Petri net execution, 68–69–70
Petri net interlock, 383–384, 384, 391
Petri net markings, 73
Petri net mechanisms, 341
Petri nets, 64, 67–70, 233, 293, 318, 337–338, 339,

339, 340, 341, 382, 403
coffee purchase, 404, 404–405
conservative, 69
definition, 68
dynamic interactions in multiple processors,

405–406
enabled transition, 69–70
ESML prompts, 383–386
example, 68
expressive capability, 341
marking set, 68
non- determinism, 407
transition firing, 69, 69; see also swim lane

EDPNs
Phoenix, Sky Harbor International Airport, 82
physical inputs, 425, 441
physical quantities, 82, 222, 222
physical variables, 439, 441

versus “logical variables”, 433
PIN entry, 292–293, 295–299, 301, 302, 303, 305,

316–317, 319, 321, 324, 325–326, 328,
329, 330, 331, 336, 469, 471, 472–473,
483, 485–486, 490, 494–498

PIN try finite state machine, 301, 303, 304
Poe, Edgar Allan, 202
polymorphism, 174, 183

testing object- oriented software, 185–190
port boundary, 241
port events, 70, 71, 72–73, 292–293, 295
port input events, 301, 302, 303, 310, 315–316,

318, 400, 419, 429
context- sensitive, 316, 400

port inputs, 300, 303
port output actions and messages, Login

scenarios, 301
use cases, 300

port output events, 301, 302, 303, 310, 316, 318,
419

port outputs, 301, 303
ports, 399, 403
post- conditions, 5, 321–323, 349–351, 381, 403,

416, 417, 417, 424, 472–476, 476–478,
492–497

post- test loop, program graph, 132
pre- conditions, 301, 306–307, 313–314, 321–323,

349, 351, 380–381, 400, 403, 416, 417,
424, 426, 428, 472–476, 476–478, 491,
493–497

predicate outcome testing, 138
predicates, 141, 197, 220

Index ◾ 521

predicate use (P- use), 172, 192, 197, 206
all C- uses/some P- uses criterion, 173, 174
all P- uses/some C- uses criterion, 173, 174

preliminary design, 12, 230, 230, 231, 242–243
preparation time, 457, 458
presentation tier, 500, 500, 501
Pressman, Roger S., 19, 204, 253, 444
pre- test loop, program graph, 132
pride, 462
PrintDate, 269–270, 270–272, 272–274, 363
Private Automatic Branch Exchange (PABX),

303–304
probability, 93
probability theory, 48–50

definition, 48
procedural code, 174, 182, 261, 361, 368

call graphs, 361–362
integration level cyclomatic complexity, 362

procedural integrationNextDate, 269–275
call graph, 269, 272
call graph- based integration, 270–275
decomposition- based integration, 269–270, 272
functional decomposition, 269, 272
MM- Paths for input date (May 27, 2020), 269,

272, 274
observations and recommendations, 275, 275
program graph of units, 269, 273
source code, 269–271

procedural main program, 364, 364
procedural programming languages, 77, 229, 289
procedural software, 266, 464
procedural units, 278, 278
procedure, 18–19, 42, 269
procedure calls, 172, 174
process, 43, 445

definition, 10
process community, 461–462
processors (multiple or single), 318, 399–406, 441

thread identification, 294–305
product, definition, 10
product matrix, 56

p- tuples, 71–72
program behaviors, 9

specified, implemented, tested (three- way
relation), 44

universe of discourse, 36
Program Design Languages (PDL), complexity

mechanism, 368
program graph- based testing, 202–204, 205, 207,

208, 284
effort and efficacy, 203

program graphs, 64–66, 132–134, 137–142
passim, 157–158, 160–161, 171, 190–192,
210, 223, 261, 265–266, 278, 282, 303,
354, 356–358, 364

compound condition, 143

coverage metrics, 147–148
DD- Path, 134
definition, 131
definitions (“traditional” and “improved”), 65
directed graphs, 131
Efficient Triangle Program, 207, 208
four structured pseudo- code programming

constructs, 132
insurance premium case study, 219, 219
integrationNextDate classes, 279
mildly complex, 355
O- O integrationNextDate, 279
paths, 202–203
private static double updateShoppingCart, 194
problems, 66
procedural integrationNextDate units, 269, 273
slice on truffleSales, 194
Triangle Program, 149

program graph technique, 212–213
program inputs, 432–433

allpairs.exe output, 434
Triangle Program test cases generated by

allpairs.exe, 434
program paths, 202, 267, 315
program slices, 165

definition, 190–191
program slicing tools, 198, 198
progression testing, 112, 230, 231, 311
project management, 229, 260
Prolog, 59
Prompts, effect of SoS levels, 389–390
proper subsets, 38, 40, 195–196
propositional calculus (logical connectives), 36
propositional logic, 45–50, 100, 116, 399–400

logical equivalence, 47–48
logical expressions, 47
logical operators, 46–47
operations, expressions, identities, 46
probability theory, 48–50
set theory, 45

propositions, truth values, 45–46
pseudo- code, xix, 132, 218, 269, 275, 476

integrationNextDate, 361, 362, 363
structural elements, 15, 15–19

pseudo- structural testing, 318
public static, 20, 22, 31
punishment should fit crime, 221–222, 315

medicine should fit disease, 315

Q

quadrilateral, 30, 128
definition, 30
types, 113

quadrilateral program, 30–31, 113
queueing theory, 334

522 ◾ Index

R

random events (inputs), 406
random testing, 92, 92–93, 335

“academic interest only”, 92
NextDate, 92, 93
Triangle Problem, 92, 92

range elements, 41–42
ranges, 7, 40–41, 43, 79, 81, 83, 103–106

valid and invalid, 100
rangesOK (function), 166–170
rapid prototyping, 231, 232, 232–234
Rapps, S., 171, 191
Rapps- Weyuker Dataflow metrics, 173, 174
reachability matrix, 62, 62–63

definition, 62
reactive applications (Harel), 441
reactive systems (Harel), 233, 409
real use cases, 294, 294, 295

conversion into system test case, 311
correct PIN entry on first try, 296, 311, 312

rectangle, 30
definition, 30

redundancy, 7, 9, 38, 85, 108, 112, 119–120, 122,
125, 135, 163, 190, 202, 210, 215, 219,
318, 435, 465

redundancy avoidance, 97–98
redundant test cases, 94, 94
refactoring, 223, 244, 246, 248, 250
refined decision table, Triangle Problem, 116,

117–118
reflexive relations, 44–45, 57
regression testing, 4, 100, 112, 230, 230–231, 244,

311, 416
incidence matrices, 464, 466

relational databases, 41, 43
relational operators, 16–17
relations, 42–45

examples related to cardinality and
participation, 44

importance, 42
relation R on sets A and B, 43
single sets, 44–45
three- way, 44

relations among sets, 42–44
definition, 42

relative complement, definition, 36
release plan, 243, 242
reliability, 201, 248, 324, 332, 462, 465

single- fault assumption, 79–81
reliability models, 334–335
repetition (university setting), 457
replication (stress- testing strategy), 333–334
report preparation, 452, 454
requirements specification, 12, 227, 232–233, 246,

291, 304
consistency, completeness, clarity, 229–230

feedback, 316
types, 340

resource conflict, 398, 399, 403–404–405
Foodies Wish List inventory before and after

purchase, 399
Response for Class (RFC), 181–182, 367
responsibilities, 378–379
reusability, 165, 182–183
review cancellation possibility, 454
review checklist, 382, 449, 454, 456–457
review culture, 455–457

etiquette, 455–456
ideal review, 457
management participation in review meetings,

456
point- haired supervisor review, 456

reviewers, 445, 448, 454, 456–457, 479
review issues spreadsheet, 449, 451

individual reviewer’s, 450, 454
review leader, 445–449, 453–454, 456, 458, 478,

479
review meetings, 447–449, 452, 453–457, 459

management participation, 456
review producer, 445–449, 453–457, 479
review recorder, 447–448, 453–454, 478, 479
review report, 447, 451–452
review reporting forms, 450–451
review team, 446, 448, 451, 453–456, 479

experience profiles, 457, 457–458
review training, 457, 459
risk, 231, 327
risk- based testing, 217, 324, 327–332, 330, 331,

335, 464
robust boundary value testing (RBVT), 79, 82–83

generalizations and limitations, 83
test cases for a function of two variables, 83

robust forms, problems, 97
robustness testing, 94, 222, 222
robust worst case boundary value testing

(RWCBVT), 79, 83–85
test cases for function of two variables, 84

robustness testing, 94, 222, 222
rule counts, 117, 124
rules, 119–120, 122–126, 127, 139, 145,

149–150, 235, 249, 249, 318
BDD decision table, 236–240, 240–242
decision tables, 116
equivalence classes of (identification), 126

run- time errors, 83, 111
@RunWith (annotation), 168–169
Rural Electric Administration (REA), 335

S

sandwich integration, 258–260, 270–271
SATM system, 469, 471
scalability, 248, 332

Index ◾ 523

scalar multiplication, 157, 164
scenarios (FSM/M Paths), 286–287, 287, 288
Schach, Stephen R., 132, 253
Schaefer, Hans, 327
scrum, 242–243
semantic- based methods, 201
semantic content, 202, 202, 203, 282–283
semantic meaning, 202–203, 205
semaphore, 338, 339–340
semipaths, 61–62
Sense Interruption, 425, 427, 429
sequence- changing statements, 18
sequence diagrams, 379–382

Chicago aircraft incident (1993), 382
normal landing, 380
set identities, 39, 39
set of discrete values, 111
set of edges, 53–54
set of equivalence classes, 121–124
set of nodes, 53–54
set of test cases, 135
set of test coverage metrics

definition, 135
set of transitions, 70, 71
set operations, 36–37
set partitions, 38–39

definition, 38
set relations, 37–38

definition, 38
set theory, 33–39, 50, 173

empty set, 35–36
naive versus axiomatic, 33
notation, 33–34
and propositional logic, 45
set definition, 34–35
set identities, 39, 39
set membership, 34
Venn diagrams, 35–36, 37

sets
elements, 42
finite versus infinite, 36

Shopping Cart (Foodies Wish List), 482, 483, 484,
487–490, 498–500, 500, 501

shopping cart user interface, 192
Shopping List (Foodies Wish List), 482, 483, 484,

487, 489, 499–500, 500, 501
short test case probabilities, 328, 328
short test case sequences

ordered by probability, 327, 329
probabilities, 326
risk profile, 330

short test cases (STCs), 321
advantage, 323
connectivity, 325, 327
descriptions of for Login and Shopping List

constituents, 326
failures, 327–328

locally feasible sequences, 323
path probabilities, 325
risk contribution, 329

similar treatment principle, 202–203
SimpleDate class, 166–168, 171, 174
simple propositions, 140

same as “atomic propositions”, 141
simple transactions, 292–293
single- entry, single- exit, 132, 157, 172, 265, 354
single- fault assumption, 79–81, 83, 97, 100–101, 222
single sets, 44–45
sink ASF, definition, 293
sink nodes, 60, 65–66, 132, 136, 157, 250, 262,

266, 293, 354, 363
definition, 266

slice- based testing, 190–199, 207
advantage over du- paths, 209
example, 192–196
program slicing tools, 198, 198
slice splicing, 197
style and technique, 197
test case values (triangleType variable), 210
triangleType variable, 209

slice splicing (Gallagher), 191
slice technique, 212–213
slice testing, 202, 202

effort and efficacy, 203
insurance premium case study, 220

Smalltalk, 165
soap opera tests, 231, 416–417
software complexity, 353–372

example (NextDate program), 364–366
exercise, 369–372
integration level complexity, 361–363, 364
object- oriented complexity, 366–367
system level complexity, 367–369
unit level complexity, 354–361

software development, 462–463
software development life cycle, 12; see also life

cycle- based testing
software engineering for systems of systems,

378–382
requirements elicitation, 378
specification with dialect of UML, 378–382
testing, 382

Software through Pictures (Aonix/Atego), 80
Software Quality Assurance (SQA), 10, 446, 451
software reviews, 227, 443–459

checklists, 10, 446, 446
contents of inspection packet, 448–452
documentation, 445–446
economics, 443–445
effectiveness, 446
inspection case study, 457–459
inspection process, 452–455
purpose, 10, 445
review culture, 455–457

524 ◾ Index

software technical reviews (roles), 446–448
duplication, 448
producer, 447
recorder, 447
review leader, 447
reviewer, 448

software technical reviews (types), 445–446
audits, 446, 446
technical inspections, 445–446, 446
walkthroughs, 445

software testing
appropriate tools, 465
Zipf’s Law, 324

software testing examples, 15–32
decision tables, 26–29
Foodies Wish List, 24–29
Garage Door Controller, 29
NextDate function, 21–24
Triangle Problem, 19–21

software testing excellence, 461–468
best practices, 462–465
extreme example, 466–468
mapping best practices to diverse projects,

465–466, 466
source ASF, definition, 293
source code, 3–5, 64, 131, 135, 137, 192, 269, 353,

356–357, 445
cyclomatic complexity, 368
loops “highly fault- prone portion”, 138
NextDate function, 125
procedural integrationNextDate, 269–271

source nodes, 60, 65, 132, 136, 250, 262, 266, 293,
354

definition, 265
space shuttle missions, 466–467
“spaghetti code”, 65, 74
special value testing, 8, 85, 93, 137
specification- based models, 353

complexity, 368, 368
iterative lifecycle testing, 232–234
comparison with code- based techniques,

212–213
specification- based testing, 7–8–9, 12, 37, 41, 79,

93, 163, 201–204, 210, 246, 249, 291,
314, 332

advantages and problems, 7
comparison of test case identification

methods, 8
discrete mathematics, 33
fundamental limitation, 135
insurance premium case study, 213, 213
intelligent combination with code- based unit

level testing, 465, 466
specification- implementation pairs, 44
specified behavior, 5–7, 9, 35
spiral model (Boehm), 230–231
spreadsheets, 85, 297, 306, 449, 450, 451, 454

sprints, 243, 243
square of opposition, 400, 400, 402
standards, 449, 462
start nodes, 157
statecharts, 15, 37, 64, 73–75, 233, 337, 339–341,

382, 386
blobs, 73
concurrent states, 74
conventions, 74
default entry into substates, 74
expressive capability, 341
initial states, 73, 74
notations, 36

state contour (Harel), 74
state coverage, 498

Login scenarios, 318, 319
StateMate system, 73
“statement complexity” versus “path

complexity”, 140
statement coverage, 137, 218
statement fragments, 65, 133–134, 136–137,

147, 171, 190–192, 195–196, 202,
266, 354

immediate execution ability, 131
nodes, 131, 135, 265

states, 307, 318, 342, 412, 414, 415, 418–419,
482, 490

state sequences, 286, 287, 308, 321–324, 413,
416–417, 494–498

across swim lanes, 493
state transition sequences, 344, 346
static applications, 441
static interactions, 399–402

multiple processors, 401–402
single processor, 399–401

static slices, 191–192
“statistically significant” coverage, 140
stimulus/response pairs, 291–293
stress- testing strategies, 332–334

compression, 333
mathematical approaches, 334–335
replication, 333–334

strong components, 63–64, 64
condensation graph, 64
definition, 64

strong normal edge test cases, 110
strong normal equivalence classes

completeOrder, 109
coverage for completeOrder, 110

strong normal equivalence class test cases
NextDate function, 107–108
Triangle Problem, 103

strong normal equivalence class testing, 97,
100–101, 101

strong robust equivalence class test cases
NextDate function, 104–106
Triangle Problem, 103–104

Index ◾ 525

strong robust equivalence class testing, 97,
102, 102

strong typing, 80, 98
strongly connected call graphs, 362–363
strongly connected graph, 157
strongly typed languages, 83, 97, 111–112
structural elements, pseudo- code and Java,

15–19
structural testing, 7, 44, 92, 171, 173, 201, 219,

228, 260, 264–265
best view, 163
graph theory, 33
hybrids, 268
system level, 234

structured analysis, 60, 383
structured programming, 157, 160, 171, 223, 341

architecture, 98
single- entry, single- exit, 354

structured programming constructs, 160, 161
condensing, 161
directed graphs, 65
violations, 162, 162

stub development, 263, 268
stubs, 229, 256–261, 270, 464
subalternation, 402
subset lattice of “interesting” slices, 196
subsets, 38, 45, 97, 100, 191, 196
subsumption (Rapps), 173
SUnit, 165–166
supervisors, 453, 455–456
swim lane architecture, 305

Foodies Wish List, 377
Swim Lane Event- Driven Petri Nets (swim lane

EDPNs), 341, 383, 425, 427–428, 429
definition, 419
deriving tests cases, 423–424
door opening interactions, 421–423, 423
garage door closing with an intermediate stop,

420, 421
garage door closing with laser beam crossing,

421, 422
Garage Door Controller, 418–423
normal garage door closing, 419–420, 420; see

also EDPNs
swim lane marked Petri net, definition, 418–419
Swim Lane Petri Nets, 339–340, 382, 386–389

Accept prompt, 386, 387
Chicago incident (1993), 389
definition, 419
Postpone prompt, 388, 389
Reject prompt, 386, 387–388
Request prompt, 386, 387

swim lanes, 286, 306, 308–309, 311, 482, 500
switch clause, 18, 22, 31
symmetric difference, definition, 36
symmetric relations, 44–45, 57
synthesis, 229–230, 232

SysML, 347, 348, 374, 378, 410, 410
system level complexity, 367–369

complexity of specification models, 368, 368
cyclomatic complexity of source code,

368, 368
UML complexity, 369
use case complexity, 368

system level test cases, 309–314, 337, 464
communicating FSMs to test cases, 313–314
dialog scenarios to test cases, 313
FSM paths to test cases, 312–313
industrial test execution system, 310–311
use cases to test cases, 311–312

system test cases, 227, 233–234, 301, 303–304, 490
system testing, 228–229, 231, 242, 245, 253, 265,

268, 291–336, 463, 467
coverage metrics, 314–320
identifying threads in systems of systems,

305–309
long versus short test cases, 320–332
non- functional, 332–335
supplemental approaches, 324
system level test cases, 309–314
threads, 291–294
threads, identification in single- processor

applications, 294–305
system testing extensions, best practice, 464, 466
system threads, 294

definition, 293
systems of systems (SoS), 15, 309, 315, 353,

373–390
characteristics, 374–375
communication between constituent systems,

382
communication primitives, 382–389
essential requirements, 375
generic view, 375
identifying threads, 305–309
interactions among constituent systems, 340
levels (effect on prompts), 389–390
sample, 375–378
software engineering, 378–382
tornado (Henryville, Indiana, 2012), 373, 375

T

tautology (proposition always true), 47–49
teachers, Michigan pension policy, 129
teamwork, 242–243, 467
Teamwork (Cadre Systems), 80
technical inspection packet, 469–479

base use case checklist, 476–477
base use case fault severity levels, 477–478
base use case standard, 476
base use case technical inspection forms,

478–479
base use cases, 472–475

526 ◾ Index

customer requirements, ATM Simulator,
469–472

inspection report outline, 478–479
technical inspections, xix, 4, 445–446

carefully performed, 463; see also software
reviews

telephone bills, spring and fall (time changes)
problem, 112

telephone switching systems, 310, 333, 335, 391,
400–401, 451

hardware, 452
software, xix, 443, 452

Terhorst- North, Daniel (Dan North), 235, 410
terminal nodes, 59, 66
@Test (annotation), 151–154, 168–170, 175,

185, 275
test case compression idea, 440
test case identification, 7–9, 227

degree of difficulty, 202, 202
degree of effectiveness, 202, 202
NBVT, 80

test cases, 4–5, 37, 44, 244, 246–248, 251, 432, 465
completeness, 127
definition, 4
derived from swim lane EDPNs (Garage Door

Controller), 423–424
long versus short (system testing), 320–332
NextDate function, 127
operational profiles, 324–327, 328, 329, 330
output portion, 5
risk- based testing, 324, 327–330, 330, 331
sources, 9
specification- based, 42
supplemental approaches to system testing,

324–330, 330, 331
syntactic versus semantic approach, 94–95, 95

test coverage, 136, 150, 465
for Systems of Systems, 494

test coverage metrics, 8, 300
message communication, 281
system- level, model- based, 418

test, definition, 4
test- driven development (TDD), 235, 243–246, 258

best practice, 465, 466
lifecycle, 244
versus MDD, 249–251
pros, cons, open questions, 248–249

testing, 3–14
basic definitions, 3–4
destructive versus non- destructive, 333
insights from Venn diagram, 5–6
levels, 12–13
mathematical description and analysis, 33
point at which becomes craft, 9
software engineering for systems of

systems, 382

testing event- driven systems, 409–430
testing levels, careful definition, 463, 466
testing life cycle, 4
testing methods, 6
testing object- oriented software, 165–199

implications of composition and
encapsulation, 183

implications of inheritance, 183–185
implications of polymorphism, 185–190
slice- based testing, 190–198

testing standard DO- 178B, 142
testing systems of systems, 373–390
test management, 5, 343
test method pendulum, 94, 160, 202, 202–204,

262, 264
traversing, 204–213

TestOptimal, 342–343, 344
FSM related to test cases, 342, 344
Garage Door Controller event and states,

342, 343
Insurance Premium Problem, 342, 343
pairwise abstract test cases, 342, 343
state diagram, 342, 344

testSimple function, 174, 175, 178
“They Write the Right Stuff” (Fishman, 1996),

466–467
thread executions, 324–325
thread interaction, 248, 464
threads, 70, 291–294, 301, 318, 324, 335, 337, 400,

402, 404, 406, 464
“atomic element” of system testing, 391
case- based, 318
definition, 70, 293–294
EDPN composition, 403
generation from finite state machines

(warning), 303–304
levels, 292
possibilities, 292–293
shared vision, 291–292

threads, identification in single- processor
applications, 294–305

finite state machines, 301–304
use cases (quantity required), 295–301
user stories, use cases, 294–295

threads, identification in systems of systems,
305–309

communicating FSMs, 305, 307–308, 308–309
dialogs among constituents, 305–306, 307
dialogs as sequences of ASFs, 305, 309

tiers, 500, 500, 501
time, 72–73, 402, 422, 446, 448–449, 451,

453–457, 463–464, 467
time allocated for testing, 324, 441
time change problem (spring and fall), 112, 129
time- critical projects, 465, 466
time- to- market, 231, 465

Index ◾ 527

tokens, 68–69, 71–72
tools of trade, 253
top- down approach, 246, 412
top- down development, 229

Garage Door Controller (Extended FSM),
414–418

top- down integration, 229, 256–258–259
Calendar Program, 256–258
steps, 257
theory, 258

topologically possible paths, 202–203–204
topology, 53
traffic engineering (compression), 333
training, 445–446
transfer node, 60
transformational applications, 235, 441
transformational systems, 318
transition coverage, 318

Login scenarios, 318, 320
transition firings, 69, 69
transition probabilities, 325–327, 331
transitions, 66, 72, 303, 318, 350–351, 383–384,

397, 403, 407, 413–414, 418, 421–422,
425, 427, 429, 490

transitive relations, 44–45, 57
trapezoid, 30

definition, 30
traversals (thread executions), 324
traversing test method pendulum, 204–213

basis path testing, 204–205, 206–207, 208
boundary value testing, 208, 210, 211
comparison of code- based and specification-

based techniques, 212–213
dataflow analysis, 206–208
decision table testing, 211–212, 217
equivalence class testing, 207, 210–211
program graph- based testing, 204, 205–207,

208
slice- based testing, 209, 210

“treated the same”, 98, 100, 106, 110, 126
Triangle Problem, 15, 19–21, 40–41, 81, 128, 136,

201
decision table, 116, 117
decision table- based testing (test cases), 120,

121
dependent pairs of DD- Paths, 138
equivalence class test cases, 103–104
equivalence class testing, 98, 207, 210–211
equivalence classes, 433
Java implementation, 20–21
normal boundary value test case, 86
physical variables (robust equivalence classes),

433
problem statement, 19–20, 85
program graph, 132, 133
random testing, 92, 92

refined decision table, 116, 117–118
rule counts, 118
strong normal equivalence class testing, 101
test cases (BVT), 85, 86–87
traversing test method pendulum, 204–213

Triangle Program, 30–31, 34, 39, 197
basis path method, 157–158, 159
compound condition, 149–150
decision table, 150
decisional complexity, 357
program graph, 149

triangleType variable, 207–208
path coverage of normal boundary values,

210, 210
path coverage of worst- case values, 210, 211
slice- based testing, 209
test case values derived from slices, 210

trigger prompt, 341, 426–427, 427, 428–429, 429
truth set, 49
truth tables, 46–47, 100, 116, 250, 250, 357
T (testing tool), 80

U

UCLA graphs, 338, 339
UML activity diagram, 342–343, 344
UML class diagrams

NextDate, 185, 190
SimpleDate, 174

UML class inheritance diagram, 182
UML dialect, 378–382

classes, 378
sequence diagrams, 379
three parts, 378–379
use cases, 378

UML finite state machine, 344, 345
unary arithmetic operators, 16
undirected graphs, 53, 58
Unified Modeling Language (UML), 15, 37, 43, 73,

241, 294
complexity, 369
diagrams, 3
notation, 240

unique cause MCDC, 142–143
unit level complexity, 354–361

computational complexity, 358–361
cyclomatic complexity, 354–358

unit testing, 15, 64, 77–223, 227–228, 231, 246,
253, 266, 282, 292, 382, 463–464, 467

BVT, 77–95
code- based testing, 131–164
decision table- based testing, 115–129
definition issues, 77
equivalence class testing, 97–113
method level, 278
object- oriented software, 165–199

528 ◾ Index

retrospective, 201–223
scrum lifecycle, 243
termination point, 201

unit testing frameworks, 165–169
unit testing retrospective, 201–223

code characteristics, 223, 223
functional testing, 222
guidelines, 221–223, 222–223
insurance premium case study, 213–221, 222
test method pendulum, 202, 202–204
traversing the pendulum, 204–213

unit test methods, effort and efficacy, 203, 204
universe of discourse, 35, 35, 36

partition, 38
selection, 49–50
Triangle Program, 39

unordered pairs, 37, 53, 58
usage nodes, 192

definition, 172
use case- based test coverage, 314–315–317
use case complexity, 368–369
use case inspection, 448, 457, 469–479
use case review checklist, 476–477
use case technical inspection forms, 478–479

individual inspection ballot, 478
inspection summary, 479

use cases, 234, 294–295, 305, 310, 378–379–382,
417, 464, 490

Chicago aircraft incident (1993), 381
expansion of input events and messages, 300
information content (Venn diagram), 241
Larman’s hierarchy, 241
main advantage, 294
normal landing, 380
technical inspection packet, 469–479
to test cases (system level), 311–312

use cases (quantity required, identifying threads
in single- processor applications),
295–301

incidence with classes, 300–301
incidence with input events and messages,

297–300
incidence with output actions and messages,

300, 301
order in which messages recognized in Login

use cases, 300
UserID (Foodies Wish List), 482–483, 485–486,

488, 490–492, 492, 493–498
user interface, 192, 500
users, 4, 228, 231
user stories, 234–248, 250, 294–295, 306, 315, 410

V

variable values, valid and invalid, 98
variables “treated the same”, 98, 100, 106,

110, 126

vector addition systems, 338, 339
vector replacement systems, 338, 339
vector spaces, 156, 160, 164

definition, 157
Venn diagrams, 5–6, 9, 73, 95, 135, 458

basic sets, 37
“do not show Cartesian products”, 37
information content in levels of use cases, 241
Larman’s hierarchy of use cases, 294
overlapping circles, 35–36
set of 30–day months, 35
set theory, 35–36, 37
shading, 35–36
specified, implemented (and tested) behaviors,

5, 6
Venn, John, 35
Verified Systems International GmbH, 346–348

Garage Door Controller, 348, 348, 348
Insurance Premium Problem, 347, 347

VERIFY, 287, 288, 310–314, 417, 424, 426, 428, 429
Vertices, same as “nodes”, 53
virtual systems of systems, 375, 383, 386, 390

definition (Maier), 374
V- Model, 12, 13, 14, 227
Visual Basic, 92, 133, 250
Visual Basic for Applications, 15, 15–19, 269, 362

VBA pseudo- code, 278

W

walkthroughs, 445, 446
Wallace, Dolores R., 431, 440
Warshall’s Algorithm, 203
Waterfall model, 12, 13, 231, 260, 268, 289, 444,

448, 452
as V Model, 228

Waterfall spin- off types, 230–232
evolutionary development, 230–231
incremental development, 230–231
spiral model, 230–231

Waterfall testing, 227–230
pros and cons, 229–230

weak normal equivalence class test cases
insurance premium case study, 219
NextDate function, 105–106
Triangle Problem, 103

weak normal edge test cases, 110
weak normal equivalence class testing, 97, 100,

100, 101
weak normal equivalence classes

completeOrder, 109
coverage for completeOrder, 110

weak robust equivalence class test cases, Triangle
Problem, 103

weak robust equivalence class testing, 97, 101,
101–102

revised, 102

Index ◾ 529

weak robust test cases, NextDate function,
105–106

weekDay (Calendar Program), 254, 255–258,
258–262, 263

Weibull distribution, 335
weighted methods per class (WMC), 181, 366

metric for Java version of NextDate, 366
Weiser, M.D., 190, 197
well- behaved attribute, 40, 42

inverse, 41
Weyuker, E.J., 173, 174
what/how cycles, 227, 448
white box testing, same as “code- based

testing”, 8
Wiegers, Karl, 444–445

website, 10, 449
Windshield Wiper Controller, 31, 129, 349–351,

390, 407, 430
Wittgenstein, L., 165
woodworking, 443, 461
workarounds, 183, 427
Work Breakdown Structure, 77
work product, 448, 453–454–455, 478–479
worst- case analysis, 83–84

best application, 84
generalization pattern, 84

limitations, 84
test cases for function of two variables, 84

worst- case boundary test cases, 219
worst case boundary value testing (WCBVT), 79,

83–85, 439
insurance premium case study, 213–218

worst- case normal equivalence class testing, 343, 345
worst- case testing, 222, 222

X

XUnit, 166, 464

Y

YesterDate program, 32, 41–42
Yourdon and Constantine, 182

Z

Zave, Pamela, 391–392, 400
Zeller’s Congruence, 256, 359–361
Zipf’s law (Pareto Principle), 22, 324
zodiac, 254, 256–258, 258–262
zodiac exercise, 369–372

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Table of Contents���
	Preface
	Authors
	Part I: A Mathematical Context
	Chapter 1: A Perspective on Testing
	1.1 Basic Definitions
	1.2 Test Cases
	1.3 Insights from a Venn Diagram
	1.4 Identifying Test Cases
	1.4.1 Specification-based Testing
	1.4.2 Code-based Testing
	1.4.3 The Specification-based versus Code-based Debate

	1.5 Fault Taxonomies
	1.6 Levels of Testing
	Exercises
	References

	Chapter 2: Examples
	2.1 Structural Elements of Pseudo-code and Java
	2.2 The Triangle Problem
	2.2.1 Problem Statement
	2.2.2 Discussion
	2.2.3 Java Implementation

	2.3 The NextDate Function
	2.3.1 Problem Statement
	2.3.2 Discussion
	2.3.3 Java Implementation

	2.4 The Foodies-Wish-List Online Shopping Application
	2.4.1 Problem Statement
	2.4.2 Discussion

	2.5 The Garage Door Controller
	2.6 Examples in Exercises
	2.6.1 The Quadrilateral Program
	2.6.2 The NextWeek Function
	2.6.3 The Windshield Wiper Controller

	Exercises
	References

	Chapter 3: Discrete Math for Testers
	3.1 Set Theory
	3.1.1 Set Membership
	3.1.2 Set Definition
	3.1.3 The Empty Set
	3.1.4 Venn Diagrams
	3.1.5 Set Operations
	3.1.6 Set Relations
	3.1.7 Set Partitions
	3.1.8 Set Identities

	3.2 Functions
	3.2.1 Domain and Range
	3.2.2 Function Types
	3.2.3 Function Composition

	3.3 Relations
	3.3.1 Relations among Sets
	3.3.2 Relations on a Single Set

	3.4 Propositional Logic
	3.4.1 Logical Operators
	3.4.2 Logical Expressions
	3.4.3 Logical Equivalence
	3.4.4 Probability Theory

	Exercises
	Reference

	Chapter 4: Graph Theory for Testers
	4.1 Graphs
	4.1.1 Degree of a Node
	4.1.2 Incidence Matrices
	4.1.3 Adjacency Matrices
	4.1.4 Paths
	4.1.5 Connectedness
	4.1.6 Condensation Graphs
	4.1.7 Cyclomatic Number

	4.2 Directed Graphs
	4.2.1 Indegrees and Outdegrees
	4.2.2 Types of Nodes
	4.2.3 Adjacency Matrix of a Directed Graph
	4.2.4 Paths and Semipaths
	4.2.5 Reachability Matrix
	4.2.6 n-Connectedness
	4.2.7 Strong Components

	4.3 Graphs for Testing
	4.3.1 Program Graphs
	4.3.2 Finite State Machines
	4.3.3 Petri Nets
	4.3.4 Event-Driven Petri Nets
	4.3.5 Statecharts

	Exercises
	Reference

	Part II: Unit Testing
	Chapter 5: Boundary Value Testing
	5.1 Normal Boundary Value Testing
	5.1.1 Generalizing Boundary Value Analysis
	5.1.2 Limitations of Boundary Value Analysis

	5.2 Robust Boundary Value Testing
	5.3 Worst Case Boundary Value Testing
	5.4 Special Value Testing
	5.5 Examples
	5.5.1 Test Cases for the Triangle Problem
	5.5.2 Test Cases for the NextDate Function

	5.6 Random Testing
	5.7 Guidelines for Boundary Value Testing
	Exercises

	Chapter 6: Equivalence Class Testing
	6.1 Equivalence Classes
	6.2 Traditional Equivalence Class Testing
	6.3 Improved Equivalence Class Testing
	6.3.1 Weak Normal Equivalence Class Testing
	6.3.2 Strong Normal Equivalence Class Testing
	6.3.3 Weak Robust Equivalence Class Testing
	6.3.4 Strong Robust Equivalence Class Testing

	6.4 Equivalence Class Test Cases for the Triangle Problem
	6.5 Equivalence Class Test Cases for the NextDate Function
	6.6 Equivalence Class Test Cases for the completeOrder Method
	6.7 “Edge Testing”
	6.8 Reflections on Invalid Classes
	6.9 Guidelines and Observations
	Exercises
	References

	Chapter 7: Decision Table-Based Testing
	7.1 Decision Tables
	7.2 Decision Table Techniques
	7.3 Test Cases for the Triangle Problem
	7.4 Test Cases for the NextDate Function
	7.4.1 First Try
	7.4.2 Second Try
	7.4.3 Third Try

	7.5 Cause and Effect Graphing
	7.6 Guidelines and Observations
	Exercises
	References

	Chapter 8: Code-Based Testing
	8.1 Program Graphs
	8.2 DD-Paths
	8.3 Code Coverage Metrics
	8.3.1 Program Graph-Based Coverage Metrics
	8.3.2 E. F. Miller’s Coverage Metrics
	8.3.2.1 Statement Testing
	8.3.2.2 DD-Path Testing
	8.3.2.3 Simple Loop Coverage
	8.3.2.4 Predicate Outcome Testing
	8.3.2.5 Dependent Pairs of DD-Paths
	8.3.2.6 Complex Loop Coverage
	8.3.2.7 Multiple Condition Coverage
	8.3.2.8 “Statistically Significant” Coverage
	8.3.2.9 All Possible Paths Coverage

	8.3.3 A Closer Look at Compound Conditions
	8.3.3.1 Boolean Expression (per Chilenski)
	8.3.3.2 Condition (per Chilenski)
	8.3.3.3 Coupled Conditions (per Chilenski)
	8.3.3.4 Masking Conditions (per Chilenski)
	8.3.3.5 Modified Condition Decision Coverage

	8.3.4 Examples
	8.3.4.1 Condition with Two Simple Conditions
	8.3.4.2 Example: Compound Condition from NextDate
	8.3.4.2.1 Program Graph-Based Coverage Metrics
	8.3.4.2.2 Model-Based (Decision Table) Code Coverage Metrics

	8.3.4.2.3 Compound Condition from the Triangle Program
	8.3.4.3 Test Coverage Analyzers
	8.3.4.4 Java Code for Tests in Table 8.8
	8.3.4.5 Junit Test Results
	8.3.4.6 Capabilities of Selected Code Coverage Tools

	8.4 Basis Path Testing
	8.4.1 McCabe’s Basis Path Method
	8.4.2 Observations on McCabe’s Basis Path Method
	8.4.3 Essential Complexity

	8.5 Guidelines and Observations
	Exercises
	References

	Chapter 9: Testing Object-Oriented Software
	9.1 Unit Testing Frameworks
	9.1.1 Common Unit Testing Frameworks
	9.1.2 JUnit Examples

	9.2 Mock Objects and Automated Object Mocking
	9.3 Dataflow Testing
	9.3.1 Define/Use Testing Definition
	9.3.2 Define/Use Testing Metrics
	9.3.3 Define/Use Testing Example

	9.4 Object-Oriented Complexity Metrics
	9.4.1 WMC—Weighted Methods per Class
	9.4.2 DIT—Depth of Inheritance Tree
	9.4.3 NOC—Number of Child Classes
	9.4.4 CBO—Coupling Between Classes
	9.4.5 RFC—Response for Class
	9.4.6 LCOM—Lack of Cohesion on Methods

	9.5 Issues in Testing Object-Oriented Software
	9.5.1 Implications of Composition and Encapsulation
	9.5.2 Implications of Inheritance
	9.5.3 Implications of Polymorphism

	9.6 Slice-Based Testing
	9.6.1 Example
	9.6.2 Style and Technique
	9.6.3 Slice Splicing
	9.6.4 Program Slicing Tools

	Exercises
	References

	Chapter 10: Retrospective on Unit Testing
	10.1 The Test Method Pendulum
	10.2 Traversing the Pendulum
	10.2.1 Program Graph-Based Testing
	10.2.2 Basis Path Testing
	10.2.3 Dataflow Testing
	10.2.4 Slice-Based Testing
	10.2.5 Boundary Value Testing
	10.2.6 Equivalence Class Testing
	10.2.7 Decision Table Testing

	10.3 Insurance Premium Case Study
	10.4 Specification-Based Testing
	10.4.1 Code-Based Testing
	10.4.1.1 Path-based Testing
	10.4.1.2 Dataflow Testing
	10.4.1.3 Slice Testing

	10.5 Guidelines
	Exercises
	References

	Part III: Beyond Unit Testing
	Chapter 11: Life Cycle-Based Testing
	11.1 Traditional Waterfall Testing
	11.1.1 Waterfall Testing
	11.1.2 Pros and Cons of the Waterfall Model

	11.2 Testing in Iterative Lifecycles
	11.2.1 Waterfall Spin-Offs
	11.2.2 Specification-Based Life Cycle Models

	11.3 Agile Testing
	11.3.1 About User Stories
	11.3.1.1 Behavior-Driven Development
	Rules 3 and 4
	Rules 5 and 6
	11.3.1.2 Use Cases

	11.3.2 Extreme Programming
	11.3.3 Scrum
	11.3.4 Test-Driven Development
	11.3.5 Agile Model-Driven Development
	11.3.6 Model-Driven Agile Development

	11.4 Remaining Questions
	11.4.1 Specification or Code Based?
	11.4.2 Configuration Management?
	11.4.3 Granularity?

	11.5 Pros, cons, and Open Questions of TDD
	11.6 Retrospective on MDD vs. TDD
	References

	Chapter 12: Integration Testing
	12.1 Decomposition-Based Integration
	12.1.1 Top-down Integration
	12.1.2 Bottom-up Integration
	12.1.3 Sandwich Integration
	12.1.4 Pros and Cons

	12.2 Call Graph-Based Integration
	12.2.1 Pairwise Integration
	12.2.2 Neighborhood Integration
	12.2.3 Pros and Cons

	12.3 Path-Based Integration
	12.3.1 New and Extended Concepts
	12.3.2 MM-Path Complexity
	12.3.3 Pros and Cons

	12.4 Example: Procedural integrationNextDate
	12.4.1 Decomposition-Based Integration
	12.4.2 Call Graph-Based Integration
	12.4.3 Integration Based on MM-Paths
	12.4.4 Observations and Recommendations

	12.5 Example: O-O integrationNextDate
	12.6 Model-Based Integration Testing
	12.6.1 Message Communication
	12.6.2 Pairwise Integration
	12.6.3 FSM/M Path Integration
	12.6.4 Scenario 1: Normal Account Creation

	Exercises
	References

	Chapter 13: System Testing
	13.1 Threads
	13.1.1 Thread Possibilities
	13.1.2 Thread Definitions

	13.2 Identifying Threads in Single-Processor Applications
	13.2.1 User Stories/Use Cases
	13.2.2 How Many Use Cases?
	13.2.2.1 Incidence with Input Events and Messages
	13.2.2.2 Incidence with Output Actions and Messages
	13.2.2.3 Incidence with Classes

	13.2.3 Threads in Finite State Machines
	13.2.3.1 Paths in a Finite State Machine
	13.2.3.2 How Many Paths?

	13.2.4 Atomic System Functions

	13.3 Identifying Threads in Systems of Systems
	13.3.1 Dialogues
	13.3.2 Communicating FSMs
	13.3.3 Dialogues as Sequences of ASFs

	13.4 System Level Test Cases
	13.4.1 An Industrial Test Execution System
	13.4.2 Use Cases to Test Cases
	13.4.3 Finite State Machine Paths to Test Cases
	13.4.4 Dialogue Scenarios to Test Cases
	13.4.5 Communicating Finite State Machines to Test Cases

	13.5 Coverage Metrics for System Testing
	13.5.1 Use Case-Based Test Coverage
	13.5.2 Model-Based Test Coverage

	13.6 Long Versus Short Test Cases
	13.6.1 Supplemental Approaches to System Testing
	13.6.2 Operational Profiles
	13.6.2.1 Risk-Based Testing

	13.7 Non-functional System Testing
	13.7.1 Stress Testing Strategies
	13.7.1.1 Compression
	13.7.1.2 Replication

	13.7.2 Mathematical Approaches
	13.7.2.1 Queueing Theory
	13.7.2.2 Reliability Models
	13.7.2.3 Monte Carlo Testing
	Exercises

	References

	Chapter 14: Model-Based Testing
	14.1 Testing Based on Models
	14.2 Appropriate Models
	14.2.1 Peterson’s Lattice
	14.2.2 Expressive Capabilities of Mainline Models
	14.2.3 Modeling Issues
	14.2.4 Making Appropriate Choices

	14.3 Commercial Tool Support for Model-Based Testing
	14.3.1 TestOptimal
	14.3.2 Conformiq
	14.3.3 Verified Systems International GmbH
	Exercises

	References

	Chapter 15: Software Complexity
	15.1 Unit Level Complexity
	15.1.1 Cyclomatic Complexity
	15.1.1.1 “Cattle Pens” and Cyclomatic Complexity
	15.1.1.2 Node Outdegrees and Cyclomatic Complexity
	15.1.1.3 Decisional Complexity

	15.1.2 Computational Complexity
	15.1.2.1 Halstead’s Metrics
	15.1.2.2 Example: Day of Week with Zeller’s Congruence

	15.2 Integration Level Complexity
	15.2.1 Integration Level Cyclomatic Complexity
	15.2.2 Message Traffic Complexity

	15.3 Software Complexity Example
	15.4 Object-Oriented Complexity
	15.4.1 WMC—Weighted Methods per Class
	15.4.2 DIT—Depth of Inheritance Tree
	15.4.3 NOC—Number of Child Classes
	15.4.4 CBO—Coupling between Classes
	15.4.5 RFC—Response for Class
	15.4.6 LCOM—Lack of Cohesion on Methods

	15.5 System Level Complexity
	15.5.1 Cyclomatic Complexity of Source Code
	15.5.2 Complexity of Specification Models
	15.5.3 Use Case Complexity
	15.5.4 UML Complexity

	Exercise
	References

	Chapter 16: Testing Systems of Systems
	16.1 Characteristics of Systems of Systems
	16.2 Sample Systems of Systems
	16.2.1 The Garage Door Controller (Directed)
	16.2.2 Air Traffic Management System (Acknowledged)
	16.2.3 The Foodie Wish List System

	16.3 Software Engineering for Systems of Systems
	16.3.1 Requirements Elicitation
	16.3.2 Specification with a Dialect of UML
	16.3.2.1 Air Traffic Management System Classes
	16.3.2.2 Air Traffic Management System Use Cases and Sequence Diagrams
	Normal Landing Use Case
	November 1993 Incident Use Case

	16.3.3 Testing

	16.4 Communication Primitives for Systems of Systems
	16.4.1 ESML Prompts as Petri Nets
	16.4.1.1 Petri Net Conflict
	16.4.1.2 Petri Net Interlock
	16.4.1.3 Enable, Disable, and Activate
	16.4.1.4 Trigger
	16.4.1.5 Suspend and Resume

	16.4.2 New Prompts as Swim Lane Petri Nets
	16.4.2.1 Request
	16.4.2.2 Accept
	16.4.2.3 Reject
	16.4.2.4 Postpone
	16.4.2.5 Swim Lane Description of the November 1993 Incident (Figure 16.19)

	16.5 Effect of Systems of Systems Levels on Prompts
	16.5.1 Directed and Acknowledged Systems of Systems
	16.5.2 Collaborative and Virtual Systems of Systems

	Exercises
	References

	Chapter 17: Feature Interaction Testing
	17.1 Feature Interaction Problem Defined
	17.2 Types of Feature Interactions
	17.2.1 Input Conflict
	17.2.2 Output Conflict
	17.2.3 Resource Conflict

	17.3 A Taxonomy of Interactions
	17.3.1 Static Interactions in a Single Processor
	17.3.2 Static Interactions in Multiple Processors
	17.3.3 Dynamic Interactions in a Single Processor
	17.3.4 Dynamic Interactions in Multiple Processors

	17.4 Interaction, Composition, and Determinism
	Exercises
	References

	Chapter 18: Case Study:: Testing Event-Driven Systems
	18.1 The Garage Door Controller Problem Statement
	18.2 Modeling with Behavior Driven Development (BDD)
	18.3 Modeling with Extended Finite State Machines
	18.3.1 Deriving a Finite State Machine from BDD Scenarios
	18.3.2 Top-down development of a Finite State Machine

	18.4 Modeling with Swim Lane Event-Driven Petri Nets
	18.4.1 Normal Garage Door Closing
	18.4.2 Garage Door Closing with an Intermediate Stop
	18.4.3 Garage Door Closing with a Laser Beam Crossing
	18.4.4 The Door Opening Interactions

	18.5 Deriving Test Cases from Swim Lane Event-Driven Petri Nets
	18.6 Failure Mode Event Analysis (FMEA)
	Exercises
	References

	Chapter 19: A Closer Look at All Pairs Testing
	19.1 The All Pairs Technique
	19.1.1 Program Inputs
	19.1.2 Independent Variables
	19.1.3 Input Order
	19.1.4 Failures Due only to Pairs of Inputs

	19.2 A Closer Look at the NIST Study
	19.3 Appropriate Applications for All-Pairs Testing
	19.4 Recommendations for All Pairs Testing
	Exercises

	References

	Chapter 20: Software Technical Reviews
	20.1 Economics of Software Reviews
	20.2 Types of Reviews
	20.2.1 Walkthroughs
	20.2.2 Technical Inspections
	20.2.3 Audits
	20.2.4 Comparison of Review Types

	20.3 Roles in a Review
	20.3.1 Producer
	20.3.2 Review Leader
	20.3.3 Recorder
	20.3.4 Reviewer
	20.3.5 Role Duplication

	20.4 Contents of an Inspection Packet
	20.4.1 Work Product Requirements
	20.4.2 Frozen Work Product
	20.4.3 Standards and Checklists
	20.4.4 Review Issues Spreadsheet
	20.4.5 Review Reporting Forms
	20.4.6 Fault Severity Levels
	20.4.7 Review Report Outline

	20.5 An Industrial-Strength Inspection Process
	20.5.1 Commitment Planning
	20.5.2 Reviewer Introduction
	20.5.3 Preparation
	20.5.4 Review Meeting
	20.5.5 Report Preparation
	20.5.6 Disposition

	20.6 Effective Review Culture
	20.6.1 Etiquette
	20.6.2 Management Participation in Review Meetings
	20.6.3 A Tale of Two Reviews
	20.6.3.1 A Pointy-Haired Supervisor Review
	20.6.3.2 An Ideal Review

	20.7 Inspection Case Study
	References

	Chapter 21: Epilogue: Software Testing Excellence
	21.1 Craftsmanship
	21.2 Best Practices of Software Testing
	21.3 Our Top 10 Best Practices for Software Testing Excellence
	21.3.1 Carefully Performed Technical Inspections
	21.3.2 Careful Definition and Identification of Levels of Testing
	21.3.3 Model-Based Testing at All Levels
	21.3.4 System Testing Extensions
	21.3.5 Incidence Matrices to Guide Regression Testing
	21.3.6 Use of xUnit and Object Mocking at the Unit Level
	21.3.7 Intelligent Combination of Specification-Based and Code-Based Unit Level Testing
	21.3.8 Use of Appropriate Tools at All Testing Levels
	21.3.9 Exploratory Testing During Maintenance
	21.3.10 Test-Driven Development

	21.4 Mapping Best Practices to Diverse Projects
	21.4.1 A Mission Critical Project
	21.4.2 A Time Critical Project
	21.4.3 Corrective Maintenance of Legacy code

	21.5 An Extreme Example
	References

	Appendix A: Complete Technical Inspection Packet
	A.1 Customer Requirements: ATM Simulator
	A.2 Base Use Cases
	A.3 Base Use Case Standard
	A.4 Base Use Case Checklist
	A.5 Base Use Case Fault Severity Levels
	A.6 Base Use Case Technical Inspection Forms
	A.7 Sample Inspection Report Outline
	Table of Contents
	Attachments

	Appendix B: Foodies Wish List Example
	B.1 General Description
	B.2 Messages Among Finite State Machines
	B.2.1 Foodie Wish List Finite State Machines
	B.2.1.1 Foodie Home
	B.2.1.2 Account Creation
	B.2.1.3 Login
	B.2.1.4 Shopping List
	B.2.1.5 Admin
	B.2.1.6 Shopping Cart
	B.2.1.7 FoodieDB

	B.3 Dialogs Across Swim Lanes
	B.3.1 Scenarios
	B.3.1.1 Scenario 1.1: Normal Account Creation
	B.3.1.2 Scenario 1.2: Duplicate UserID found
	B.3.1.3 Scenario 1.3: Partial Account Creation (no PIN definition)
	B.3.1.4 Scenarios and Test Coverage for Login
	B.3.1.4.1 Scenario 2.1: Valid Login, PIN correct on 1 st try
	B.3.1.4.2 Scenario 2.2: Valid Login, PIN correct on 2nd try
	B.3.1.4.3 Scenario 2.3: Valid Login, PIN correct on 3rd try
	B.3.1.4.4 Scenario 2.4: Invalid Login, PIN failed on 3rd try
	B.3.1.4.5 Scenario 2.5: Invalid Login, no PIN try

	B.3.1.5 Summary of Event/Message Sequences for Scenarios 2.1 to 2.5
	B.3.1.6 Test Coverage of Scenarios 2.1–2.5
	Scenario 4: End-to-End Login to Purchase Transaction

	B.4 Object-Oriented Design

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

